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Abstract
Background. Automated Program Repair (APR) techniques often
face challenges in navigating vast search space of possible patches
and often rely on redundancy-based assumptions, which can restrict
the diversity of generated patches. Recently, Code LanguageModels
(CLMs) have emerged as a method for dynamically generating patch
ingredients, potentially enhancing patch quality.

Aim. This study aims to enhance APR by integrating search-
based methods with CLMs to improve both the quality of generated
patch ingredients and the efficiency of the search process.

Method. We propose ARJACLM, a novel APR technique that
uses a genetic algorithm for search space navigation and dynami-
cally generates patch ingredients with the CodeLLaMA-13B model,
combining redundancy-based and CLM-derived patch ingredients.

Results. Testing on 176 bugs across 9 Java projects from De-
fect4J shows that CLM-generated patch ingredients significantly
boost ARJACLM’s performance, though at the cost of increased
computation time. ARJACLM outperforms ARJA and GenProg, and
CLM-generated patch ingredients are of higher quality than their
redundancy-based counterparts. Additionally, ARJACLM performs
best when redundancy-based patch ingredients are ignored.

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools.
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1 Introduction
Software bugs are common and their occurrence and complexity
have increased with the growing size and complexity of modern
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software systems. As a result, software engineers must spend sig-
nificant time fixing bugs to ensure proper functionality. However,
localising and fixing bugs is a costly activity, estimated to be worth
billions of dollars annually worldwide [1]. This makes Automated
Program Repair (APR) highly desirable, leading to the development
of various technologies and methodologies in recent years [2–7].

Among the proposed approaches, generate-and-validate tech-
niques are the most widely used [2]. These methods work by gener-
ating numerous candidate patches to fix a specific bug and validat-
ing each one by compiling and testing to determine its effectiveness
in fixing the bug [2]. The candidate patches are typically chosen
based on specific criteria from a large search space of potential solu-
tions. However, a significant challenge is how to effectively define
and navigate this search space [8]. A small search space allows
for faster exploration but may miss potential solutions if they are
not included. Conversely, a large search space may contain the
needed solutions but can be costly and time-consuming to explore.
Thus, both how the search space is defined and how it is navigated
are critical factors. We review evolutionary algorithms [8–10] and
learning-based algorithms [11–13] used to tackle these challenges.

GenProg [9], a well-known search-based APR tool, defines its
search space based on the assumption that the code needed to
generate a repair (referred to as patch ingredients) already exists
elsewhere in the buggy program. This concept is known as the
redundancy assumption or plastic surgery hypothesis in the research
literature [14, 15]. Although the redundancy assumption narrows
the patch ingredients to those available within the existing code
and makes the search space manageable, it also limits the bug-
fixing capability if the necessary patch ingredient is not within the
available search space [16]. This issue can be more pronounced in
smaller projects. GenProg [9] also faces challenges in navigating the
search space effectively, as its reliance on random mutations—such
as adding, replacing, or removing statements—can lead to nonsen-
sical patches not accepted by developers [17]. Indeed, Qi et al. [18]
demonstrated that replacing GenProg’s search algorithm with ran-
dom search improves both the success and speed of repairs.

One notable work that aimed to improve GenProg is ARJA [8].
ARJA advances GenProg by employing a more effective search
algorithm and redefining the search space. Specifically, ARJA em-
ploys a fine-granularity patch representation that enhances search
space organization, enabling more precise navigation. Additionally,
ARJA uses a novel filtering technique to reduce the search space by
eliminating irrelevant patch ingredients, such as removing method
calls not accessible at the buggy location. ARJA also employs a
type-matching approach to extend the search space by generating
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new code based on syntactic patterns observed in the program, like
substituting inaccessible method calls with suitable alternatives
available at the buggy line. This combination of filtering and type
matching enhances search space quality, reduces execution time,
and improves repair effectiveness. However, Yuan and Banzhaf [8]
observed that some bugs remained unfixed because the necessary
patch ingredients could not be found in the program, even with
the proposed type-matching approach. They also noted instances
where, despite the patch ingredients being present, the search algo-
rithm was not robust enough to locate them [8].

To address these issues, Yuan and Banzhaf [10] introduced an
enhanced version of their tool called ARJA-e. This tool improves the
source of potential patch ingredients by incorporating both ingredi-
ents derived from the redundancy assumption and repair templates
proposed by Kim et al. [17]. Additionally, they categorize patch
ingredients into two groups—replacement and insertion—based on
their suitability for specific operations. This categorization helps
reduce the search space for each operation type. However, while
ARJA-e [10] successfully outperforms other approaches, including
ARJA [8], its reliance on template repair may not cover all possible
bug types and can overfit specific patterns [3].

In a recent work, Li et al. [11] proposed ARJANMT, a hybrid APR
technique that enhances ARJA by incorporating additional patch in-
gredients derived from the learning-based tool SequenceR [19]. AR-
JANMT demonstrates that patch ingredients generated by learning-
based techniques can improve the performance of traditional search-
based APR techniques. However, the improvement in bug-fixing
capabilities of ARJANMT over AJRAwasmodest (50 vs. 47) as it was
significantly constrained in two ways. First, ARJANMT generates
all patch ingredients beforehand based on the initial buggy program,
so patch ingredients produced by SequenceR are not adapted to
the subsequent changes made to the program during the patching
process. As a result, the learning-based patch ingredients do not
account for modifications that occur as the program evolves. In
addition, SequenceR relies on limited training data, which restricts
its ability to generate effective patches, a common limitation of
traditional machine learning techniques [12].

