
Extract, Model, Refine: Improved Modelling of
Program Verification Tools through Data Enrichment

Sophie Lathouwers
sophie.lathouwers@gmail.com
Formal Methods and Tools

University of Twente
Enschede, The Netherlands

Yujie Liu
yujie.liu.public@gmail.com

Computer Science
University of Twente

Enschede, The Netherlands

Vadim Zaytsev
vadim@grammarware.net
Formal Methods and Tools

University of Twente
Enschede, The Netherlands

Abstract
In software engineering, models are used for many differ-
ent things. In this paper, we focus on program verification,
where we use models to reason about the correctness of sys-
tems. There are many different types of program verification
techniques which provide different correctness guarantees.
We investigate the domain of program verification tools, and
present a concise megamodel to distinguish these tools. We
also present a data set of 400+ program verification tools.
This data set includes the category of verification tool ac-
cording to our megamodel, practical information such as
input/output format, repository links, and more. The practi-
cal information, such as last commit date, is kept up to date
through the use of APIs. Moreover, part of the data extrac-
tion has been automated to make it easier to expand the data
set. The categorisation enables software engineers to find
suitable tools, investigate alternatives and compare tools. We
also identify trends for each level in ourmegamodel. Our data
set, publicly available at https://doi.org/10.4121/20347950,
can be used by software engineers to enter the world of pro-
gram verification and find a verification tool based on their
requirements.
This paper is an extended version of https://doi.org/10.

1145/3550355.3552426 [58].
This PDF is the authors’ version of the paper. It might

have subtle differences, but the core content is guaranteed
to be the same as published by Springer.

Keywords: Program Verification, Megamodelling, Data En-
richment, Data Extraction

Reference Format:
Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev. 2024. Extract,
Model, Refine: Improved Modelling of Program Verification Tools
throughData Enrichment. In Software and SystemModelling (SoSyM),
Special Issue on MoDELS 2022. Springer, 21 pages. https://doi.org/
XX.XXXX/XXXXXXX.XXXXXXX

SoSyM, MoDELS 2022, Special Issue
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Software and System Modelling (SoSyM), Special Issue on MoDELS 2022,
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX.

1 Introduction
Program verification (PV) is a field that has always enjoyed
very high expectations, and suffered from them as well. Its
objectives are mostly to provide ways to prove that a system
satisfies certain requirements. The underlying techniques are
typically based on rigorous mathematical reasoning or an
exhaustive analysis of the state space, thereby giving soft-
ware engineers stronger guarantees than testing. It is often
accepted that to use program verification (or formal methods
in general), one needs to specify their system in a formal
notation and thus have considerable formal background to
do it in a correct and useful way [22].

To simplify, for the rest of the paper we use the established
team “program verification” to mean verification (confor-
mance evaluation) of programs (executable models). Hence,
it covers generative techniques, testing, model checking,
theorem proving, etc, of source code, automata, Petri nets,
transition systems, etc.

Adopting verification tools has shown to present not only
technical challenges, but also organisational, social and man-
agerial ones [28], similar to challenges faced by advanced
model-driven engineering tools [49]. PV tools are particu-
larly difficult, because even demonstrating potential benefits
of their use is highly non-trivial and relies on users having
very specific knowledge of the underlying techniques. For
the tool developers, the tools themselves often serve as a
means to an end, as an opportunity to demonstrate the ex-
tent of applicability of their techniques, to exemplify the
problems that could possibly be tackled, and to enter an ex-
isting subdomain. Some subdomains are accompanied by
sets of mature benchmarks which make comparing tech-
niques by comparing tools a very attractive and attainable
goal. Examples include programming language theory [8],
software verification [16] and quantitative verification [44].
Admittedly, many tools stay in a prototype phase, and be-
ing actively developed only till a certain point: until the
tool can handle the minimal set of benchmarks, or until the
deadline for submitting the paper explaining the underlying
techniques, or until graduating from a PhD project.

Besides techniques and tools, there are multiple sources of
information to consider. Papers themselves are an obvious
source, well-archived on publishers’ websites, but requiring

https://orcid.org/0000-0002-7544-447X
https://orcid.org/0000-0001-7764-4224
https://doi.org/10.4121/20347950
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1145/3550355.3552426
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

high qualifications to be considered readable and understand-
able. They are also hard-dated, meaning that an average good
paper contains detailed comparison of the proposed tool with
its existing counterparts, but no comparison or relation to
counterparts that were created after the publication. The
papers often refer to product or project pages, which are
prone not only to being outdated for reasons mentioned
above, but also to being removed due to the jobhopping na-
ture of the academic world: when the principal investigator
finishes the project and moves to another institution, it is
not guaranteed that the project page will be preserved by
their original employer. If available, such websites are also
wildly varying in the nature of their content: some literally
repeat the contents of the papers, while others complement
it with valuable information, illustrations, and links.
Another extremely valuable source of information — pri-

marily about the tools and not always about the techniques
— is the code repositories. It has become fairly commonplace
in recent years to either release the tools for (limited) public
use to enable empirical replicability, or expose the entire
development history in a form of versioned codebase (typi-
cally through git, occasionally hg or svn). There are at least
three benefits of repositories: (1) the artefacts become much
more tangible, and only require several natural steps (like
cloning the repository) to set themselves up on the user’s
computer instead of extracting them from the paper text; (2)
the version history is a technically substantiated claim to
the amount of work and to its authorship; and (3) linking
tools to one another by shared contributors plays the same
social role as linking papers by shared coauthors.

To summarise the problems:

• existing techniques are hard to understand and assess
their applicability without very deep specific knowl-
edge;

• tools are hard to classify conceptually and appropri-
ately relate to techniques;

• information sources are dispersed, partly unavailable
and partly unreliable.

With the vision to open up the arsenal of PV tools and
techniques to a broader public of software modellers and,
even broader, software engineers, we have developed a meg-
amodel of program verification tools. The megamodel can
help answering questions like “what am I expected to pro-
vide as input to use tool X?” or “what other tools exist for
the same problem domain as tool X?”, or even “when was the
last time the code of tool X was updated?”. We will elaborate
on the megamodel and its PV0–PV6 levels in § 3.
With this megamodel, we show that there are many dif-

ferent types of PV tools, and those types can be grouped
in categories that form a hierarchy. Thus, if a tool from
one category comes fundamentally short to solve the end
user’s problems, it can be considered to seek alternatives in a
broader category. To concretise the megamodel, we complete

it with a data set into which we have collected information
about 450+ PV tools, frameworks and languages, published
recently at two top conferences in the PV domain known
for their tool paper hospitality: CAV and TACAS. The data
set is available publicly on GitHub, with a reader-friendly
interconnected hypertextual frontend at

https://slebok.github.io/proverb.
We strongly believe that making the data set freely acces-
sible for exploration, makes it an attractive starting point
for software engineers to traverse the domain of program
verification. § 4 contains more information about the data set,
as well as our methods of gathering the data, categorising
and enhancing it.

In § 5, we report some preliminary lessons we have learned
ourselves by looking at the collected information, level by
level, and analysing some of its trends. The fact that our
megamodel splits the PV domain into distinct groups recog-
nisable from prior research, is considered here as a form of
evaluation and evidence that the megamodel is viable and
useful.

This paper is an extended version of the conference publi-
cation by [58]. Besides going into more details for the lack of
space constraints and in order to make this paper more self-
contained (with respect to its own website and repository),
the additional contributions here are:

• Linking this line of research to the current research
trends on artefacts and artefact evaluations (§ 2).

• Automating further expansion of the data set by us-
ing heuristics to identify tools in new publications
(subsubsection 4.1.2), since providing tool support in
updating the data set is instrumental for its continous
maintenance and growth.

• Automating information extraction from conference
proceedings (subsubsection 4.1.3), significantly lower-
ing the barrier to add new entries.

• Refining and enriching the data set “horizontally” by
adding more information, more precise information or
more up to date information with the help of several
APIs (§ 4.2). For instance, the date of the last update
does not have to be manually checked but is inferred
from the git history of the tool repository.

• Providing a more conceptual/clean approach to model
each tool based on an ontology (subsubsection 4.2.1)
instead of an ad hoc template — cf. [58, section 3.1.3].

• Using these methods for extending the data set into
several dimensions (§ 4.2) and reporting statistics on
that (§ 4.3).

• Planning an extensive research roadmap for the future
of this project (§ 6).

2 Related Work
When it comes to related work, we refer the attention of the
readers to in-depth overviews of problems in adoption of

https://slebok.github.io/proverb


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

program verification, formal methods, model-driven engi-
neering and domain-specific languages, whichwe summarise
below.

In 2005, Bodeveix et al. [19] provided a side-by-side com-
parison of two solutions to the same case study problem
(kernel-level process scheduling): one done with software
modelling (in particular, a domain specific language), and the
other with formal methods, with a conclusion that a formal
specification provides at least as good of a model as a DSL
one. The modern view on this matter is to combine the power
of two sides of this debate, and link program verification to
formal DSL models [5]. This can be done either way: by aug-
menting the existing system with an internal DSL and using
information encoded there for verification purposes [12] or
by generating formally correct DSL code [68].

Broadfoot and Broadfoot [22] argued that in the domain of
embedded software, there are many systems which are both
business-critical and untestable with conventional means.
Their concluding advice was to rely on provably correct de-
signs which are transformed into code by using only tools
that are provably correct. Woodcock et al. [91] provide what
seems to be the most extensive survey on formal methods,
their prevalence in academic literature and in industrial ex-
perience. They also listed a few of the most popular tools by
name, without introducing any exhaustive coverage criteria
like we will do in § 4.

Bucchiarone et al. [23] stressed the important of informal
modelling as a way to attract new users to MDE. In this case,
informal modelling does not mean the lack of formal meth-
ods: it designates the ease of use for novice modellers and
the ability of the metamodel to express incomplete and un-
certain information. Under the hood such products can still
rely on highly complex science in the same way an internet
search query relies on MapReduce and data synchronisation
with a mobile device relies on lenses.

Davis et al. [28] conducted a large study of 31 experts
from 9 companies, and identified that the top three barriers
for adopting formal methods in the industry are education,
tools quality and personnel changes, while the top three im-
provements were education, tool integration, and creating
and disseminating evidence of the benefits of formal analysis.
Tomassetti and Zaytsev [83] combined personal experiences
of two industrial experts in the field of domain-specific lan-
guages and summarised the real advantages of using DSLs
next to their adoption problems of different nature.
Klösch and Eixelsberger [52] provided a fairly extensive

yet concise list of explicit and factual challenges that the soft-
ware industry faced when solving the Y2K problem as well
as conversion from local currencies to Euro. Their structured
list was also broad in nature and covered many aspects from
formal compliance validation to organisational workarounds.
More than two decades later, Nurwidyantoro et al. [66, 67]
as well as Whittle et al. [86] argued that human values such

as responsibility, transparency, creativity and equality repre-
sent a substantial fraction of software engineering challenges
and difficulties, yet are heavily underrepresented in method-
ological research.

If we were to summarise all these extensive studies on rel-
atively well-known problems, we would have to admit that
most of them are related to tools, their prototype-level qual-
ity, notorious unavailability, lack of support and sufficiently
reliable documentation, etc.

Over the years, many ontologies, taxonomies and surveys
have been published about program verification. However,
these works tend to target either a specific subset of program
verification e.g. run-time verification [36], high-level synthe-
sis [61] or a specific domain e.g. vehicular domain [78], smart
contracts [45], railway system design [37], programmable
logic controllers [40]. Unlike these works, we do not focus
on a subset of PV, but aim to deliver both a megamodel to
explain tools, as well as an easily accessible (and extensible!)
repository with a large data set of classified tools.
The work that is closest to ours is a report by Punnoose

et al. [72] that presents several verification techniques in
detail. It covers a broad variety of techniques includingmodel
checking, verification condition generation and correct-by-
construction design. However, they only mention a few tools
per technique, whereas we consider all PV tools that we
could identify in publications. Nonetheless, this report can
also be a nice starting point for engineers.
When it comes to repositories, we also do not claim out-

right novelty. Over the years, several projects have tried
to achieve more or less similar goals. For instance, the Ver-
ified Software Repository [18] was intended to become a
collection of tools, verified programs, benchmarks and re-
sults. Unfortunately, it was last updated in 2009. Schlick et al.
[77] have also proposed to set up a repository to make for-
mal methods more accessible to users in the industry. A
large part of their work focuses on the obstacles that limit
the adoption of formal methods in industry. Some of these
obstacles include the maturity of tools, difficulties in find-
ing the right methods and lack of ways to easily compare
different tools. This is in line with our experience and the
research mentioned in § 1. Like us, Schlick et al. believe that
the awareness and comparability between formal methods
should be improved. To achieve this, Schlick et al. use notable
success stories to identify key information that should be
included in a formal methods repository. They then present
a vision of a repository and why it would be beneficial. They
give a repository structure that includes (1) experiment data,
(2) applications, (3) problem descriptions, (4) formalisations,
(5) usage patterns, and (6) tools. However, to the best of our
knowledge, this repository has not yet been instantiated, and
remained a dream. One could consider our data set as a first
instantiation of the “Tool" part of their proposed repository
structure. In the future it could be combined with other data



SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

to form a complete repository as proposed by Schlick et al.
[77], including data such as experiments and applications.