In a recent study, Xia and Zhang [12] demonstrate that pre-
trained code large languagemodels can outperform existing learning-
based APR techniques, even in a zero-shot learning setting, where
the model is not explicitly trained for program repair. In the pro-
posed approach, the likely buggy statement is partially or completely
replaced with a mask, and then patch ingredients are generated by
asking a pre-trained language model to fill in the masked statement.
This method allows for the creation of patch ingredients directly
from the provided code and addresses the limitations of the redun-
dancy assumption. However, despite the impressive capabilities of
pre-trained code language models in APR [12, 13, 20–25], they face
several limitations as highlighted by Zhang et al. [6]. First, these
models can only process a limited amount of code at once, which
restricts their ability to analyze entire programs and affects the
quality of the generated patch ingredients. Second, they frequently
suffer from hallucinations, resulting in syntactically or semantically
incorrect code [26]. Additionally, while these models excel in gen-
eral code generation, they lack explicit APR capabilities. Therefore,
to be effective, they need to be integrated into APR techniques
that leverage them to generate code in specific contexts and create

meaningful patches [13, 27]. Furthermore, pre-trained code lan-
guage models are resource-intensive and time-consuming, limiting
the generation of patch ingredients per buggy statement.

To capitalize on the strengths of both search-based techniques
and pre-trained Code Language Models (CLMs) while addressing
their respective limitations in automated program repair, this study
proposes ARJACLM. ARJACLM is an innovative search-based APR
technique built upon ARJA, which uses CLMs to dynamically gen-
erate patch ingredients. ARJACLM leverages a genetic algorithm
for search-based navigation of the patch space and utilizes CLMs
in a zero-shot setting to enhance the quality of patch ingredients.
The search space in ARJACLM incorporates both patch ingredients
derived from the redundancy assumption and those generated on
demand by the CLM. Further detail is provided in Section 2.

ARJACLM is evaluated on a subset of 176 bugs from 9 Java
projects in the Defect4J dataset [28] and compared with a version
of ARJACLM that does not utilize CLMs, as well as with ARJA [8]
and a version of GenProg [29] capable of repairing bugs in Java
projects. The results demonstrated that ARJACLM outperforms
these approaches but at the cost of increased computation time. We
also observed that CLM-generated patch ingredients are of higher
quality than their redundancy-based counterparts, and ARJACLM
performs best when redundancy-based patch ingredients are ig-
nored. In summary, the contributions of our study are as follows:
(1) A novel APR technique that uses both search-based methods

and pre-trained language models to improve the navigation of
the search space and enhance the quality of generated patches.

(2) An evaluation of the proposed approach on a subset of bugs
from the Defect4J dataset, and comparing it with other existing
search-based techniques, namely ARJA and GenProg.

(3) Public release of ARJACLM [30], allowing other researchers to
replicate experiments and contribute to further enhancements.
The remainder of this paper is organized as follows. We proceed

by discussing the foundation of our proposed approach. Next, we
present and discuss the results from our experiments in Section 3,
followed by an analysis of limitations and threats to validity in
Section 4. A survey of related work is presented in Section 5, and
finally, in Section 6, we conclude and discuss future work.

2 Proposed Approach
The goal of this research study is to evaluate the efficacy of integrat-
ing search-based techniques with code language models for auto-
mated program repair. This involves extracting modification points,
and iteratively mutating the code using a search-based algorithm,
while consulting with a language model to enhance modification
guidance. The proposed approach, depicted in Fig. 1, consists of
three steps executed consecutively, and detailed as follows.

The process begins with two inputs: a Buggy Program and a
Test Suite which is used for testing the functionality of the input
program. In the test suite, there has to be at least one case that causes
it to fail, indicating the presence of the bug. The first phase, named
Preparation and Analysis, begins with the extraction of relevant
data—referred to as ingredient statements—from the buggy program
using the Source Data Extraction component. This data is later
filtered and categorized based on the lines it covers, and serves as
the basis for replacing and inserting code during patch generation.
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Figure 1: Integrating Search-Based Methods with Pre-Trained Language Models for More Effective Bug Fixing.

In the preparation and analysis phase, we also employ a Fault
Localization technique to identify likely buggy statements (LBSs).
As illustrated in Fig. 1, it takes as inputs a buggy program and a
test suite and finds LBSs by analyzing how the test suite behaves
on the input program. Each LBS is assigned a suspiciousness score
between 0 (low) and 1 (high), indicating the likelihood of a defect.

Another activity done during the preparation and analysis phase
includes determining what kind of changes should be made to a
buggy statement i.e., delete it, replace it, or insert something before
or after it. In this step, we also decide about the ingredient state-
ments—statements that can be included with the buggy statements.
For instance, one type of change may include replacing a method
call in the buggy statement with another call serving as the ingredi-
ent statement. These activities are done in Rule-Based Search Space
Optimization step. It involves identifying which operations and in-
gredient statements are relevant, based on their visibility and scope
relative to the buggy statements. This step is essential to reduce the
search space and also ensure the changes can be effectively applied.
In this study, we follow the rules defined by the ARJA study [8]
to filter the type of changes and ingredient statements. However,
as will be discussed in Section 2.3, we also extend some rules to
enhance the effectiveness of the search space.

The outcome of the Rule-Based Search Space Optimization is a
set of modification points. These points represent statements in the
buggy program that can be modified by a patch and specify how the
buggy statements can be altered. Fig. 2 illustrates an example of a
modification point. As shown, each modification point has a unique
index, a suspiciousness score, the likely buggy statement that can
be modified, and the patch operations and patch ingredients that
can be used to modify the buggy statement. For example, in the
provided example, a potential solution is to replace the provided
buggy line: result = value; with result += value;.

Figure 2: A Modification point in ARJACLM.

In the second phase of the proposed approach, a search-based
algorithm evolves patches to modify the identified modification
points to generate a set of Preliminary Validated Patches that could
potentially fix the bugs. The employed search-based algorithm
refines the resulting patches using the input test suite. ARJACLM
uses a subset of tests from the input test suite to speed up the search
process. This subset is determined through Test Case Sampling,
performed in the first phase, discussed later in Section 2.2.