An important aspect for tools in our data set is their avail-
ability and reusability. There have been several efforts to
evaluate the reusability of artefacts. [10] present the Depart-
ment of Reuse that records the reuse of research, including 8
different types of reuse such as tool reuse and data set reuse.
Both [89] and [47] have gathered data to evaluate whether
artefact evaluations were as effective as hoped. Where [89]
focus on the availability of artefacts, documentation prac-
tices, hosting platform and citation count, [47] take a differ-
ent approach and focus on the community’s expectations
for such artefacts. We consider all these contributions to be
complementary to our research as they could provide infor-
mation about the (re)usability of tools in our data set. While
we are interested in such data, our interest is in whether
tools are usable in practice as opposed to its implications
for the academic sphere in terms of the effectiveness of arte-
fact evaluations or its relation to citation counts which is
explored in the previously mentioned works.

Other directions for future work and consequences of this
project, are considered in § 6.

3 The Megamodel of PV-Levels
In this section, we introduce the seven levels of our meg-
amodel: PV0, PV1, PV2, PV3, PV4, PV5 and PV6 (see
Figure 1).
Intuitively, higher levels give the user more correctness

guarantees, though typically at the cost of more user effort,

PV1 PV2

PV3

PV4

PV5

PV6

PV0

Figure 1. Each ellipse indicates the potential correctness
guarantees that can be acquired by using a tool of that level.
PV0 tools give the least guarantees of correctness, whereas
PV6 tools allow the user to work towards maximum correct-
ness guarantees. Note that these indicate the potential of
each level; a tool may only support a little piece of a level.

and lower level tools are usually less strict and thus do not
require as much PV expertise to be effectively applicable.
Since the ultimate goal of PV is to prove correctness of

the artefact in some form and within some domain, we will
use the classic division of roles in a correctness proof. It was
originally introduced by Goldwasser et al. [41], we use the
more widespread modern terminology here ([88]):

Claim

Prover Verifier
argument

In short, there exists a claim of some sort (e.g., “𝑥 ∈ 𝑆”
or “the program has no memory leaks” or “all models are
wrong”), which is provided to both the prover and the veri-
fier. The prover is very clever and can perform sophisticated
manipulations and computations. Its goal is to produce ar-
guments supporting the claim, but the prover can also be
biased and prone to producing false positive arguments. The
verifier has some way of checking the arguments and,
depending on its verdict, declaring the claim accepted or
rejected. We will be illustrating each of the PV tool levels
with explanations, examples and also differences on this sim-
ple scheme. In the subsequent diagrams we will also use
green colour to highlight the main contributing elements
that make someone decide to use a tool of this particular
level.

Artefact

PV0

[PV0] Software engineers always work with abstractions
and models of reality. Once a software entity satisfies the
three properties of the modelling theory [81], it can be be
seen as a model. These three are the mapping property (el-
ements of the model represent some elements of the real
entity being modelled), the reduction property (only the
most important aspects of the real entity are being modelled
and others are being abstracted from), and the pragmatic
property (the model has a purpose). Formal models are a
subset of such models, which are clean and well-formed, and
often built with the use of some existing mathematical theo-
ries. For example, formal models often cover domain-specific
variations of automata. In PV0, such a formal model may

https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

exist but it is often implicit and is used neither to obtain nor
to verify any correctness guarantees.

Artefact

Solver

PV1

[PV1] Once a formal model can be operated on by a soft-
ware system, it can also be automatically checked for internal
consistency and well-formedness, by a model solver. For
instance, if the underlying theory states that a model of a
process is some specific automaton with one starting state
and one or more final states, and all transitions labelled with
unique names, then a solver can check that all these prop-
erties indeed hold. The more complex the model, the more
difficult it could be to make such a solver for it: for example,
uniqueness is relatively easy to check on strings (which we
assume for transition labels in our previous example), but
it is noticeably harder to define and enforce even on data-
base records, where single columns (such as “first name”)
often contain non-unique values, and combinations are often
unreliable due to incompleteness and subtle tolerable incon-
sistencies (such as a phone number mismatch). From the
correctness perspective, a PV1 tool plays a role of a verifier,
and a prover does not exist since the verifier does not need
any arguments on top of the ability to observe the given
model.

Artefact

Synthesiser

PV2

[PV2] The opposite situation is also commonplace: if a
user makes a model of their wishes, often taking a form of
an almost-consistent artefact with holes to be filled, then
one can build a tool to fill in those gaps and infer them from
the context. Sources of information can be different, rang-
ing from domain common sense (for example, we obviously
want our parallel programs to not get stuck waiting for one
another’s resources) to constraints and instructions explic-
itly specified by the user. In a sense, if we want to consider
the Eclipse Modelling Framework as a proof system, it would
fall into this category because it can produce the textual code
of classes that conform to the inheritance structure and the
interfaces specified in the class model. In PV, such programs
are often said to solve problems of synthesis and repair, and

use generative techniques to create test data, repair known
categories of defects, implement queries, generate neural
networks fitting for a particular grid, or just to configure a
universal algorithm with automatically obtained balanced
values. PV2 tools help users to create software artefacts —
either by generating them from scratch or by providing sig-
nificant assistance in the incremental process of creating
them semi-automatically. If the output of a PV2 tool is ex-
pected to be processed by another automated component,
then the tool belongs on a higher PV level.

Artefact

&


Properties

Specification 
Provider Verifier

specification

PV3

[PV3] Combining the two components into a symmetric
setup (cf. Figure 1), in the simplest case we get a situation
when a user explicitly states what properties of a formal
model they wish to have (beyond well-formedness), and
there is an automated property checker, conceptually de-
composable into two parts: a prover that turns each property
into a convincing argument and a verifier which validates
the convincing power of such arguments. A typical example
of a property checker allows the developers to add assertions
to their code, specifying preconditions, postconditions and
invariants around a code fragment, thus allowing additional
formal ways to validate its correctness. These assertions do
not have to be deployed to the end-user, but serve as a pow-
erful tool for the developer to verify the product beforehand.
Some checkers have a very extensive formal language to
write properties in, usually a variant of some special kind of
logic e.g., temporal logic [57, 71].

Artefact

Specification


Property 
Generator Verifier

properties

PV4

[PV4] On the previous level, the burden to create veri-
fiable properties, was on the end-user of a tool: assertions
had to be explicitly written, and invariants had to be pro-
vided. However, in some cases it is possible to automate the
creation of desired properties as well as their verification
— since such techniques require an extensive specification
of the desired behaviour, and often focus on only one par-
adigm, we call themmonoverifiers. They are very useful

https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

tools in debugging, because if used correctly, they can signif-
icantly lower the chances of having a particular category of
defects, sometimes up to eliminating the very possibility of
such a defect ever occurring. For instance, think of a parallel
system being checked for deadlocks or a garbage collector
checked for the lack of memory leaks. Essentially, monoveri-
fiers verify that the supplied formal model corresponds to
the expectations of their own built-in specification.

Somemonoverifiers offer a choice of checking one or more
of a larger set of correctness specifications, in which case
we still classify them to belong to PV4, even though the
mono- prefix no longer fits — as long as the end-user has
no direct control over the specifications themselves. Also
most monoverifiers embrace the fact that their generated
properties cannot always cover the end-user’s needs, and
allow for direct manual specification of additional properties
— which allows us to claim that PV4 functionalities are a
strict superset of PV3 functionalities.

Artefact

Specification


Specification 
Compiler Verifier

properties
properties

PV5

[PV5] When the tool users have an opportunity or obli-
gation not only to specify which properties of the system to
check for or how to infer them, but also to build their own
specifications, we get to specification compilers. Such com-
pilers usually have a language used to write specifications
in, sometimes based on a domain-specific notation, and sup-
port this entire language by compiling its instances in some
automated way to verify their correctness and compatibility.
With those, you can build your own specifications of memory
management strategies, your own communication protocols,
and so forth. To continue with examples from the previous
paragraph: when a PV4 tool could check for deadlock free-
dom, a PV5 tool would require a formal specification of the
concurrency model, accompanied with a definition of what
constitutes a deadlock state. Obviously, some PV4 tools are
built on top of PV5 frameworks by essentially supplying a
useful singular model.

Artefact

Specification

Properties

Proof 
Assistant Verifier

proof

PV6

[PV6] If your program verification tool can not only han-
dle different specifications, but also infer correctness of the
proof of the needed property, then it belongs among the
proof assistants. This category is the most powerful one
that we have encountered, which means both that it is the
hardest and most demanding to use, as well as capable of
producing the strongest guarantees. However, as one can
see from the diagram we provided, it bears some similarities
with the PV1 level, since there is very limited automation
and tool support in composing the arguments for correct-
ness. The proof needs to be written by the end-user, and
the tool can only offer some assistance in verifying that the
proof is indeed correct. Some of PV6 tools can feel to their
users as if they also help them to compose the steps of the
proof, but under closer inspection this help comes from the
tool knowing which proof step would succeed in reaching
a user-stated goal, and not from the tool relying on some
generative algorithms. Within the claim/prover/verifier par-
adigm, proof assistants offer powerful techniques on behalf
of the verifier and not the other two components.

4 Data set of verification tools
To help users find a suitable PV tool, we have prepared a data
set of tools categorised according to the megamodel we have
just explained in § 3. This makes it easier to discover which
tools are available, to find tools using similar techniques, as
well as to find tools that target similar domains and problems.
The data set, called ProVerB, is available1 at https://slebok.
github.io/proverb/. Each tool has its own file which contains
all of its data and metadata in Markdown format.

The remainder of this section explains how the initial data
set has been created (§ 4.1), how we use open APIs to enrich
our data set (§ 4.2) and presents some statistics about the
data that was gathered (§ 4.3).

4.1 Methodology
A methodological overview can be seen in Figure 2. Below
we will describe each step of our research method in detail.

4.1.1 Choose data sources. To find PV tools to include in
the data set, we looked into two popular conferences about
verification of systems. Namely, the International Conference
on Computer Aided Verification (CAV) and the International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). In the CORE conference
ranking they are classified as having respective ranks of A*2
and A3. We have decided to use papers from these confer-
ences since both accept and welcome papers about tools.
Therefore, we could expect a relatively high percentage of
tool papers. Moreover, CAV and TACAS started with arte-
fact evaluations in 2015 and 2018 respectively, therefore we
1The data set has also been archived at https://doi.org/10.4121/20347950
2CAV: http://portal.core.edu.au/conf-ranks/331/
3TACAS: http://portal.core.edu.au/conf-ranks/1818/

https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/
https://slebok.github.io/proverb/
https://doi.org/10.4121/20347950
http://portal.core.edu.au/conf-ranks/331/
http://portal.core.edu.au/conf-ranks/1818/


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

Choose data
sources

Identify tools
in papers Collect data

Define/refine
megamodel Classify tools Identify

trends

Figure 2. An overview of the different steps that have been undertaken to set up the data set of program verification tools.

expect that many of the tools presented here will also be
available. We have looked at tool papers from TACAS 2016–
2021 and all papers from CAV 2017–2022. We are still in the
process of adding the TACAS 2022 papers. We chose to use
these recent years as this makes it more probable that tools
are still findable and possibly maintained, yet still limited
ourselves to at least 5 years of each conference in order to
gather a substantial amount of data.
This step resulted in 519 papers: 406 from CAV and 113

from TACAS.

4.1.2 Identify tools in papers. Next, we needed to iden-
tify the tools that were presented in each paper. To help with
this process, we have developed a script that automatically
identifies paper titles in the proceedings. Based on heuris-
tics we try to identify the name of a tool. Specifically, one
can often find titles of the form “Tool name: subtitle with
explanation". Whenever a paper’s title matches this heuristic
pattern, we automatically extract the tool’s name. For papers
that do not adhere to this heuristic it is still required to read
the paper to identify tools.
For each paper we checked whether it contained a refer-

ence to a tool. If so, then we would tag this as one of the
following claims:

• Presents: the paper introduces a new tool;
• Extends: an existing tool gains new functionality in
the paper;

• Expands: the paper uses an existing tool as a basis for
building another tool;

• Uses: the paper uses an existing tool for a case study
or to check the correctness of an approach.

We only included tools that provided some form of cor-
rectness guarantees, to avoid including too many entries
in ProVerB. This still left us with some entries that were later
reclassified as not belonging to the PV domain (usually from
misinterpretations of claims “we use library X”).

4.1.3 Collect data. As a format for storing entries in the
data set, we have chosen Markdown. This provided the low-
est entrance barrier and maintenance cost, still combined
with the opportunity to add structure to the data (in our case,
in the form of ####-level sections). By choosing this format,
we also hope to make it easy for other people to contribute to
the data set in the future, since GitHub, our hosting platform
for the data, even provides inline editing functionality for
Markdown pages.
After some pilot classifications we set up a generic tem-

plate for tool pages, which has proven to be quite resilient,

and after the first couple of sprints it stayed stable and un-
changed till the current moment. This template included a
section for all the information that we were interested in for
a tool, namely:

• Name of the program verification tool;
• Domain or application field;
• The type of the tool as self-identified by authors;
• Input that is required from the user;
• Input format;
• Output that is produced;
• Internal working of the tools, such as which tools it
uses as a backend;

• External relations to other tools, such as those that
were compared to this tool in the paper;

• Links to project pages, repositories and related papers;
• Dates when the tool and its documentation were last
updated;

• Reason why the tool was added to the data set.

Aside from the information mentioned above, we have also
started adding tags as textual annotations. Tags are used to
indicate whether a tool targets a specific language, domain,
technique, etc. This should make it easier for users to find
suitable tools. For example, there is a tag for tools that target
C programs, a tag for neural networks, a tag for hardware
verification, and so forth.

We start by creating a new page based on the same tem-
plate for all tools. After the page has been created, we needed
to collect additional information from the corresponding pa-
per as well as the code base and project website if these were
available. Some sections were left empty if the data was not
available (e.g., the last modification data for tools without a
repository). If at least two tools referred to another tool, e.g.
because it was used as a back end or as a framework, then
this tool was added as well and received its own entry.
Some tools that we encountered were developed as pro-

totypes, up to the point that these did not have a name at
all, nor a link to an implementation. We decided to exclude
such tools as these tools were likely not developed and main-
tained for professional use. However, some tools included
an artefact, which was mostly still reliably available, so we
included this link in the entry whenever it existed.

The data set also includes pages about several specification
formats. A page for a format was created if the format was
not tool-specific, if it was used by more tools than one, or if
it was for some other reason conceptually separate from the
tool.



SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

4.1.4 Define megamodel. When the tool pages had been
written, we contemplated the initial setup of the megamodel
based on similarities between tools. The first version was al-
ready based on the input that the user has to provide, ranging
from the no input at all (besides the already existing software
artefact), to assertions, properties, specifications, theories
and proofs. Several refinement iterations later, based also on
consulting the already available domain knowledge [41, 88],
we have arrived at the version presented previously in § 3.

4.1.5 Classify tools. Having designed the initial meg-
amodel, we started the process of classifying all the tools.
Based on the tools’ semi-structured description (cf. subsub-
section 4.1.3), we have assigned each to a PV level. While
doing that, we have also consistently provided a short de-
scription motivating this classification by explaining what
the tool does. In that way, a tool with a description “verifies
properties of a user-specified memory model” was clearly
placeable at PV5, and the one with “checks user-specified
properties and memory-safety of C programs” was easily
marked as deserving PV4. To prevent misclassifications and
improve inter-coder reliability, the authors actively double
checked each other’s verdicts and had extensive discussions
about arguable conclusions. In such discussions, the clas-
sifying coauthor would usually apply the definition of the
chosen PV-level to argue that the tool conforms to it, to be
challenged by another coauthor with an alternative applica-
tion of a different PV-level. In case of conflicts, the original
tool describing paper was consulted for more detailed infor-
mation sufficient to finalise the classification.
Aside from the PV0–PV6 levels, there are two other cat-

egories: “no PV” for false positives and “frameworks” for a
possible level mixture. We used “no PV” to explicitly exclude
entries that ended up, after close consideration, not perform-
ing any PV-related tasks. Such entries were mostly about
specification formats, but also about IDE plugins, unrelated
programming languages, libraries not performing any PV
tasks, etc. We felt that something like an alternative user
front end or a linear programming library do not belong to
PV0 either. “Frameworks” was used to classify collections of
tools: in many cases it was possible to determine the primary
objective of the collection and assign a framework to a proper
level as well, but in other cases such an assignment has not
been deemed sensible. For example, “Alloy” is used to refer
to the Alloy Analyzer (which has its own entry on PV3),
or to the input level of the Alloy Analyzer, or to the entire
ecosystem of Alloy models and their verifiers, — and is not
consistently PV-classifiable without explicit disambiguation.

4.1.6 Identify trends. Finally, after we classified all the
tools, we could start to identify trends in each level of the
megamodel. These trends could be identified based on the
short descriptions that were written in the previous step, and
require only occasional lightweight double checking with

the full data entry or the text of the underlying paper. We
will discuss these trends in more detail in § 5.

4.2 Data enrichment
The previous section has described how we set up the initial
data set. This section will describe how we have gathered
additional data by combining the initial semi-structured data
set with data from third-party open APIs such as GitHub
and Springer. For this process two main requirements were
taken into account namely:

• The structure of the data set should be preserved.
• The process should be automated to minimise manual
effort required for maintenance

The data set can be enriched in three independent dimen-
sions:
(1) Adding new entries for tools originally not present in

the data set (e.g., from newly published papers).
(2) Adding new information about tools which are already

in the data set (e.g., the time of the last update in the
code repository).

(3) Improving the information already present about the
tools (e.g., adding the titles of referenced papers).

For the (1) dimension, we have only reached partial au-
tomation of the first step described in subsubsection 4.1.3.
We use a script to automatically extract some information
from the conference proceedings using text pattern match-
ing on the PDFs. Specifically, we automatically try to identify
the tool’s name (as mentioned before in subsubsection 4.1.2),
links to additional resources and keywords. The tool’s name
and links are automatically added to the appropriate sections
in the template. The keywords are used as an initial set of
tags.

For the (2) dimension, one of the enhancements we found
useful is to rely on GitHub API instead of on manual inves-
tigation, to determine the time when the repository (either
determined by the PDF parser or added manually) was last
updated. This is not only fast, but also a much more reli-
able process, which can be repeated as often as we would
like (which makes sense for tools that are actively being
developed or maintained).

This brings us to the (3) dimension, which seems cosmetic,
but improves the experience of using ProVerB nevertheless.
For instance, originally, the data set only contained bare links
(URIs) for papers and repositories due to which the users
could not see, which paper they would be redirected to. As a
result, users often needed to click and browse several links
in order to find information that they needed, especially for
tools described in several papers. To make this process more
pleasant, we use API to automatically gather data about what
the links point to. This way, we can automatically retrieve
the latest commit date for repositories due to which users
no longer need to click on the repository link to see whether

https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv3.html


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

https://doi.org/10.1007/978-3-030-72013-1_29 (TACAS '21)
https://doi.org/10.1145/3340672.3341113 (FTfJP '19)
https://doi.org/10.1007/978-3-030-17502-3_16 (TACAS '19)
https://doi.org/10.1007/978-3-319-41528-4_19 (CAV '16)

[Towards String Support in JayHorn (Competition Contribution)](https://doi.org/10.1007/978-3-030-72013-1_29) (TACAS '21)
[JayHorn: a Java model checker](https://doi.org/10.1145/3340672.3341113) (FTfJP '19)
[JayHorn: A Java Model Checker](https://doi.org/10.1007/978-3-030-17502-3_16) (TACAS '19)
[JayHorn: A Framework for Verifying Java programs](https://doi.org/10.1007/978-3-319-41528-4_19) (CAV '16)

Figure 3. Improvements in the “List of related papers” section for JayHorn: the before and after versions above and under the
line. Note how manually added information (conference names with preferred abbreviations) is still preserved after refinement.

Figure 4. ProVerB ontology

it is still maintained, but also to replace faceless DOI URIs
with hyperlinked paper titles with Springer API.

To see a concrete example, let us focus on JayHorn, a tool
we randomly selected to serve as another example on Ta-
ble 2. Originally, its “Last commit date” section contained
the string “27 May 2021”, which was added manually by one
of the authors of this paper who classified it first. After ex-
panding in the (3) dimension, it contained more concretely
two reference points: “27 May 2021 (default branch)” and
“14 Dec 2021 (last activity)”, which was updated on 12 No-
vember 2023 when Philipp Rümmer, one of the contributors,
merged pull request #161. For the same entry, the section
about related papers has changed as depicted on Figure 3.

4.2.1 Workflow. To set up the automatic data enrichment,
we first designed an ontology for ProVerB which is closely
related to the template described in subsubsection 4.1.3.
The current version of the ProVerB ontology includes 11

classes (see Figure 4). The meaning of each class as well as an
example can be found in Table 1, with a concrete example in
Table 2. The classes that we are currently using for data en-
richment include Repository, Article, CodeContributor

and Writer. Links to repositories and articles from the orig-
inal data set are used to instantiate the Repository and
Article classes. These links are then used to gather ad-
ditional information, such as authors and code contribu-
tors, through open APIs. This additional information can
be used to instantiate the classes such as CodeContributor
and Writer.

There are some classes in the ontology that are currently
unused but have been added for future study. For example,
the Format class has been added to explore possible input-
output relationships between tools.
With the ontology designed, we could now use this to

enrich our data set. The steps of this process have been
illustrated in Figure 5.
This process can be automated with GitHub workflows

to run once per week and automatically generate a PR with
the updates for the data set. The PR can then be reviewed
before merging to ensure the data is of sufficient quality.

4.2.2 Author-Contributor relations. With the previously
explained setup we can also collect data about authors of
papers and contributors to repositories. Specifically, we can
explore “same-as” relationships to identify people who were
both author and code contributor. This can provide valu-
able information about who to contact when someone has
questions about a tool.
This data is collected through the APIs, though it is not

yet added to the data set or shown on the website. The topic
of author contributions, as shown by Corrêa Jr. et al. [26],
is far from being simple and/or resolved even for “normal”
academic literature, and deserves even more careful investi-
gation if we take tool making and empirical validation into
account.

4.3 Data set statistics
The data set contains 427 tools, 26 specification formats and
71 tags. The tools are split over the PV levels as follows:

• PV0: 16 — cf. § 5.1
• PV1: 98 — cf. § 5.2
• PV2: 84 — cf. § 5.3
• PV3: 74 — cf. § 5.4
• PV4: 101 — cf. § 5.5

https://github.com/jayhorn/jayhorn/pull/161
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

Table 1. Overview of the classes in the ProVerB ontology with an explanation of their meaning

Class Meaning
Tool A program verification tool in the ProVerB data set
Format Input/output format of the tools and other specification formats
Repository A URL indicating the repository of the tool or another source where it can be down-

loaded
Article A (preferably DOI) link pointing to a publication about a tool
Concept All tags, application domains, etc. can be concepts. Some specific concepts are created

as sub-classes to allow domain experts tomodify the ontology file for tool classification
PV Seven hierarchy levels (PV0–PV6) that classify tools. Each tool receives a single

classification
Conference The conference where an article was published.
Person Persons related to a tool, proceedings or any other concepts
Writer Sub-class of Person: Authors of an Article
CodeContributor Sub-class of Person. Contributor to a Repository

Table 2. The classes in the ProVerB ontology with an example of the corresponding data for one concrete tool

Class Example
Tool JayHorn
Format Java bytecode (it supports Java class files, Jar archives, or Android apk)
Repository https://github.com/jayhorn/jayhorn
Article https://doi.org/10.1007/978-3-030-72013-1_29;

https://doi.org/10.1145/3340672.3341113;
https://doi.org/10.1007/978-3-030-17502-3_16;
https://doi.org/10.1007/978-3-319-41528-4_19

Concept Java; Model checking
PV PV4
Conference TACAS’21; FTfJP’19; TACAS’19; CAV’16
Writer Hossein Hojjat; Temesghen Kahsai; Philipp Rümmer; Huascar Sanchez; Martin Schäf;

Ali Shamakhi
CodeContributor Martin Schaef; Philipp Ruemmer; Ali Shamakhi; Huascar Sanchez;

Temesghen Kahsai; etc

Download
newest

Markdown
sources

Convert
Markdown
to RDF

Call APIs
for DOI and
repository

links

Add new
information
to the RDF

Convert
RDF back to
Markdown

Make a pull
request for
the changes

Figure 5. An overview of the different steps that are undertaken each time the data set is enriched.