ARJACLM, similar to ARJA [8], employs amulti-objective genetic
algorithm based on NSGA-II [31] to balance two key objectives:
maximum correctness and minimal modification. Indeed, between
two valid solutions, the one with fewer changes is preferred over the
other. In this way, the fitness function promotes patches that reduce
the number of changes that can be applied to the program. Both
ARJA and ARJACLM utilise the redundancy assumption to generate
patch ingredients. It means that the code necessary for generating
a repair already exists elsewhere in the buggy program. However,
ARJACLM extends this approach by consulting pre-trained code
language models to generate additional patch ingredients directly
from the code surrounding the buggy line, with the likely buggy
line itself masked. This allows the exploration of a vast search
space of potential patch ingredients. The genetic algorithm and its
integration with code language models are described in Section 2.4.

In the final phase of the proposed approach, serving as a post-
processing step, the preliminary validated patches generated in the
search-based phase undergo rigorous validation against the entire
input test suite. This is necessary as preliminary validated patches
are only validated based on a subset of test cases as discussed before.
Patches that successfully pass all the test cases are considered Test-
Adequate Patches and are deemed valid fixes for the identified bugs.

In the following subsections, a more detailed description of each
step is provided.

2.1 Fault Localization
To identify likely buggy statements, we used the GZoltar toolset
version 1.7.3 [32, 33] and applied the Ochiai metric [34] to measure
suspiciousness of likely buggy statements, similar to ARJA [8]. We
then use GZoltar’s information to (1) filter unrelated test cases (see
Section 2.2) and (2) determine program entities (e.g., classes, meth-
ods, fields, variables) accessible at the buggy statement’s location
(see Section 2.3). As in ARJA [8], we narrow the search space by
applying a suspiciousness threshold (0.1) and a modification points
limit (40), selecting statements that meet these criteria.
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2.2 Test Case Sampling
Most of the execution time of search-based APR techniques con-
sists of the evaluation of patches. Therefore, it is necessary to filter
out unrelated test cases to speed up the process. ARJA [8] filters
positive tests based on their code coverage. Indeed, positive test
cases that do not run any of the lines associated with the likely
buggy statement are excluded [8]. ARJACLM, however, leverages
a straightforward test sampling technique. Indeed, test cases lo-
cated in the same package as a negative test case are always used.
Moreover, the rest positive test cases are randomly selected until a
fraction of all positive tests are sampled. The sampling ratio param-
eter is a configurable parameter of ARJACLM and determines how
many positive test cases are sampled. This test sampling technique
prioritizes test cases which are likely related to the buggy code
based on their location and avoids the use of a complex coverage-
based sampling technique used by ARJA. As discussed in Section 2,
the preliminary validated patches generated in the search-based
phase undergo rigorous validation against the entire input test suite
at the end. Therefore, patches that successfully pass all test cases in
the project are deemed valid fixes for the identified bugs.

2.3 Rule-Based Search Space Optimization
During the preparation and analysis phase, we determine the possi-
ble changes for a buggy statement—such as deletion, replacement,
or insertion—and also decide on the ingredient statements that can
accompany the buggy statements. For example, a change might
involve replacing a method call with another visible and compatible
method that serves as an ingredient statement.

The Rule-Based Search Space Optimization, shown in Fig. 1, iden-
tifies relevant operations and ingredient statements based on their
appropriateness and visibility, thereby reducing the search space
and ensuring effective changes. In this study, we follow ARJA’s
rules [8] for filtering operations and ingredients, while extending
some rules to enhance search space effectiveness. We define three
types of rules: (i) disabling specific operations, (ii) disabling spe-
cific ingredients, and (iii) disabling certain operations on particular
ingredients. These rules are applied to each modification point.

2.3.1 Operation Screening. Operation screening determines
which operations are suitable for modifying a likely buggy state-
ment and should be applied at the relevant modification point. We
follow two rules from ARJA [8]. First, we avoid deleting a return

statement if it is the last statement in a non-void method as it re-
sults in a compiler error [8]. Second, we do not delete a variable
declaration because if it is used in the program, this would lead to a
compiler error. However, if the variable is unused, it is considered
redundant and does not affect program correctness [8].

2.3.2 Ingredient Screening. Ingredient screening filters patch
ingredients based on their visibility and compatibility with the code
surrounding a likely buggy statement. To determine ingredient
statements for each buggy line, we first extract the scope of all
classes, fields, variables, and methods (including their parameters).
These are then filtered based on their visibility and compatibility
for each modification point. For instance, if a method is private

and the buggy line is outside its class, it is filtered out as calling this
method would result in a compiler error due to its inaccessibility.

Table 1: A comparison of types of patch ingredients sup-
ported by ingredient symbol screening of ARJA and ARJA-
CLM. A checkmark is provided only if the respective tech-
nique can handle all symbols in the input.

Symbol Visibility Type Compatibility

Statement ARJA ARJACLM ARJA ARJACLM

x = y; ✓ ✓ ✓ ✓
x = y + 1; ✓ ✓ ✗ ✗
f(x, y); ✓ ✓ ✓ ✓
z = f(x, y); ✗ ✓ ✗ ✓
z = f(x, 1); ✗ ✓ ✗ ✗
f(x).y(); ✗ ✓ ✗ ✓
f(x).y(z); ✗ ✓ ✗ ✓

In comparison to ARJA, the ingredient screening procedure in
ARJACLMvalidatesmore code symbols, and ismore strict as a result.
Table 1 shows a comparison of types of patch ingredients supported
by the ingredient symbol screening procedures of ARJA and AR-
JACLM. Symbol visibility checking assesses whether a symbol is
within scope at a particular location in the code, while type compat-
ibility checking determines whether code symbols do not violate
type constraints. ARJACLM is capable of resolving the visibility of
all code symbols (e.g., fields, methods) within a patch ingredient,
whereas ARJA struggles with method invocations which do not
make up the entire statement. For instance, ARJA can screen f(x,
y);, but fails to handle z = f(x, y); as the method invocation is
nested in an assignment statement. Neither ARJA nor ARJACLM
can evaluate the type compatibility of results of unary operators,
binary operators and literals. Finally, both ARJA and ARJACLM
ignore code elements that they cannot screen, rather than rejecting
the entire ingredient. Thus, false positives can arise if code symbols
which violate visibility or type constraints are presented within
code elements not supported by the screening procedure.