• PV5: 13 — cf. § 5.6
• PV6: 13 — cf. § 5.7
• No PV: 46
• To be categorised: 8

Table 3 gives an overview of how many tools were identi-
fied in the CAV and TACAS proceedings respectively. The
papers that presented unnamed prototypes were counted
separately and excluded from the data set. Papers that did not
discuss any implementation, such as theoretical papers or
case studies, counted towards the “No tool” column. Overall,

Table 3. An overview of how many tools were identified in
the CAV and TACAS proceedings.

Tools Prototypes No tool
CAV 257 (50%) 54 (10%) 95 (22%)
TACAS 94 (18%) 0 (0%) 19 (4%)
Overall 351 (68%) 54 (10%) 114 (22%)

78% of the papers that we looked at included some implemen-
tation, 68% of which were identifiable tools and 10% were
prototypes. We suspect the percentages to be considerably

https://slebok.github.io/proverb/jayhorn.html
https://github.com/jayhorn/jayhorn
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1145/3340672.3341113
https://doi.org/10.1007/978-3-030-17502-3_16
https://doi.org/10.1007/978-3-319-41528-4_19
https://slebok.github.io/proverb/java.html
https://slebok.github.io/proverb/modelchecking.html
https://slebok.github.io/proverb/modelchecking.html
https://slebok.github.io/proverb/pv4.html
https://github.com/martinschaef
https://github.com/martinschaef
https://github.com/pruemmer
https://github.com/pruemmer
https://github.com/ali-shamakhi
https://github.com/ali-shamakhi
https://github.com/hsanchez
https://github.com/hsanchez
https://github.com/lememta
https://github.com/lememta
https://github.com/jayhorn/jayhorn/graphs/contributors
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

lower, had we chosen other conferences without a strong
tool focus.
The light snowballing principle that we have mentioned

above (another tool page is added if at least two existing
entries refer to the same tool which is not yet in the data set)
led to adding another 76 tools to the data set.

We consider limitations of our data set and the process of
creating it, at the very end of the paper, in § 6.1.

4.3.1 Data enrichment statistics. 400 out of 427 of the
markdown files were included in the data enrichment pro-
cess. The other files were excluded as they were READMEs
and pages that did not describe tools but specification for-
mats.

In total, we could automatically retrieve information about
256 of 269 repositories. This information included code con-
tributors, the last commit date and the “About” section shown
on a repository’s page. For the articles, wewere able to enrich
518 of 525 articles successfully. For each article, it retrieves
the title, abstract and authors. Some repositories and articles
could not be enriched as this data was not available through
Github’s, Springer’s or Crossref’s API. For example, some
repositories are hosted on organisation-specific GitLab in-
stances and some articles link to an organisation’s website
instead of a DOI.
In total 1419 code contributors and 1188 authors were

identified. Of these contributors, 1086 people have provided
a name which can be used to identify same-as relationships
with authors. In total, 273 same-as relationships have been
found when looking for exact name matches. 169 tools con-
tain at least one expert who contributed to both the paper
and the code. The actual number is expected to be much
higher as we only considered exact matches and not all code
contributor’s have provided a name that can be matched to.

5 Trends in PV levels
In this section we identify different subgroups within each
PV level of the megamodel.

5.1 PV0: Potential tools
At the time of writing of this paper, ProVerB had 16 tools
on PV0. It is the absolute minority compared to other cate-
gories, which is intentional due to the inherent non-verifying
nature of PV0. As the word cloud, generated from tool de-
scriptions and visualised on Figure 6, suggests, it is more
about analysis than proving, and more about “matching”
than “checking”, and some of these “tools” are mere libraries
for larger packages like Coq and Uppaal. 13 of the PV0 tools
provide facilities to work with various kinds of seemingly
formal artefacts: grammars, regular expressions, automata,
decision diagrams, session types, and floating point numbers.
However, there is simply not enough formal rigour in the
way these tools operate these artefacts, for us to consider

28/01/2024, 22:03 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 6. A word cloud generated from the descriptions of
PV0 tools.

them truly a part of the program verifier’s arsenal. As an ex-
ample, consider ANTLR [69]: given a grammar, it generates
a parser for it. However, it does so without the grammar be-
ing perceived, modelled and transformed as a mathematical
object. If the user provides ANTLR with a grammar which is
unconnected or ambiguous, then the generated parser will
be faulty, and no warning might be issued.
Two remaining PV0 tools are, in fact, repositories: Ce-

ramist [42] and Prosa [43] are libraries that store formal
artefacts (definitions and proofs) but by themselves neither
provide arguments about their correctness, nor verify those
(both rely on Coq). The last PV0 tool is Smt-Switch [60],
a collection of abstract classes that, if inherited from and
implemented, can help integrate SMT solvers—again, this
library by itself is definitely related to the PV domain, but
does not help bring any correctness guarantees.
What all PV0 tools have in common is their position on

the verification diagram we have shown in § 3: they are
claims without arguments, without a prover and without
a verifier. The claims can be formal, but the surrounding
context does not qualify as PV tool support.

5.2 PV1: Essential tools
Out of 98 tools on the PV1 level, 19 can be seen as frame-
works enabling their end users to work with certain mod-
els/abstractions in a formal way. For instance, Frama-C [24]
contains functionality to treat C programs as formal artefacts
and thus can be used to build different program analyses
on top of it; BINSEC [31] provides similar functionality and
opportunities to implement binary level code analysis; there
are comparable tools that deal with Büchi automata, sym-
bolic automata, decision diagrams, temporal logic formulae,
etc. 9 more tools could be seen as limited frameworks that
are developed specifically to compare two models in a formal

https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

28/01/2024, 22:36 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 7. Aword cloud representing PV1 tools descriptions.

way. For example, SPAN [13] computes whether two proto-
cols are indistinguishable, and RABIT [1] checks inclusion
of languages generated by two Büchi automata. Another 8
tools can be seen as normalisers that bring a given model
to some well-defined canonical state: Mealy machines and
Büchi automata can be automatically minimised, quantified
Boolean formulae can be simplified and turned into depen-
dency quantified Boolean formulae, etc.

21 different PV1 tools are linters, type checkers and check-
ers of other kinds of properties that are fixed and hardcoded
into the tool (wewill see checkers of user-specified properties
on PV3). Such properties can include conformance, seman-
tic preservation, type safety, automata emptiness, safety of
Markov decision processes, thread safety, etc. Reachability
and termination analyses, due to their internal workings,
we count towards another category, which includes metric
calculators and tools that compute a set of possible states of
a model or infer ranking functions, or compute upper and
lower bounds of something — there are 34 of them in total.

Finally, the remaining 7 tools can execute models, simulate
their behaviour, (partly) visualise them and resolve them
otherwise: Murxla by Niemetz et al. [64] fuzzes SMT solvers,
CabPy by Baier et al. [9] solves a two-player reachability
game, Oink by van Dijk [85] solves a parity game, jcstress
by Shipilëv [79] and PROVER by Ryou et al. [75] execute
test cases in a specific order, CLEAR by Barbon et al. [11]
and dtControl by Ashok et al. [7] visualise the problematic
part of a labelled transition system and previously externally
synthesised controller code, respectively.

5.3 PV2: Creational tools
There are 84 tools in PV2, their descriptions visualised as
Figure 8. The largest identifiable group, with 37 members,
consists of tools providing correct-by-construction artefacts
given a specification: some synthesise a controller from an

LTL formula, others generate a dynamic neural network for
a given grid, some generate tests for a given circuit, while
others specifically generate classes that attempt to violate
given properties. This group of tools can produce fairly for-
mal artefacts that are automatically verifiable, but they do
not provide any verifier means themselves. 8 more tools per-
form limited versions of the same process, generating only
enough content to fill in holes in an already partially existing
model or program. For instance, 𝜏-DIGITS by Drews et al.
[33] fills holes in a given loop-free program from a proba-
bilistic specification of its desired behaviour, and MOVEC by
Chen et al. [25] performs aspect weaving. Two more tools
(DIGITS by Albarghouthi et al. [2] and TarTar by Kölbl et al.
[53]) specifically propose repairs as code fragments meant
to substitute existing code fragments assumed to be faulty.
The second popular group contains 19 tools that encode

or transform the artefact from one format or formalism to
another. This group covers tools for sequentialising parallel
C code (MU-CSeq by Tomasco et al. [82]), or transforming
irreversible programs into reversible circuits (ReVerC by
Amy et al. [4]). There are several tools on this level that
operate on temporal logic formulae, making a timed automa-
ton (MightyL by Brihaye et al. [21]) or an Electrum model
(Cervino by Peyras et al. [70]) or another temporal logic for-
mula in a different dialect (MLTLconverter by Li et al. [59])
from them.

8 tools can be used to refine specifications: for instance, by
inferring type annotations from an untyped program such
as Typpete by Hassan et al. [46], or generating permission
pre- and postconditions for Viper programs like Sample by
Dohrau et al. [32] does.
Finally, 10 tools generate configurations or settings for

other tools, such as PeSCo by Richter and Wehrheim [73]
which generates the best fitting configuration for CPAchecker
by Beyer and Keremoglu [17] that fits previous experiences;

28/01/2024, 22:45 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 8. Aword cloud representing PV2 tools descriptions.

https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv2.html


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

or SATzilla by Xu et al. [92] that decides which solver to call
per instance based on predictors.

5.4 PV3: Property checking tools

28/01/2024, 22:50 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 9. Aword cloud representing PV3 tools descriptions.

PV3 currently has 74 tools. Within PV3 we can clearly
identify three main subgroups: property checkers, assertion
checkers and program repair tools.
The first group consists of 40 tools that check properties

for some form of model such as automata or network models.
For instance, STAMINA by Neupane et al. [63] can be used
to check properties of infinite-state continuous-time Markov
chains.

The second group consists of 28 tools that check assertions
for concrete artefacts. For example, SecC by Ernst and Mur-
ray [34] can check information flow properties, expressed
as assertions, for C programs.
Four tools: Forester by Holík et al. [48], SymDIVINE by

Mrázek et al. [62], Trainify by Jin et al. [50] and VeryMax
by Borralleras et al. [20] — fall in between these two groups.
The first two of these work on LTL formulae as properties,
but apply them on real C/C++ code (SymDIVINE allows both
“normal” assertions and LTL formulae). Trainify checks ACTL
properties for Deep Reinforcement Learning systems defined
in Python. VeryMax works both on programs (C/C++) and
models (transition systems).
Finally, there is also a small but growing group of tools

that focuses on program repair: AllRepair by Rothenberg and
Grumberg [74] and NNRepair by Usman et al. [84]. These
tools both identify faults in the program, like other tools in
PV3, and they also propose a way to fix it.

5.5 PV4: Specification checking tools
Currently, PV4 is the largest category with 101 tools, the
descriptions of all of them also used for a word cloud on Fig-
ure 10. The largest group (51) of tools within PV4 are the

28/01/2024, 22:54 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 10. Word cloud representing PV4 tools descriptions.

solvers. These tools produce a satisfiability result for SAT (sat-
isfiability), SMT (satisfiability modulo theories), QBF (quan-
tified Boolean formulae) or CHC (constrained Horn clauses)
problems. Because these tools verify a specific property
(namely, satisfiability), onemay have expected to find them in
PV1. However, these tools typically generate interpretations
for the given problem to show that it is (un)satisfiable. So, in-
ternally each of these tools consists of two essential parts: the
property generatorwhich generates the interpretation and
the verifierwhich checks whether this interpretation makes
the formula satisfiable. This group also contains the tool that
is referred to the most often in our data set — namely, Z3
by de Moura and Bjørner [30]. It belongs to SMT solvers
together with 17 other tools; there are also 22 SAT solvers; 3
CHC solvers; and 6 solvers of other kinds.
Many PV tools from other levels encode their problems

into satisfiability problems and then use one of the tools in
this group as a back end.
PV4 also includes 25 tools that generate properties or

check built-in specifications typically depending on the do-
main that the tool targets. Some examples of built-in specifi-
cations that are checked, include memory safety, data-race
freedom, termination and absence of runtime errors. Many
of these tools also provide support to check user-written
properties. For instance, Gobra by Wolf et al. [90] can check
user-written assertions for Go programs as well as memory
safety, data-race freedom and crash safety.

Finally, there is a small group of what we can call language
workbenches [39], and we strongly suspect that there are
more of this kind that escaped our selection only because
nobody published about them directly at CAV and TACAS
recently. A language workbench was envisioned in 2005 as
a set of tools aiding the language engineer to design, imple-
ment and integrate a collection of domain-specific languages
into one unified solution. Some of the popular language

https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv4.html


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

workbenches in model-driven software engineering include
Xtext, MPS, MetaEdit+, Rascal and Spoofax. The two lan-
guage workbenches that we have found mentioned for the
domain of program verification, were DLC by Evrard [35],
which can automatically generate distributed implementa-
tion of concurrent systems modelled in the LNT language,
which can be verified using the CADP toolbox; and PrDK by
Jongmans and Arbab [51], a development kit for program-
ming communication protocols.

5.6 PV5: Fully controlled verification tools

28/01/2024, 22:59 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 11. Word cloud representing PV5 tools descriptions.

Continuing the same trend, on PV5 we see a uniform
group of 13 verification workbenches. These are tools that al-
low users to write their own specifications and combine these
together with desired properties into a formal mathematical
representation. These formal representations can then be
compared with representations of programs or their prop-
erties for the verification. Users can have very fine-grained
influence on the results of these tools because they are al-
lowed to write their own specification. For example, Attestor
by Arndt et al. [6] allows the user to specify the initial heap
configuration and the behaviour of the garbage collector
that should be taken into account when verifying a property
for a Java program. Similarly, UPPAAL by Bengtsson et al.
[14] is a workbench for automatic verification of safety and
bounded liveness properties of real-time systems modelled
as networks of timed automata.

5.7 PV6: Proving tools
All 13 tools in PV6 are proof workbenches. Many of the
tools in previous categories give a yes/no answer to indicate
whether a property holds, and in any case allowing at most
some influence on the property generating and handling
process, but not on the final proof. PV6 tools, however, will

28/01/2024, 23:04 wordcloud.jpg

https://www.wordclouds.com 1/1

Figure 12. Word cloud representing PV6 tools descriptions.

help the user to construct and infer the correctness of a
proof that shows why a property is true or false. Some well
known tools in PV6 are Coq by Bertot and Castéran [15],
Isabelle/HOL by Nipkow et al. [65], Lean by de Moura and
Ullrich [29] and Vampire by Kovács and Voronkov [54]. Their
comparison is a highly nontrivial task even for professional
mathematicians [87].

6 Conclusion & Roadmap
Our contribution of this paper is two-sided. On one side, we
have analysed a fairly complex domain and turned one of the
commonly used visualisations of its core processes into a full
fledged megamodel that helped us to split the domain into
much more intelligible smaller categories. On the other side,
we have processed hundreds of academic papers published
across several recent years, classified them according to the
proposed megamodel and generated a user-friendly website
allowing software engineers to compare and assess tools in
a bit more secure, complete and safe way than before.
The megamodel that we have presented, identifies the

different type of program verification tools that we found ex-
isting or that can possibly be made to exist. This megamodel
is based on the classic division of roles in a correctness proof
as introduced by Goldwasser et al. [41] that is currently ac-
cepted by the computational community. Our megamodel
divides the different types of tools into seven categories: PV0,
PV1, PV2, PV3, PV4, PV5 and PV6. These categories are
increasingly more demanding and increasingly more pow-
erful: it is possible to gain some benefit from a PV0 or PV1
tool within the first day of being introduced to it, but much
further refinement and improvement might not be possible;
on the other side of the spectrum, PV6 tools can do almost
everything, and require a relevant PhD degree to operate.
Thus, there is no discussion on “what is the best PV level”,

https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv6.html


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

just a classification that helps to match a tool to customer
needs.

To bring the megamodel to life, we have designed a meta-
model to hold semi-structured information about a PV tool,
including its PV-level, name, input/output, etc, and instan-
tiated it for all tools that we have found being mentioned
and used in the last five years of two top conferences in the
field: CAV and TACAS. Our data set at the time of writing
consists of 450+ tools, formats and libraries. By setting up a
megamodel as well as a data set, we hope to provide both a
theoretical as well as a practical starting point to get into the
world of PV tools and methods. A good starting point for
browsing and exploring ProVerB would be its hypertext fron-
tend: http://slebok.github.io/proverb/ which also contains
links to other sites (GitHub, DOIs, etc) for each tool.

6.1 Threats to validity
Conclusion validity. All the PV-classifications that we have
performed, come from our personal interpretations of the
contents of a fairly large body of fairly complex academic
papers. Thus, it is possible that some tools have been misclas-
sified as belonging to one level while they actually belong
to another level. To prevent misclassifications, the authors
were actively double checking each other’s verdicts and had
extensive discussions about arguable conclusions. Eventu-
ally we plan to reach out to authors of all tools included
in ProVerB individually, with a detailed explanation of the
seven PV levels and a request to review our summaries and
refine them, possibly leading to reclassifications. If such a
community effort causes a noticeable resonance, it would be
possible to eliminate this threat entirely.
Internal validity. Since our project is more of an observa-

tional and classificational nature, initially we did not attempt
to establish any causal relationships. Hence, internal validity
was not among our major concerns. However, since the mo-
ment we started enhancing the data set with other sources of
linked data such as GitHub and SpringerLink API, it becomes
increasingly more relevant to correctly establish contributor
identity equivalence across multiple platforms with varying
usernames and non-strictly matching names [38].
Construct validity. As we have explained in § 3, our meg-

amodel was designed based on the classic division of roles in
a correctness establishing setup as described by Goldwasser
et al. [41], in the modern reinterpretation by Wigderson [88].
By reusing a model that originates from the right domain,
we hope to have found a mature foundation that will allow
us to classify any possible tool in the future by matching
its components and concepts to the claim, the prover, the
arguments and the verifier. Only if we encounter future tools
that do not fit into this model, will we have to redesign the
megamodel again. However, in the works of Wigderson [88],
generalising the notion of a proof from being a unidirec-
tional communication from the prover towards the verifier,

to a bidirectional series of communications, handling inter-
activity, errors, randomness and other natural aspects of
computation, has opened a lot of doors and led to the dis-
covery of a number of complexity classes with a distinctly
higher expressive power. For instance, relying on more than
two verifiers at the same time is not uncommon in PV, but
this is mostly done for practical considerations such as trying
all available ones to watch only the fastest complete its proof.
It is neither considered nor suspected that multi-prover or
multi-oracle PV tools can lead us to a broader computational
class. Since this has not been researched or established be-
fore, we also do not consider such multi-tier setups as one
of the PV-levels explicitly.

External validity.We have gathered data from publications
at CAV and TACAS, which seemed like a good choice of infor-
mation since both favour papers about program verification
tools to non-tool papers and non-PV content. However, there
are more venues that target the program verification field
(POPL, PLDI, FASE, LICS, etc). It is unknown at the mo-
ment what biases we have created in the data set by limiting
ourselves to only CAV and TACAS and related papers, tech-
niques and tools. While limited, the number of tools (380+)
included is significant, and they seem reasonably spread out
among the different PV levels. We see that the most popular
tools are included, partly because we also include tools if
they are referred to by at least two other tools. So, while
perhaps limited on the grand scheme of things, we think
that this is a good starting point for the data set.

6.2 Roadmap for the future
With the megamodel designed, and the initial data set col-
lected, our main focus for the future is the usage of our work.
The PV-levels naturally cover the entire spectrum of all pos-
sible tools from informal/semiformal to self-validating, so
the usual future work claim of adding more levels to the meg-
amodel, cannot possibly apply here. Thus, below we discuss
several concrete scenarios to show how it can be used and
extended to cater for those uses.

Scenario 1: the first scenario, which closely resembles our
original goal of collecting and classifying available program
verification tools for ourselves, is to help users find suitable
tools. Even now potential users of any of the tools listed at
the ProVerB website, can explore the data set in different
ways, such as systematically covering some PV-level after
determining which one is needed, or browsing through tools
listed under one of the tags (e.g., “LLVM” or “Smart con-
tract”). To improve the usability in this scenario, we believe
it would be useful to develop a decision tree to help people
find the right tool. Such a decision tree can take the client’s
requirements into account such as the domain to which it is
applied and the problems it should solve.
One of the aspects of seeking the right tools for the job

that we have not considered before, is tool popularity among
other potential users — for some definition of it. However,

http://slebok.github.io/proverb/


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

there are many ways to assess popularity or utilisation of
program verification tools, such as:

• Presence: in our study we have declared that even
one use or mention of a tool justifies its addition to
ProVerB — however, more frequent appearances at
conferences and workshops, as well as prominence in
tutorials and keynotes, may indicate higher popularity.
In some subdomains of program verification contests
are being held regularly, and if a tool appears there
often, it means it is highly competitive among cutting
edge alternatives.

• Citations: the number of papers referred to either the
main paper introducing the tool in question, or collec-
tively to all papers written about the tool. This can be
possibly calibrated by tracking the age of citations as
well, to avoid the bias towards older tools.

• Usage: many platforms allow tool makers to track
the number of downloads, installations or active users.
Tools mature enough to be used in the industry can
also often be tracked with respect to their adoption,
either directly through companies applying them to
solve their problems, or indirectly by counting pub-
lished case studies and success stories.

• Community: engagement can be a good proxy for a
tool popularity, hence the reliance in many studies on
counters like GitHub stars and forks, or the number
of contributors, issue resolutions or commits.

• Social Media: presence on social media platforms
goes beyond simple vanity and can also mean that
blogs/podcasts, discussion fora/groups, Discord/Slack
servers, Reddit/StackOverflow sections, etc, are readily
available to support newcomers learning to use this
tool.

• Surveys: tool popularity can be measured directly
by asking a significant number of researchers and
practitioners to express their preferences by filling in
questionnaires. This is a labour intensive initiative but
yielding qualitative insights into actual tool popularity
and perceived effectiveness.

There are also composite methods of expression popular-
ity and adoption of a piece of software, such as Software
Universe Graphs by Kula et al. [56]. In any case, we note that
popularity has been found to not correlate that much with
other aspects of software quality such as defect density [76]
or security [80]. Other studies have even found an inverse
correlation, such as Alsmadi and Alazzam [3] who observed
that projects with higher number of downloads also tend to
have higher cyclomatic complexity.
Scenario 2: the second scenario is similar to the first one,

but the selection is done in the presence of a knowledgeable
consultant. Such an expert has sufficient knowledge about
the field of program verification and thus can determine
what type of tool suits the client’s problem. Exploring the

domain together with the client could potentially lead not
only to reaching its intended goal of finding and selecting
the right tool, but also to insights in requirements elicitation.
It is well-known that exploring the solution space often leads
to discoveries on the problem definition side. For this sce-
nario, the most useful improvement would be to subdivide
the PV-levels further. At the moment the levels are neither
uniform nor equidimensional: some are naturally larger, oth-
ers contain substantially sized identifiable subcategories.
Different aspects can be of more importance in this sce-

nario, or at least can gain more weight due to the presence of
a verification expert acting as a requirements elicitor, such
as:

• Performance: efficiency of the candidate tool can
be assessed by either their known position in the last
relevant competition, or by observing how consistently
it passes appropriate applicable benchmarks.

• Flexibility: adapting the tool to the needs of the user
might involve scalability issues, assumptions about
input data, customisability and extensibility, as well
as some other similar details that can subtly influence
the choice.

• Integrationwithwidely used formats, platforms, frame-
works or toolchains can enhance the tool’s chances of
being a part of the ultimate solution.