We also adopt six rules from ARJA to restrict certain program-
ming instructions. For example, continue and break statements
can only be used as ingredients for a buggy statement within a loop.
Additionally, we apply six rules from ARJA to control operations on
specific ingredients. For instance, an assignment statement cannot
be inserted before another assignment statement that modifies the
same left-hand side as the inserted assignment has no effect on the
program’s behaviour. Additional information about the ingredient
screening rules is available on the paper’s webpage [30].

2.4 Genetic Repair Algorithm Details
This section outlines how we adapted a multi-objective genetic
algorithm to evolve patches that modify specific points in the code
to fix bugs. ARJACLM employs the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [31], which is designed to optimize multiple
objectives simultaneously.

2.4.1 Solution Representation. We adapted the solution repre-
sentation introduced by ARJA [8] to encode patches. We begin by
arranging the modification points in a random order. Each modifica-
tion point is represented by three components: the enabled/disabled
status, the patch operations, and the patch ingredients. For instance,
a solution with three modification points is illustrated in Fig. 3.
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Figure 3: Patch representation in ARJACLM.

The enabled/disabled status (highlighted in orange in Fig. 3) de-
termines whether a modification will be applied to the buggy pro-
gram. The patch operation (highlighted in blue) specifies which op-
erators (insert, replace, and delete) will be applied, and the patch in-
gredient (highlighted in green) determines the ingredient used. For
instance, in Fig. 3, the first modification is applied since its edit sta-
tus is true, and the statement boolean isValid = validateInput(value);

(marked as number 7 in the patch ingredient) is inserted (as indi-
cated by number 1 in the patch operation) before the buggy line.

While we follow the ARJA representation, our approach intro-
duces two key differences. First, unlike the public implementation
of ARJA1, ARJACLM allows new patch ingredients to be introduced
dynamically. This flexibility means patch edits are not restricted
to pre-defined, redundancy-based ingredients; instead, novel ingre-
dients generated ad hoc by a CLM can be directly incorporated.
Second, our representation permits patch ingredients to consist of
an arbitrary number of statements, rather than being limited to
a single statement, thus providing CLMs with greater freedom in
generating code. Further details are provided in Section 2.4.4.

2.4.2 Population Initialization. ARJACLM constructs the initial
population randomly in the same manner as ARJA [8]. Each modifi-
cation point is initialized with a randomly selected patch operation
and redundancy-based ingredient determined for that modification
point, using a uniform distribution. However, edits are initialized as
enabled with a probability of 𝑠𝑢𝑠𝑝𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 × 𝜇, where suspicious-
ness is the suspiciousness score of the respective modification point,
and 𝜇 is a configurable parameter of ARJACLM. As a result, more
suspicious statements are more likely to be modified by patches in
the initial population, which guides genetic search to explore the
modification of more suspicious code.

2.4.3 Fitness Evaluation. The multi-objective genetic algorithm
used in ARJACLM aims to minimize the same objectives as those
employed by the ARJA: the weighted failure rate, and patch size.
Specifically, the weighted failure rate is defined by Equation 1,
where𝑇𝑛 represents the set of negative tests, and𝑇𝑝 denotes the set
of sampled positive tests, and𝑤 is a configurable parameter with a
range of 0 ≤ 𝑤 ≤ 1.

𝑓1 (𝑥) =
|{𝑡 ∈ 𝑇𝑛 | 𝑥 fails 𝑡}|

|𝑇𝑛 |
×(1−𝑤)+min(1,

|{𝑡 ∈ 𝑇𝑝 | 𝑥 fails 𝑡}|
5

)×𝑤
(1)

1https://github.com/yyxhdy/arja

The weighted failure rate 𝑓1 differs from ARJA in how it com-
putes the failure rate for positive tests. Specifically, ARJACLM di-
vides the number of failed positive tests by 5, instead of the number
of positive tests adapted by ARJA. This adjustment is made because
𝑇𝑝 (the set of positive tests) is usually much larger than 𝑇𝑛 (the set
of negative tests) and can be vary significantly between different
buggy programs. As a result, this approach makes 𝑓1 a more sen-
sitive and consistent measure of the failure ratio for positive tests.
Patches where 𝑓1 (𝑥) = 0 are considered test-adequate.

Our second objective, the patch size as defined in Equation 2, is
the count of enabled edits within the patch.

𝑓2 (𝑥) = |{𝑒 ∈ 𝑥 | 𝑒 is enabled}| (2)

The genetic algorithm in ARJACLM simultaneously minimizes
𝑓1 and 𝑓2, aiming to optimize for test-adequate patches that perform
minimal modifications to the program. Patches that either fail to
compile, exceed the test execution timeout or have zero enabled
edits, are assigned a fitness value of +∞ for both objectives.

2.4.4 Genetic Operators. Crossover and mutation were used as
genetic operators to evolve the current solutions. Crossover com-
bines parent patches to create offspring that inherit the good traits
from their parents. Conversely, mutation introduces new patch
elements into the population by modifying the resulting offspring.

The crossover is applied N/2 times per generation, producing N
offspring patches, where N is equal to the population size. In this
study, Binary tournament selection is used to determine parents for
crossover. In this process, two individuals are randomly selected,
and the one with the superior fitness is chosen as a parent. In
order of occurrence, a patch wins the tournament if: 1. The patch
compiles successfully while the other does not. 2. The patch is test-
adequate while the other is not. 3. The patch is dominated by fewer
individuals than the other [31]. 4. The patch has a greater crowding
distance compared to the other [31]. A tournament patch is selected
randomly if these criteria fail to determine a winner. After selecting
the parents and performing crossover, the mutation is applied to
each offspring to introduce genetic diversity.

Crossover: Fig. 4 illustrates the crossover operator employed
by ARJACLM. Crossover is performed independently to edit en-
abled/disabled status, patch operations and patch ingredients.