• Learnability: some tools are known to be more user-
friendly than others, or having a particularly steep or
gentle learning curve. This can be supported by avail-
ability and reliability of documentation, by accessible
tutorials and books, as well as by other means of skill
transfer.

• Community can play a role just like in the case of
popularity above. Ongoing support and continuing
improvement weighs just as much here as having an
active group of core developers and helpful and inclu-
sive learning community.

• Risks, if known, can be weighed realistically and miti-
gated by planning for contingencies. This applies to fu-
ture plans for dealing with the tool becoming obsolete,
relying on older dependencies, keeping vulnerabilities
unresolved, etc.

Scenario 3: another usage scenario focuses on using the
available data, and a similar format, to improve artefact eval-
uations or paper reviewing process. In artefact evaluations,
reviewers can typically indicate what artefacts they would be
interested in reviewing based on a title and/or abstract [55].
However, these do not always provide a clear description
of the tool’s capabilities due to which a reviewer end up
having to review a tool outside of their field of expertise.
Using a format as in our data set would provide a more struc-
tured approach to describe the tool and can be helpful to
correctly identify what tools’ capabilities are to prevent such
situations. Moreover, if this format can be incorporated into



Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

artefact evaluations as a required part of the submission, this
provides a distributed approach that allows us to keep the
data more easily up to date.

Other key aspects that may prove useful in the context of
this scenario, are:

• Evaluation Criteria can be standardised and applied
consistently across different tools, improving the rigour
and effectiveness of the entire artefact evaluation pro-
cess. It might even be possible to devise a standardised
methodology to evaluate tools according to the PV-
level they find themselves on.

• Submission Guidelines are becoming clearer each
year, but perhaps clear positioning of a submitted tool
on a PV-level and clearly stating its input and output
formats, as well as filling out other fields that we ended
up using within ProVerB, could align tool authors’ and
evaluators’ expectations better.

• Tool-Agnostic Benchmarks can be based on data
sets that are specific to a PV-level or to a format or to
a combination of a tags/concepts. This will not only
improve replicability, but also encourage and signifi-
cantly simplify cross-tool comparable studies.

• Automation of Evaluation is the ultimate goal of
artefact assessment. While there is perhaps still place
for human evaluation as a part of it, just like there is a
place for it for peer reviewing papers, many steps such
as conformance to a declared format or the ability to
produce the same outputs as reported in the accom-
panying paper, can and should be automated to avoid
manual labour and human bias.

Scenario 4: for all three of the scenarios described above,
it can be useful to further extend our data set. This can focus
on either adding new entries to the current data set, or to
extend the information that is available for the current tools.
At the moment, in order to classify a new tool that is absent
from the data set, into an appropriate PV-level, one would
basically need to read this paper and combine their under-
standing of what the tool does with their understanding of
the what each PV-level stands for. It will be more appropri-
ate to design a specific decision tree with clear questions,
answers to which will unequivocally lead to one level or the
other. In a way, this is an “implementation detail” since it
might not require deeper understanding of the megamodel,
but it is also known that explicitly renarrating a megamodel
significantly increases its appreciation among domain ex-
perts and other users [93].
Pragmatically, contributing to the ProVerB repository is

straightforward: the data set is a GitHub repo which can be
forked and worked on, with a pull request asking to merge it
back to the original. In order to add a new tool, an external
contributor can create a new Markdown document from the
template — manually or with one of the available scripts (e.g.,
parsing a proceedings volume and suggesting a number of

tools found there heuristically). All the refinement features
described above, also remain accessible: for instance, it is suf-
ficient to add DOIs of papers and URIs of source code in order
for our GitHub workflow to pick them up and replace bare
links with paper titles and to add last activity information
from accessing the APIs.

Additionally, it is interesting to investigate the possibility
of combining our ontology with others, including e.g. the
runtime verification tool taxonomy by Falcone et al. [36]
and the repository structure proposed by Schlick et al. [77].
When extending the ontology, it is important to consider
how to incorporate grey literature. So far, we have only in-
cluded tools that were introduced in the academic literature.
However, David et al. [27] have shown that, for modelling
tools that support blended modelling, grey literature had
a higher ratio of tools introduced per literature source. In
the grey literature, they identified 68 tools in 1494 sources
whereas, in the academic literature, they identified 68 tools
in 4975 entries. It is unclear whether such a ratio would be
similar in the field of program verification, a field known
for its theoretical difficulties. Nonetheless, in all likelihood,
we are currently missing some tools that have only been
discussed in grey literature.

Acknowledgments
This project was partly funded by the Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek through the VICI
639.023.710 Mercedes project.

References
[1] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík,

Chih-Duo Hong, Richard Mayr, and Tomáš Vojnar. 2010. Simulation
Subsumption in Ramsey-Based Büchi Automata Universality and In-
clusion Testing. In Proceedings of the 22nd International Conference on
Computer Aided Verification (CAV), Tayssir Touili, Byron Cook, and
Paul Jackson (Eds.). Springer, 132–147. https://doi.org/10.1007/978-3-
642-14295-6_14

[2] Aws Albarghouthi, Loris D’Antoni, and Samuel Drews. 2017. Repairing
Decision-Making Programs Under Uncertainty. In Proceedings of the
29th International Conference on Computer Aided Verification (CAV),
Rupak Majumdar and Viktor Kunčak (Eds.). Springer, 181–200. https:
//doi.org/10.1007/978-3-319-63387-9_9

[3] Izzat Alsmadi and Iyad Alazzam. 2017. Software Attributes that Im-
pact Popularity. In Proceedings of the Eighth International Conference
on Information Technology (ICIT). 205–208. https://doi.org/10.1109/
ICITECH.2017.8080001

[4] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Verified
Compilation of Space-Efficient Reversible Circuits. In Proceedings of
the 28th International Conference on Computer Aided Verification (CAV),
Rupak Majumdar and Viktor Kunčak (Eds.). Springer, 3–21. https:
//doi.org/10.1007/978-3-319-63390-9_1

[5] Suzana Andova, Mark van den Brand, Luc J. P. Engelen, and Tom
Verhoeff. 2012. MDE Basics with a DSL Focus. In Advanced Lectures
of the 12th International School on Formal Methods for the Design of
Computer, Communication and Software Systems: Formal Methods for
Model-Driven Engineering (LNCS, Vol. 7320). Springer, 21–57. https:
//doi.org/10.1007/978-3-642-30982-3_2

https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1109/ICITECH.2017.8080001
https://doi.org/10.1109/ICITECH.2017.8080001
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1007/978-3-642-30982-3_2
https://doi.org/10.1007/978-3-642-30982-3_2


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

[6] Hannah Arndt, Christina Jansen, Joost-Pieter Katoen, Christoph Math-
eja, and Thomas Noll. 2018. Let this Graph Be Your Witness!. In
Proceedings of the 30th International Conference on Computer Aided
Verification (CAV), Hana Chockler and Georg Weissenbacher (Eds.).
Springer, 3–11. https://doi.org/10.1007/978-3-319-96142-2_1

[7] Pranav Ashok, Mathias Jackermeier, Jan Křetínský, Christoph Weinhu-
ber, MaximilianWeininger, and Mayank Yadav. 2021. dtControl 2.0: Ex-
plainable Strategy Representation via Decision Tree Learning Steered
by Experts. In Tools and Algorithms for the Construction and Analysis of
Systems, Jan Friso Groote and Kim Guldstrand Larsen (Eds.). Springer,
Cham, 326–345. https://doi.org/10.1007/978-3-030-72013-1_17

[8] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, StephanieWeirich, and Steve Zdancewic. 2005. Mechanized
Metatheory for the Masses: The PoplMark Challenge. In Proceedings of
the 18th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs) (LNCS, Vol. 3603), Joe Hurd and Thomas F. Melham
(Eds.). Springer, 50–65. https://doi.org/10.1007/11541868_4

[9] Christel Baier, Norine Coenen, Bernd Finkbeiner, Florian Funke, Simon
Jantsch, and Julian Siber. 2021. Causality-Based Game Solving. In
Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino
(Eds.). Springer, Cham, 894–917. https://doi.org/10.1007/978-3-030-
81685-8_42

[10] Maria Teresa Baldassarre, Neil Ernst, Ben Hermann, Tim Menzies, and
Rahul Yedida. 2023. (Re)Use of Research Results (Is Rampant). Commun.
ACM 66, 2 (jan 2023), 75–81. https://doi.org/10.1145/3554976

[11] Gianluca Barbon, Vincent Leroy, and Gwen Salaün. 2019. Debugging
of Behavioural Models with CLEAR. In Tools and Algorithms for the
Construction and Analysis of Systems, Tomáš Vojnar and Lijun Zhang
(Eds.). Springer, 386–392. https://doi.org/10.1007/978-3-030-17462-
0_26

[12] Howard Barringer and Klaus Havelund. 2011. TraceContract: A
Scala DSL for Trace Analysis. In Proceedings of the 17th International
Symposium of Formal Methods (LNCS, Vol. 6664). Springer, 57–72.
https://doi.org/10.1007/978-3-642-21437-0_7

[13] Matthew S. Bauer, Rohit Chadha, A. Prasad Sistla, and Mahesh
Viswanathan. 2018. Model Checking Indistinguishability of Ran-
domized Security Protocols. In Computer Aided Verification (CAV),
Hana Chockler and Georg Weissenbacher (Eds.). Springer, 117–135.
https://doi.org/10.1007/978-3-319-96142-2_10

[14] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. 1996. UPPAAL: A Tool Suite for Automatic Verification
of Real-Time Systems. In Hybrid Systems III, Rajeev Alur, Thomas A.
Henzinger, and Eduardo D. Sontag (Eds.). Springer, 232–243. https:
//doi.org/10.1007/BFb0020949

[15] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Constructions.
Springer Berlin, Heidelberg, London.

[16] Dirk Beyer. 2022. Progress on Software Verification: SV-COMP 2022.
In Tools and Algorithms for the Construction and Analysis of Systems,
Dana Fisman and Grigore Rosu (Eds.). Springer, Cham, 375–402. https:
//doi.org/10.1007/978-3-030-99527-0_20

[17] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for
Configurable Software Verification. In Computer Aided Verification,
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 184–190.
https://doi.org/10.1007/978-3-642-22110-1_16

[18] Juan Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. 2006. The
Verified Software Repository: A Step Towards the Verifying Compiler.
Formal Aspects of Computing 18, 2 (2006), 143–151. https://doi.org/10.
1007/s00165-005-0079-4

[19] Jean-Paul Bodeveix, Mamoun Filali, Julia Lawall, and Gilles Muller.
2005. Formal MethodsMeet Domain Specific Languages. In Proceedings
of the Fifth International Conference on Integrated Formal Methods (iFM)
(LNCS, Vol. 3771), Judi Romijn, Graeme Smith, and Jaco van de Pol

(Eds.). Springer, 187–206. https://doi.org/10.1007/11589976_12
[20] Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliv-

eras, Enric Rodríguez-Carbonell, and Albert Rubio. 2017. Proving
Termination Through Conditional Termination. In Tools and Algo-
rithms for the Construction and Analysis of Systems, Axel Legay and
Tiziana Margaria (Eds.). Springer, 99–117. https://doi.org/10.1007/978-
3-662-54577-5_6

[21] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Mon-
mege. 2017. MightyL: A Compositional Translation from MITL to
Timed Automata. In Computer Aided Verification, RupakMajumdar and
Viktor Kunčak (Eds.). Springer, 421–440. https://doi.org/10.1007/978-
3-319-63387-9_21

[22] Guy H. Broadfoot and Philippa J. Broadfoot. 2003. Academia and
Industry Meet: Some Experiences of Formal Methods in Practice. In
Proceedings of the 10th Asia-Pacific Software Engineering Conference
(APSEC). IEEE Computer Society, 49. https://doi.org/10.1109/APSEC.
2003.1254357

[23] Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso
Pierantonio, Matthias Tichy, Massimo Tisi, Andreas Wortmann, and
Vadim Zaytsev. 2021. What is the Future of Modelling? IEEE Soft-
ware Insights (IEEE Software) 38 (2021), 119–127. Issue 2. https:
//doi.org/10.1109/MS.2020.3041522

[24] Géraud Canet, Pascal Cuoq, and BenjaminMonate. 2009. A Value Anal-
ysis for C Programs. In Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Al-
berta, Canada, September 20-21, 2009. IEEE Computer Society, 123–124.
https://doi.org/10.1109/SCAM.2009.22