Edit statuses are exchanged between parents with a 0.5 probabil-
ity if they differ. As shown in Fig. 4, the first edit statuses are ex-
changed between the two parent individuals. For combining patch
operations, a single-point crossover is employed. A cut point is ran-
domly selected, and all operations beyond that point are exchanged
between the two parents to produce two offspring. Single-point
crossover is also used to combine patch ingredients, but with a
separate, randomly chosen cut point as shown in Fig. 4.

Mutation: ARJACLM uses two mutation operators: redundancy
mutation, adapted from ARJA [8], which operates under the re-
dundancy assumption that the code needed to generate a repair
(referred to as fix ingredients) is already present elsewhere in the
buggy program [8, 9, 15], and CLM mutation, which utilizes a CLM
to generate patch ingredients. The CLM mutation is selected with
a configurable probability 𝑝𝑐𝑙𝑚 (e.g., 0.4). If not, the redundancy
mutation is selected.

https://github.com/yyxhdy/arja
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Figure 4: Illustration of the ARJACLM Crossover Operation.

The redundancy mutation is used to i) enable or disable edits,
ii) modify the patch operation and iii) modify redundancy-based
ingredient. Similar to ARJA, with a probability of 𝑝𝑚𝑢𝑡 , the patch
operations and ingredients are replaced with a randomly selected
alternative of the modification point. However, unlike ARJA, which
enables and disables edits with equal probability, ARJACLM em-
ploys distinct probabilities for this action. Specifically, in ARJA-
CLM, edits are enabled with probability 𝑝𝑚𝑢𝑡 , but disabled with
probability 𝑝𝑚𝑢𝑡 × (|{𝑒 ∈ 𝑒𝑑𝑖𝑡𝑠 | 𝑒 is enabled}| + 1). As a result,
the redundancy mutation converges towards patches with a lower
number of enabled edits, which are more likely to be similar to
developer-written patches. The mutation probability 𝑝𝑚𝑢𝑡 is set to
0.1/n, where n is the number of modification points, ensuring that
the total mutation rate remains consistent across different numbers
of modification points.

Relying only on redundancy mutation prevents ARJACLM to fix
bugs if the required patch ingredients are not present elsewhere in
the code. To tackle this issue, ARJACLM introduces a novelCLMmu-
tation that leverages a CLM (i.e., CodeLLaMa [35]) to dynamically
generate patch ingredients. ARJACLM generates patch ingredients
using mask prediction. Mask prediction is the most straightforward
method for obtaining infills for arbitrary code locations, where a
buggy line of code is masked, and the model must provide accurate
replacements. The model receives the prefix and suffix surrounding
the masked line as input and should fill in the masked line correctly.
Fig. 5 shows a scenario where a buggy line (highlighted in red) is
masked, and a potential fix is generated by the employed CLM.

The CLM mutation enables and disables patch edits in the same
way as the redundancy mutation. Additionally, a patch ingredient
is generated by the CLM with probability 𝑝𝑚𝑢𝑡 , but only if the edit
is enabled. This approach is due to the high cost of generating patch
ingredients with CLMs. Finally, when a patch ingredient is gener-
ated, either an insert or replace operation is randomly selected.2

It is important to mention that ARJACLM leverages screening
rules for combining patch ingredients and operations, as detailed
in Section 2.3, to evaluate patches resulting from crossover and mu-
tation. If a patch is incompatible with the corresponding buggy
statement, it is corrected by randomly selecting an alternative
redundancy-based ingredient. The patch is discarded if no such
ingredient is available. This approach prevents the construction of
patches containing anti-patterns without reducing the mutation
and crossover rate. However, this screening does not apply to patch
ingredients generated by a CLM. As a result, CLMs are provided
with more control over what code can be generated. If a CLM is
adequately powerful, this can yield unique new patches of high
quality for complex code elements.
2Future work will adopt ARJA-e’s method [10] for operator selection by ingredients.

2.4.5 Next Generation Formation and Stopping Criteria.
Each generation of the genetic algorithm ends with the replace-
ment of individuals in the population with new ones generated
through crossover and mutation. However, to ensure the best indi-
viduals from the current population are preserved, a subset of elite
individuals is directly carried over to the next generation. Binary
tournament selection, as described in Section 2.4.4, is then used to
fill the remaining spots in the new population with offspring.

This iterative process continues until the algorithm reaches the
maximum number of generations, and solutions that meet the test
adequacy criteria are selected as plausible patches. If no such solu-
tions are found, the ARJACLM fails to find a patch for the bug.

3 Evaluation
To evaluate the feasibility of our approach in a practical environ-
ment, we performed experiments on real-world bugs and compared
our tool with other search-based tools. This section details our
experimental setup and evaluation results.

3.1 Research Questions
Our experiment aims to answer the following research questions:

• RQ1: What is the impact of incorporating CLM-generated patch
ingredients on the overall bug-fixing performance of ARJACLM?

• RQ2: How does ARJACLM perform compared to other search-
based automated program repair tools, i.e., ARJA and GenProg?

• RQ3: How does the quality of CLM-generated patch ingredients
compare to redundancy-based patch ingredients?

• RQ4: How efficient is ARJACLM in terms of time?

3.2 Employing Defect4J for Evaluation
In our study, we utilized Defects4J version 2.0.1 [28] to address our
research questions. We excluded certain systems and bugs primar-
ily due to flaky tests, which produce inconsistent results because
of randomness or time-based behaviour. While Defects4J offers
tools to filter out flaky test failures and ensure a consistent execu-
tion environment, these tools are not compatible with ARJACLM
and our fault localisation tool, GZoltar [32], both of which require
direct test execution. Additionally, some buggy systems failed to
compile directly or required specific settings unsupported by our
instrumentation process, as noted in previous studies like ARJA [8]
and ARJANMT [11]. Ultimately, 9 out of 17 Java projects and 398
out of 437 bugs in these projects met our initial criteria. However,
due to the substantial computational cost involved in evaluating
ARJACLM, we randomly selected a subset of these qualified bugs,
limiting our analysis to a maximum of 20 bugs per project. As a
result, ARJACLM was evaluated on 176 bugs, as shown in Table 2.
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Figure 5: CLM Mutation with Mask Prediction.

Table 2: Overview of the number of totals and evaluated bugs
for the 9 projects considered from Defects4J version 2.0.1.

Project Name #Total Bugs #Qualified Bugs #Evaluated Bugs

JFreeChart 26 26 20
Commons CLI 39 38 20
Commons Codec 18 18 18
Commons Compress 47 45 20
Gson 18 18 18
Jsoup 93 91 20
Commons Lang 64 38 20
Commons Math 106 99 20
Joda-Time 26 25 20

Total 437 398 176

3.3 Selection of CLM for Patch Generation
Selecting the right CLM can significantly impact the effectiveness,
and efficiency of ARJACLM. Therefore, in a separate study, we first
evaluate 20 CLMs capable of generating code infills, varying in the
number of parameters from 60 million to 16 billion, and compare
them on their ability to generate correct bug fixes, resource con-
sumption, compilability rate, and patch diversity. We observed that
CodeLLaMA-13B [35] performs better in bug fixing and compiler er-
ror handling. Therefore, in this study, we used CodeLLaMA-13B [35]
for generating patch ingredients when CLM mutation is called.

3.4 Algorithm Parameters and Settings
Table 3 displays the parameters and their values used in ARJACLM
for the experiments conducted in this study. These values are based
on ARJA [8] and preliminary experimentations conducted in this
study. We identify two key parameters, the CLM mutation prob-
ability (𝑝𝑐𝑙𝑚) and the number of context lines for mask prediction
prompts (𝐶𝑚𝑝 ), which significantly affect the integration of CLMs
into ARJACLM. Further details on these two parameters and their
impact on CLM’s ingredient generation are provided in Section 3.7.

Table 3: Experimental Parameter Settings for ARJACLM.

Parameter Description Default Value

N Population size 40
G Maximum number of generations 20
𝛾𝑚𝑖𝑛 Suspiciousness threshold 0.1
𝑛𝑚𝑎𝑥 Maximum number of modification points 40
𝜇 Scale for number of enabled edits in the initial population 0.06
𝑤𝑝𝑜𝑠 Positive test weight 0.33
e Elite count 1
𝑚𝑚𝑢𝑡 Mutation probability multiplier 0.1
𝑝𝑚𝑢𝑡 Mutation probability 𝑚𝑚𝑢𝑡 /𝑛

𝑝𝑐𝑙𝑚 CLM mutation probability 0.4
𝐶𝑚𝑝 Number of lines of context for mask predict prompts 100

3.5 Experimental Hardware Setup
All experiments were performed on machines equipped with a
2.1 GHz Intel Xeon Silver 4216 processor, 32 GB of memory, and a
single NVidia A40 GPU with 48 GB of VRAM. Although the CPU
was shared with other users, 16 physical cores are allocated for up to
15 parallel patch evaluations to prevent starvation of CPU capacity.
The GPU, however, was exclusively dedicated to the APR process
and was not shared with other users. For experiments involving
CodeLLaMA, 8-bit quantization was used to manage VRAM usage
effectively, as providing more context without quantization would
exceed the 48 GB VRAM limit for context sizes greater than 200.

3.6 Experimental Execution and Measurement
All experiments performed on ARJACLM are executed three times
due to the stochastic nature of the employed search-based technique.
Additional trials could provide more significant results, but this is
not feasible due to the high cost involved in the evaluation of APR
techniques on Defects4J. Nevertheless, three trials should provide
adequate metrics for the performance of ARJACLM. For all metrics,
the average value across all trials is reported as the overall result.

3.7 RQ1: Impact of CLM-Generated Patches
This research question explores how CLM-generated patch ingredi-
ents impact the overall bug-fixing performance of ARJACLM.

As discussed in Section 3.4, two parameters significantly influ-
ence CLM integration: the CLM mutation probability (𝑝𝑐𝑙𝑚), which
determines the likelihood that CLM is used, and the number of
context lines for mask prediction prompts (𝐶𝑚𝑝 ), which specifies the
amount of code context around buggy statement provided to the
CLM. To identify the optimal values for these two parameters, we
run experiments varying each parameter independently. We tested
𝑝𝑐𝑙𝑚 values of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, and 𝐶𝑚𝑝 values of 100,
200, 400, and 800 as shown in Table 4, while keeping other parame-
ters at their default settings as specified in Table 3. Note that 𝐶𝑚𝑝

is evaluated up to 800 lines of code to stay within the 16k token
context limit of CodeLLaMA-13B [35].

As shown in Table 4 for 176 evaluated bugs from Defect4J, ARJA-
CLM achieves optimal performance with higher 𝑝𝑐𝑙𝑚 values. Specif-
ically, a 34.5% improvement is observed at 𝑝𝑐𝑙𝑚 = 1.0 compared to
𝑝𝑐𝑙𝑚 = 0.0, where only redundancy mutation was used. Although
this comes with a 350% increase in computation time, it shows that
CLM-based patch ingredients yield a more effective search-based
APR technique compared to the redundancy assumption.

The results for 𝐶𝑚𝑝 show that providing more context is only
valuable to a limited extent.Whilemore context should theoretically
improve CLM performance by providing additional code patterns
and symbols, the best performance for ARJACLM is observed when
roughly half of the available context size is used (i.e., 400). Moreover,
a larger context size results in a longer execution time.
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Table 4: Results for the evaluation of ARJACLM.

Parameter Value #Fixed Bugs Total Time (in hours)

𝑝𝑐𝑙𝑚 0.0 29.0 19.6
0.2 30.3 37.1
0.4 33.0 53.3
0.6 33.7 66.3
0.8 36.0 78.7
1.0 39.0 88.3

𝐶𝑚𝑝 100 31.8 27.6
200 32.6 30.5
400 35.6 33.0
800 33.4 37.2

The results provide evidence that CodeLLaMA cannot effectively
leverage its full context size in the setting of ARJACLM. It is cur-
rently unclear whether this observation is a result of the limited
capability of CodeLLaMA to deal with larger contexts, or whether
the setting of ARJACLM prevents them from doing so.