[25] Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi, and Zhibin
Yang. 2016. Parametric Runtime Verification of C Programs. In Tools
and Algorithms for the Construction and Analysis of Systems, Marsha
Chechik and Jean-François Raskin (Eds.). Springer, 299–315. https:
//doi.org/10.1007/978-3-662-49674-9_17

[26] Edilson A. Corrêa Jr., Filipi N. Silva, Luciano da F. Costa, and
Diego R. Amancio. 2017. Patterns of authors contribution in sci-
entific manuscripts. Journal of Informetrics 11, 2 (2017), 498–510.
https://doi.org/10.1016/j.joi.2017.03.003

[27] Istvan David, Malvina Latifaj, Jakob Pietron, Weixing Zhang, Federico
Ciccozzi, Ivano Malavolta, Alexander Raschke, Jan-Philipp Steghöfer,
and Regina Hebig. 2023. Blended modeling in commercial and open-
source model-driven software engineering tools: A systematic study.
Softw. Syst. Model. 22, 1 (2023), 415–447. https://doi.org/10.1007/s10270-
022-01010-3

[28] Jennifer A. Davis, Matthew A. Clark, Darren D. Cofer, Aaron Fifarek,
Jacob Hinchman, Jonathan A. Hoffman, Brian W. Hulbert, Steven P.
Miller, and Lucas G. Wagner. 2013. Study on the Barriers to the In-
dustrial Adoption of Formal Methods. In Proceedings of the 18th Inter-
national Workshop on Formal Methods for Industrial Critical Systems
(FMICS) (LNCS, Vol. 8187), Charles Pecheur and Michael Dierkes (Eds.).
Springer, 63–77. https://doi.org/10.1007/978-3-642-41010-9_5

[29] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem
Prover and Programming Language. In Proceddings of the 28th Interna-
tional Conference on Automated Deduction (CADE), André Platzer and
Geoff Sutcliffe (Eds.). Springer, 625–635. https://doi.org/10.1007/978-
3-030-79876-5_37

[30] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An
Efficient SMT Solver. In Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (LNCS, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.).
Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[31] Adel Djoudi and Sébastien Bardin. 2015. BINSEC: Binary CodeAnalysis
with Low-Level Regions. In Proceedings of the 21st International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS) (LNCS, Vol. 9035), Christel Baier and Cesare Tinelli (Eds.).
Springer, 212–217. https://doi.org/10.1007/978-3-662-46681-0_17

https://doi.org/10.1007/978-3-319-96142-2_1
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1145/3554976
https://doi.org/10.1007/978-3-030-17462-0_26
https://doi.org/10.1007/978-3-030-17462-0_26
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-319-96142-2_10
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s00165-005-0079-4
https://doi.org/10.1007/s00165-005-0079-4
https://doi.org/10.1007/11589976_12
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1109/APSEC.2003.1254357
https://doi.org/10.1109/APSEC.2003.1254357
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1109/SCAM.2009.22
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1016/j.joi.2017.03.003
https://doi.org/10.1007/s10270-022-01010-3
https://doi.org/10.1007/s10270-022-01010-3
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-46681-0_17


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

[32] Jérôme Dohrau, Alexander J. Summers, Caterina Urban, Severin
Münger, and Peter Müller. 2018. Permission Inference for Array Pro-
grams. In Computer Aided Verification, Hana Chockler and Georg
Weissenbacher (Eds.). Springer, 55–74. https://doi.org/10.1007/978-3-
319-96142-2_7

[33] Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2019. Efficient
Synthesis with Probabilistic Constraints. In Proceedings of the 30th
International Conference on Computer Aided Verification (CAV), Isil
Dillig and Serdar Tasiran (Eds.). Springer, 278–296. https://doi.org/10.
1007/978-3-030-25540-4_15

[34] Gidon Ernst and Toby Murray. 2019. SecCSL: Security Concurrent
Separation Logic. In Computer Aided Verification, Isil Dillig and Serdar
Tasiran (Eds.). Springer, 208–230. https://doi.org/10.1007/978-3-030-
25543-5_13

[35] Hugues Evrard. 2016. DLC: Compiling a Concurrent System Formal
Specification to a Distributed Implementation. In Tools and Algorithms
for the Construction and Analysis of Systems, Marsha Chechik and Jean-
François Raskin (Eds.). Springer, 553–559. https://doi.org/10.1007/978-
3-662-49674-9_34

[36] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. 2021. A
Taxonomy for Classifying Runtime Verification Tools. International
Journal on Software Tools for Technology Transfer 23, 2 (2021), 255–284.
https://doi.org/10.1007/s10009-021-00609-z

[37] Alessio Ferrari, Franco Mazzanti, Davide Basile, Maurice H. ter Beek,
and Alessandro Fantechi. 2020. Comparing Formal Tools for System
Design: A Judgment Study. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering (ICSE ’20). Association
for Computing Machinery, 62–74. https://doi.org/10.1145/3377811.
3380373

[38] Michael J. Foley and David L. Kochalko. 2012. Open Researcher
and Contributor Identifier, A Contemporary Stanley. https://docs.lib.
purdue.edu/cgi/viewcontent.cgi?article=1133&context=charleston.

[39] Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages? MartinFowler.com. https://martinfowler.
com/articles/language\Workbench.html

[40] Georg Frey and Lothar Litz. 2000. Formal Methods in PLC Pro-
gramming. In Proceedings of the International Conference on Systems,
Man & Cybernetics: “Cybernetics Evolving to Systems, Humans, Orga-
nizations, and their Complex Interactions”. IEEE, 2431–2436. https:
//doi.org/10.1109/ICSMC.2000.884356

[41] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The
Knowledge Complexity of Interactive Proof-Systems. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Comput-
ing (SToC) (STOC). Association for Computing Machinery, 291–304.
https://doi.org/10.1145/22145.22178

[42] Kiran Gopinathan and Ilya Sergey. 2020. Certifying Certainty and Un-
certainty in Approximate Membership Query Structures. In Computer
Aided Verification (CAV), Shuvendu K. Lahiri and Chao Wang (Eds.).
Springer, 279–303. https://doi.org/10.1007/978-3-030-53291-8_16

[43] Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg, and Zhong
Shao. 2019. Integrating Formal Schedulability Analysis into a Verified
OS Kernel. In Computer Aided Verification (CAV), Isil Dillig and Serdar
Tasiran (Eds.). Springer, 496–514. https://doi.org/10.1007/978-3-030-
25543-5_28

[44] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann,
and Enno Ruijters. 2019. The Quantitative Verification Benchmark
Set. In Proceedings of the 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) (LNCS,
Vol. 11427), Tomás Vojnar and Lijun Zhang (Eds.). Springer, 344–350.
https://doi.org/10.1007/978-3-030-17462-0_20

[45] Dominik Harz and William J. Knottenbelt. 2018. Towards Safer Smart
Contracts: A Survey of Languages and Verification Methods. CoRR
(2018), 20 pages. arXiv:1809.09805

[46] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. 2018.
MaxSMT-Based Type Inference for Python 3. In Computer Aided Ver-
ification, Hana Chockler and Georg Weissenbacher (Eds.). Springer,
12–19. https://doi.org/10.1007/978-3-319-96142-2_2

[47] Ben Hermann, Stefan Winter, and Janet Siegmund. 2020. Commu-
nity Expectations for Research Artifacts and Evaluation Processes.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association
for Computing Machinery, New York, NY, USA, 469–480. https:
//doi.org/10.1145/3368089.3409767

[48] Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz, Jiří
Šimáček, and Tomáš Vojnar. 2017. Forester: From Heap Shapes to
Automata Predicates. In Tools and Algorithms for the Construction and
Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer,
365–369. https://doi.org/10.1007/978-3-662-54580-5_24

[49] John Edward Hutchinson, Jon Whittle, and Mark Rouncefield. 2014.
Model-Driven Engineering Practices in Industry: Social, Organiza-
tional and Managerial Factors that Lead to Success or Failure. Science
of Computer Programming 89 (2014), 144–161. https://doi.org/10.1016/
j.scico.2013.03.017

[50] Peng Jin, Jiaxu Tian, Dapeng Zhi, Xuejun Wen, and Min Zhang. 2022.
Trainify: A CEGAR-Driven Training and Verification Framework
for Safe Deep Reinforcement Learning. In Computer Aided Verification,
Sharon Shoham and Yakir Vizel (Eds.). Springer, Cham, 193–218.

[51] Sung-Shik T. Q. Jongmans and Farhad Arbab. 2016. PrDK: Protocol
Programming with Automata. In Tools and Algorithms for the Con-
struction and Analysis of Systems, Marsha Chechik and Jean-François
Raskin (Eds.). Springer, 547–552. https://doi.org/10.1007/978-3-662-
49674-9_33

[52] René Klösch and Wolfgang Eixelsberger. 1999. Challenges and Expe-
riences in Managing Major Software Evolution Endeavours Such as
Euro Conversion or Y2000 Compliance. In Proceedings of the 15th Inter-
national Conference on Software Maintenance (ICSM). IEEE Computer
Society, 161–166. https://doi.org/10.1109/ICSM.1999.792600

[53] Martin Kölbl, Stefan Leue, and Thomas Wies. 2020. TarTar: A Timed
Automata Repair Tool. In Computer Aided Verification, Shuvendu K.
Lahiri and Chao Wang (Eds.). Springer, 529–540. https://doi.org/10.
1007/978-3-030-53288-8_25

[54] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Prov-
ing and Vampire. In Computer Aided Verification, Natasha Sharygina
and Helmut Veith (Eds.). Springer, 1–35. https://doi.org/10.1007/978-
3-642-39799-8_1

[55] Shriram Krishnamurthi. 2013. Artifact evaluation for software confer-
ences. ACM SIGSOFT Software Engineering Notes 38, 3 (2013), 7–10.

[56] Raula Gaikovina Kula, Coen De Roover, Daniel M. German, Takashi
Ishio, and Katsuro Inoue. 2018. A Generalized Model for Visualiz-
ing Library Popularity, Adoption, and Diffusion within a Software
Ecosystem. In Proceedings of the 25th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 288–299.
https://doi.org/10.1109/SANER.2018.8330217

[57] Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Transac-
tions on Programming Languages and Systems (ToPLaS) 16, 3 (1994),
872–923. https://doi.org/10.1145/177492.177726

[58] Sophie Lathouwers and Vadim Zaytsev. 2022. Modelling Program
Verification Tools for Software Engineers. In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and
Systems (Montreal, Quebec, Canada) (MODELS ’22). Association for
Computing Machinery, New York, NY, USA, 98–108. https://doi.org/
10.1145/3550355.3552426

[59] Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier. 2019. Satisfiability
Checking for Mission-Time LTL. In Computer Aided Verification, Isil
Dillig and Serdar Tasiran (Eds.). Springer, 3–22. https://doi.org/10.
1007/978-3-030-25543-5_1

https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-030-25540-4_15
https://doi.org/10.1007/978-3-030-25540-4_15
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-662-49674-9_34
https://doi.org/10.1007/978-3-662-49674-9_34
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1145/3377811.3380373
https://doi.org/10.1145/3377811.3380373
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1133&context=charleston
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1133&context=charleston
https://martinfowler.com/articles/language\Workbench.html
https://martinfowler.com/articles/language\Workbench.html
https://doi.org/10.1109/ICSMC.2000.884356
https://doi.org/10.1109/ICSMC.2000.884356
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-030-25543-5_28
https://doi.org/10.1007/978-3-030-25543-5_28
https://doi.org/10.1007/978-3-030-17462-0_20
https://arxiv.org/abs/1809.09805
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1145/3368089.3409767
https://doi.org/10.1145/3368089.3409767
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1007/978-3-662-49674-9_33
https://doi.org/10.1007/978-3-662-49674-9_33
https://doi.org/10.1109/ICSM.1999.792600
https://doi.org/10.1007/978-3-030-53288-8_25
https://doi.org/10.1007/978-3-030-53288-8_25
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1109/SANER.2018.8330217
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1007/978-3-030-25543-5_1
https://doi.org/10.1007/978-3-030-25543-5_1


SoSyM, MoDELS 2022, Special Issue Sophie Lathouwers, Yujie Liu, and Vadim Zaytsev

[60] MakaiMann, AmaleeWilson, Yoni Zohar, Lindsey Stuntz, Ahmed Irfan,
Kristopher Brown, Caleb Donovick, Allison Guman, Cesare Tinelli,
and Clark W. Barrett. 2021. Smt-Switch: A Solver-Agnostic C++ API
for SMT Solving. In SAT 2021 (LNCS, Vol. 12831), Chu-Min Li and Felip
Manyà (Eds.). Springer, 377–386. https://doi.org/10.1007/978-3-030-
80223-3_26

[61] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk
Stroobandt. 2012. An overview of today’s high-level synthesis tools.
Des. Autom. Embed. Syst. 16, 3 (2012), 31–51. https://doi.org/10.1007/
s10617-012-9096-8

[62] Jan Mrázek, Petr Bauch, Henrich Lauko, and Jiří Barnat. 2016. SymDI-
VINE: Tool for Control-Explicit Data-Symbolic State Space Exploration.
In Model Checking Software, Dragan Bošnački and Anton Wijs (Eds.).
Springer, 208–213. https://doi.org/10.1007/978-3-319-32582-8_14

[63] Thakur Neupane, Chris J. Myers, Curtis Madsen, Hao Zheng, and Zhen
Zhang. 2019. STAMINA: STochastic Approximate Model-Checker for
INfinite-State Analysis. In Computer Aided Verification, Isil Dillig and
Serdar Tasiran (Eds.). Springer, 540–549. https://doi.org/10.1007/978-
3-030-25540-4_31

[64] Aina Niemetz, Mathias Preiner, and Clark Barrett. 2022. Murxla:
A Modular and Highly Extensible API Fuzzer for SMT Solvers. In
Computer Aided Verification, Sharon Shoham and Yakir Vizel (Eds.).
Springer, Cham, 92–106.