The integration of CLM-generated patch ingredients significantly en-
hances the bug-fixing performance of ARJACLM, with the best results
achieved when CLMmutation is fully utilized. Additionally, providing a
moderate amount of context (400 lines) yields the most effective results,
indicating that more context is beneficial only up to a certain point.

Summary of Results for RQ1

3.8 RQ2: Comparing with Other SB Techniques
We evaluate ARJACLM against ARJA [8] and GenProg [29], both
open-source tools capable of fixing bugs in Java programs using
search-based techniques. ARJACLM builds on ARJA’s framework,
making this comparison crucial for evaluating its effectiveness
and improvements. ARJA is evaluated on Defects4J 1.0 bugs from
the JFreeChart, Joda-Time, Commons Lang and Commons Math
projects [8]. Motwani et al. [29] evaluate GenProg on the entirety
of Defects4J 1.0, which includes all bugs from the aforementioned
projects. ARJACLM is evaluated on 20 bugs for each of the afore-
mentioned projects. Therefore, we compare bug-fixing performance
across these 80 repair tasks for ARJACLM, ARJA and GenProg.

ARJA is evaluated on Defects4J with a single trial, while GenProg
is tested with 30 trials. We report the best result for the GenProg to
avoid underestimating its capabilities. For ARJACLM, results are
averaged over three runs. Table 5 compares these tools on 80 repair
tasks. ARJACLMn represents ARJACLM without the use of CLM.

Note that the optimal parameters determined for 𝑝𝑐𝑙𝑚 and 𝐶𝑚𝑝

were not used in this research question. Instead, we used the pa-
rameter values listed in Table 3 as it facilitates a comparison of
the efficiency of the employed search-based techniques, as well as
makes it possible to measure the effect of redundancy and CLM
mutations while keeping bug-fixing durations reasonable.

When examining Table 5, the most noticeable observation is that
while ARJACLMn builds on ARJA’s framework, it yields weaker
results than ARJA. As previously discussed, our implementation of
ARJACLMn differs from ARJA in several aspects, such as employing
different test case sampling, search space optimisation, redundancy
mutation, and the use of a different fitness function, among others.

Table 5: Comparison of GenProg, ARJA and ARJACLM on 80
repair tasks. ARJACLMn denotes ARJACLM without CLM.

Project GenProg ARJACLMn ARJA ARJACLM

JFreeChart 4 7 8 9.7
JodaTime 1 1 4 3.0
Commons Lang 2 2 3 5.0
Commons Math 4 4 5 5.3

Total 11 14 20 23

Although these modifications were intended to enhance accu-
racy, they may have inadvertently introduced false negatives. It is
clear that these changes were not fully optimized, and ARJACLMn,
as a novel search-based APR technique, requires further refinement
to match ARJA’s capabilities. However, ARJACLMn outperforms
GenProg and can provide a framework for evaluating the incorpo-
ration of CLMs.

As shown in Table 5, ARJACLM achieved the best results, fix-
ing 23 out of 80 bugs—64% better than ARJACLMn. It is clear that
CLM-generated patch ingredients can successfully contribute to
improved repair performance. However, ARJACLM only slightly
outperformed ARJA on the limited set of repair tasks (23 vs. 20), sug-
gesting that a more efficient search technique, at least as effective
as ARJA, could further improve results.

ARJACLM outperforms other search-based techniques, especially
ARJACLMn and shows promise with CLM-generated ingredients. Yet,
a more efficient search-based technique could improve results.

Summary of Results for RQ2

3.9 RQ3: CLM vs. Redundancy-Based Patches
Table 6 compares the quality of CLM and redundancy-based patch
ingredients. For ARJACLMn, 60.6% of redundancy-based patches
compile successfully. In contrast, for ARJACLM, 43.5% of CodeLLaMA-
generated patch ingredients are syntactically valid Java instructions,
and 68.2% of them compile successfully. However, ARJACLM evalu-
ated fewer patches than ARJACLMn (334.6 vs. 563.4), indicating that
fewer final CLM patches are tested to verify the bug is fixed, which
shows the overall accuracy of CLM-generated patch ingredients.

Amanual analysis of syntactically incorrect infills was performed
to determine the cause of syntax errors. In some cases, we observed
that CodeLLaMA attempts to complete a function rather than pro-
vide infill for the mask token provided inside of it. This occurred
in the case where there was a bug elsewhere in the code. In this
case, CodeLLaMA attempts to complete the code and does so in a
correct manner. However, this hallucination produces a code com-
pletion rather than an infill, which results in syntax errors when
the generated code is inserted into the existing code.

The results show that only 30% of CLM-generated patches are compil-
able compared to 60% for redundancy-based patches, but CLM patches
perform better as fewer patches were tested for their ability to fix bugs.

Summary of Results for RQ3
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Table 6: Quality of CLM vs. Redundancy-Based Patches.

#Evaluated CLM Redundancy

Technique Patches Parse Rate Compilation Rate Compilation Rate

ARJACLMn 563.4 - - 60.6%
ARJACLM 334.6 43.5% 68.2% 60%

3.10 RQ4: Time Efficiency of ARJACLM
Table 7 shows the computation time for two versions of ARJACLM.
ARJACLMn is significantly faster than ARJACLM. This difference
is expected due to the resource demands of CodeLLaMA, a 13-
billion-parameter model used in this study. Specifically, ARJACLMn
averages 7.9 minutes per bug, while ARJACLM averages 32.3 min-
utes, representing a 309% increase. Indeed, ARJACLM on average
requires 26.9 minutes to generate ingredients with CodeLLaMA,
leaving on average about 5.4 minutes per bug for patch validation.
This is an improvement over ARJACLMn (5.4 vs. 7.9 minutes), and it
is mainly result because fewer patches were evaluated in ARJACLM
as discussed in the previous research question.

Table 7: Comparison of Time per Bug for ARJACLMVariants.

Time per Bug (minutes) CLM Time per Bug (minutes)

Technique Min Median Max Avg Min Median Max Avg

ARJACLMn 0.6 6.6 30.5 7.9 - - - -
ARJACLM 0.8 31.8 64.8 32.3 0 26.8 60.6 26.9

ARJACLM requires significantly more time than ARJACLMn, averaging
32.3 minutes per bug compared to 7.9 minutes, due to the resource
demands of the employed CLM. However, the additional time may be
justified compare to the time and financial cost of manual bug fixing.

Summary of Results for RQ4

4 Threats to Validity
We conducted experiments on a subset of Defects4J [28], which
may not cover the actual distribution of real-world bugs. Our pa-
rameter tuning may not also be generalizable as it is possible that
the selected parameter values are only effective for bugs included
in the experiments. The stochastic nature of both our search-based
approach and the employed CLM is another concern. While we
evaluated ARJACLM in three trials, running the approach on ad-
ditional datasets and conducting more trials for each would help
reduce result variance and provide a more accurate assessment.

Another validity concern involves the training of CLMs on large
public data repositories. Indeed, the possibility that any generated
patch has been seen before by the model should be considered a
concern. However, since the employed CLM, CodeLLaMA, is not
trained on pairs of buggy and fixed code fragments, this limits the
impact of the training data on experimental results.

Finally, the validity of this empirical study is limited by the
novel ARJACLM technique and its implementation. ARJACLMn is
intended to replicate ARJA, but fails to provide the same bug-fixing
capabilities. Therefore, this study does not provide direct evidence that
CLMs can augment state-of-the-art search-based techniques. Future
research should investigate whether the relative performance gain
of ARJACLM over ARJACLMn can be replicated for ARJA.

5 Related Work
APR tools can be categorized into four primary groups [2–7] :
i) constraint-based APR tools, such as Nopol [36], which derive
repair constraints from inferred or provided specifications and
synthesizes patches that satisfy these constraints. However, these
tools are less effective for software lacking specifications, espe-
cially legacy applications [7]; ii) search-based APR tools, such as
GenProg [9], and ARJA [8], search a patch space by iteratively re-
fining patches through mutating the suspicious statements until a
satisfactory solution is found. However, these tools struggle with in-
effective patch ingredient generation and semi-random changes [7];
iii) template-based APR tools, such as TBar [37], employ predefined
repair templates, offering a structured approach that reduces ran-
domness and variability compared to search-based methods [7],
though they may be constrained by the availability and quality
of templates [3, 7]. Template-based methods may also encounter
challenges when the fixed pattern is correctly identified, but fixed
ingredients are not locally available [16]; iv) learning-based APR
tools, such as CURE [38], automatically learn bug-fixing patterns
and also provide patch ingredients derived from a large number of
labelled code examples, thereby potentially improve limitations of
template-based approaches [38, 39]. However, the quality of code ex-
amples used in learning significantly affects accuracy, and obtaining
high-quality code examples is often challenging and costly. Recent
advancements in CLMs have significantly enhanced learning-based
APR tools, such as AlphaRepair [12], by leveraging their deep un-
derstanding of code semantics and context to improve patch gener-
ation [3, 5, 6]. However, these models still generate a substantial
number of syntactically or semantically incorrect patches [26], and
more importantly, because CLMs are not specifically trained for
APR tasks, their performance in this domain remains limited. These
limitations have prompted researchers to integrate CLMswith other
techniques to enhance their effectiveness in generating accurate
patches [11, 13, 25, 27, 40–43] as done in this study by combining
CLMs with search-based technique.

Building on CLM integration with other techniques, Zhang et
al. [13] propose GAMMA, which uses CLMs to generate patch
ingredients for template-based APR. GAMMA demonstrates that
CLM-generated ingredients can be of higher quality than their
redundancy-based ones, as previously demonstratedwith a learning-
based model [11]. As another approach, Ribeiro and Abreu [40]
and Wei et al. [25] treat the APR process as a code compilation
process. Ribeiro and Abreu [40] first identify the location of the bug
and then provide the statements preceding the buggy location to
CodeGPT for code completion, thereby replacing potentially buggy
statements with newly generated ones. Wei et al. [25] use CLMs to
generate patch ingredients for code completion. However, their tool,
Repilot, further refines these suggestions by removing infeasible
tokens and proactively completing the code based on the recom-
mendations of an implemented completion engine. Liu et al. [27]
also demonstrate that patches generated by the learning-based
models can be further improved with simple edits (i.e., deleting or
inserting statements) to better fit the context. Researchers such as
Xia et al. [41], and Zhang et al. [42] propose enhancing CLM results
through conversational interactions, leveraging feedback types such
as test failures and iterative prompts to refine generated patches.
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6 Conclusion and Future Work
In this study, we introduced ARJACLM, a tool built on ARJA [8],
the leading search-based automated program repair tool. ARJACLM
enhances ARJA by integrating CodeLLaMA to improve patch in-
gredient generation. ARJACLM outperforms other search-based
techniques, including GenProg [9], ARJA [8] and ARJACLMn (the
version without CLM). Although CLM patches are less compilable
than redundance-based patches, they require fewer test validations
to achieve correct results. However, ARJACLM requires signifi-
cantly more time to generate patch ingredients.

Looking ahead, we plan to explore several avenues for future
work that could positively impact both the effectiveness and effi-
ciency of ARJACLM. ARJACLM masks the entire buggy statement
and uses CLM to generate a replacement. However, partial masking
as demonstrated by AlphaRepair [12] and template-based mask-
ing as seen in GAMMA [13], have been proven to enhance patch
accuracy. In addition, the current method integrates generated
ingredients into the buggy program without modifications. How-
ever, previous research [25, 27, 43] indicates that applying minor
adjustments to generated ingredients helps resolve issues with in-
compatible instructions through simple edits. Additionally, recent
studies [41, 42] reveal that engaging in conversational interactions
with CLMs and providing automated feedback such as test failures
improves the quality of the generated patches.
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