[65] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Chap-
ter 5, The Rules of the Game. Springer, 67–104. https://doi.org/10.1007/
3-540-45949-9_5

[66] Arif Nurwidyantoro, Mojtaba Shahin, Michel Chaudron, Waqar Hus-
sain, Harsha Perera, Rifat Ara Shams, and JonWhittle. 2021. Towards a
Human Values Dashboard for Software Development: An Exploratory
Study. In Proceedings of the 15th International Symposium on Empirical
Software Engineering and Measurement (ESEM), Filippo Lanubile, Mar-
cos Kalinowski, and Maria Teresa Baldassarre (Eds.). ACM, 23:1–23:12.
https://doi.org/10.1145/3475716.3475770

[67] Arif Nurwidyantoro, Mojtaba Shahin, Michel R. V. Chaudron, Waqar
Hussain, Rifat Ara Shams, Harsha Perera, Gillian Oliver, and Jon Whit-
tle. 2022. Human Values in Software Development Artefacts: A Case
Study on Issue Discussions in Three Android Applications. Informa-
tion & Software Technology 141 (2022), 106731. https://doi.org/10.1016/
j.infsof.2021.106731

[68] Andres Ojamaa, Hele-Mai Haav, and Jaan Penjam. 2015. Semi-
automated Generation of DSL Meta Models from Formal Domain
Ontologies. In Model and Data Engineering, Ladjel Bellatreche and
Yannis Manolopoulos (Eds.). Springer, Cham, 3–15.

[69] T. Parr. 2013. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf.
[70] Quentin Peyras, Jean-Paul Bodeveix, Julien Brunel, and David

Chemouil. 2021. Sound Verification Procedures for Temporal Proper-
ties of Infinite-State Systems. In Computer Aided Verification, Alexan-
dra Silva and K. Rustan M. Leino (Eds.). Springer, 337–360. https:
//doi.org/10.1007/978-3-030-81688-9_16

[71] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society, 46–57. https://doi.org/10.1109/SFCS.1977.32

[72] Ratish J. Punnoose, Robert C. Armstrong, Matthew H. Wong, and
Mayo Jackson. 2014. Survey of Existing Tools for Formal Verification.
Technical Report. USDOE National Nuclear Security Administration
(NNSA). https://doi.org/10.2172/1166644

[73] Cedric Richter and Heike Wehrheim. 2019. PeSCo: Predicting Se-
quential Combinations of Verifiers. In Tools and Algorithms for the
Construction and Analysis of Systems, Dirk Beyer, Marieke Huis-
man, Fabrice Kordon, and Bernhard Steffen (Eds.). Springer, 229–233.
https://doi.org/10.1007/978-3-030-17502-3_19

[74] Bat-Chen Rothenberg and Orna Grumberg. 2020. Must Fault Lo-
calization for Program Repair. In Computer Aided Verification, Shu-
vendu K. Lahiri and Chao Wang (Eds.). Springer, 658–680. https:

//doi.org/10.1007/978-3-030-53291-8_33
[75] Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh,

Andrei Dan, and Martin Vechev. 2021. Scalable Polyhedral Verification
of Recurrent Neural Networks. In Computer Aided Verification (CAV),
Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 225–248.
https://doi.org/10.1007/978-3-030-81685-8_10

[76] Hitesh Sajnani, Vaibhav Saini, Joel Ossher, and Cristina V. Lopes. 2014.
Is Popularity aMeasure of Quality? AnAnalysis ofMavenComponents.
In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution. 231–240. https://doi.org/10.1109/ICSME.
2014.45

[77] Rupert Schlick, Michael Felderer, István Majzik, Roberto Nardone,
Alexander Raschke, Colin F. Snook, and Valeria Vittorini. 2018. A Pro-
posal of an Example and Experiments Repository to Foster Industrial
Adoption of Formal Methods. In Proceedings of the Eighth International
Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA) (LNCS, Vol. LNCS 11247), Tiziana Margaria and
Bernhard Steffen (Eds.). Springer, 249–272. https://doi.org/10.1007/978-
3-030-03427-6_20

[78] Abdelkader Magdy Shaaban, Christoph Schmittner, Thomas Gruber,
A. Baith Mohamed, Gerald Quirchmayr, and Erich Schikuta. 2019.
Ontology-Based Model for Automotive Security Verification and Vali-
dation. In Proceedings of the 21st International Conference on Informa-
tion Integration and Web-based Applications & Services (iiWAS). ACM,
73–82. https://doi.org/10.1145/3366030.3366070

[79] Aleksey Shipilëv. 2013. Java Concurrency Stress (jcstress). https:
//github.com/openjdk/jcstress/.

[80] Miltiadis Siavvas, Marija Jankovic, Dionysios Kehagias, and Dimitrios
Tzovaras. 2018. Is Popularity an Indicator of Software Security?. In
Proceedings if the International Conference on Intelligent Systems (IS).
692–697. https://doi.org/10.1109/IS.2018.8710484

[81] Herbert Stachowiak. 1973. Allgemeine Modelltheorie. Springer.
[82] Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd Fischer,

Salvatore La Torre, and Gennaro Parlato. 2016. MU-CSeq 0.4: Indi-
vidual Memory Location Unwindings. In Tools and Algorithms for
the Construction and Analysis of Systems, Marsha Chechik and Jean-
François Raskin (Eds.). Springer, 938–941. https://doi.org/10.1007/978-
3-662-49674-9_65

[83] Federico Tomassetti and Vadim Zaytsev. 2020. Reflections on the
Lack of Adoption of Domain Specific Languages. In STAF Work-
shop Proceedings (STAF) (CEUR Workshop Proceedings, Vol. 2707), Loli
Burgueño and Lars Michael Kristensen (Eds.). CEUR-WS.org, 85–94.
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf

[84] Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller,
and Corina S. Păsăreanu. 2021. NNrepair: Constraint-Based Repair of
Neural Network Classifiers. In Computer Aided Verification, Alexandra
Silva and K. Rustan M. Leino (Eds.). Springer, 3–25. https://doi.org/10.
1007/978-3-030-81685-8_1

[85] Tom van Dijk. 2018. Oink: An Implementation and Evaluation of
Modern Parity Game Solvers. In Proceedings of the 24th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), Dirk Beyer and Marieke Huisman (Eds.), Vol. 10805.
Springer, 291–308. https://doi.org/10.1007/978-3-319-89960-2_16

[86] Jon Whittle, Maria Angela Ferrario, Will Simm, and Waqar Hussain.
2021. A Case for Human Values in Software Engineering. IEEE Software
38, 1 (2021), 106–113. https://doi.org/10.1109/MS.2019.2956701

[87] Freek Wiedijk. 2003. Comparing Mathematical Provers. In Proceed-
ings of the Second International Conference on Mathematical Knowledge
Management (MKM) (LNCS, Vol. 2594), Andrea Asperti, Bruno Buch-
berger, and James H. Davenport (Eds.). Springer, 188–202. https:
//doi.org/10.1007/3-540-36469-2_15

[88] Avi Wigderson. 2019. Mathematics and Computation: Ideas Revolu-
tionizing Technology and Science. Princeton University Press. https:
//www.math.ias.edu/avi/book

https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/s10617-012-9096-8
https://doi.org/10.1007/s10617-012-9096-8
https://doi.org/10.1007/978-3-319-32582-8_14
https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1145/3475716.3475770
https://doi.org/10.1016/j.infsof.2021.106731
https://doi.org/10.1016/j.infsof.2021.106731
https://doi.org/10.1007/978-3-030-81688-9_16
https://doi.org/10.1007/978-3-030-81688-9_16
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.2172/1166644
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1109/ICSME.2014.45
https://doi.org/10.1109/ICSME.2014.45
https://doi.org/10.1007/978-3-030-03427-6_20
https://doi.org/10.1007/978-3-030-03427-6_20
https://doi.org/10.1145/3366030.3366070
https://github.com/openjdk/jcstress/
https://github.com/openjdk/jcstress/
https://doi.org/10.1109/IS.2018.8710484
https://doi.org/10.1007/978-3-662-49674-9_65
https://doi.org/10.1007/978-3-662-49674-9_65
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
https://doi.org/10.1007/978-3-030-81685-8_1
https://doi.org/10.1007/978-3-030-81685-8_1
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1109/MS.2019.2956701
https://doi.org/10.1007/3-540-36469-2_15
https://doi.org/10.1007/3-540-36469-2_15
https://www.math.ias.edu/avi/book
https://www.math.ias.edu/avi/book


Extract, Model, Refine SoSyM, MoDELS 2022, Special Issue

[89] Stefan Winter, Christopher S. Timperley, Ben Hermann, Jürgen Cito,
Jonathan Bell, Michael Hilton, and Dirk Beyer. 2022. A Retrospective
Study of One Decade of Artifact Evaluations. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, 145–156. https://doi.org/10.1145/3540250.3549172

[90] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
João C. Pereira, and Peter Müller. 2021. Gobra: Modular Specifica-
tion and Verification of Go Programs. In Proceedings of the 33rd In-
ternational Conference on Computer Aided Verification (CAV) (LNCS,
Vol. 12759), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer,
367–379. https://doi.org/10.1007/978-3-030-81685-8_17

[91] JimWoodcock, Peter Gorm Larsen, Juan Bicarregui, and John S. Fitzger-
ald. 2009. Formal Methods: Practice and Experience. Comput. Surveys
41, 4 (2009), 19:1–19:36. https://doi.org/10.1145/1592434.1592436

[92] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2008.
SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of
Artificial Intelligence Research 32 (2008), 565–606. https://doi.org/10.
1613/jair.2490

[93] Vadim Zaytsev. 2012. Renarrating Linguistic Architecture: A Case
Study. In Post-proceedings of the Sixth International Workshop on Multi-
Paradigm Modeling (MPM 2012), Cécile Hardebolle, Eugene Syriani,
Jonathan Sprinkle, and Tamás Mészáros (Eds.). ACM Digital Library,
61–66. https://doi.org/10.1145/2508443.2508454

https://doi.org/10.1145/3540250.3549172
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490
https://doi.org/10.1145/2508443.2508454

	Abstract
	1 Introduction
	2 Related Work
	3 The Megamodel of PV-Levels
	4 Data set of verification tools
	4.1 Methodology
	4.2 Data enrichment
	4.3 Data set statistics

	5 Trends in PV levels
	5.1 PV0: Potential tools
	5.2 PV1: Essential tools
	5.3 PV2: Creational tools
	5.4 PV3: Property checking tools
	5.5 PV4: Specification checking tools
	5.6 PV5: Fully controlled verification tools
	5.7 PV6: Proving tools

	6 Conclusion & Roadmap
	6.1 Threats to validity
	6.2 Roadmap for the future

	Acknowledgments
	References

