
Extending Refactoring Detection to Kotlin:
A Dataset and Comparative Study

Iman Hemati Moghadam
Formal Methods and Tools,

University of Twente, The Netherlands
Email: iman.hematimoghadam@utwente.nl

Mohammad Mehdi Afkhami
Parsa Kamalipour

Vali-e-Asr University of Rafsanjan, Iran

Vadim Zaytsev
Formal Methods and Tools,

University of Twente, The Netherlands
Email: vadim@grammarware.net

NB: This PDF is the authors’ version of the paper. It contains a fully hyperlinked bibliography and might have
other subtle differences, but the core content is guaranteed to be the same as published by IEEE in the Proceedings
of SANER 2024 at https://doi.org/10.1109/SANER60148.2024.00034. You have been warned.

Abstract—Refactoring, as one of the best practices in software
development, has been also the center of attention of much
research. Particularly, a plethora of studies has been performed to
understand the impact of refactorings on different dimensions of
software development including software quality, program com-
prehension, fault-proneness, and non-functional requirements,
among others. Among the employed approaches, analysing refac-
torings applied previously in real-world scenarios has been used
by many researchers and proves to be a valuable way to delve
deeper into the subject. The results of these research studies not
only enhance our understanding of the advantages and potential
drawbacks of refactorings but also guide us in developing more
efficient automated refactoring tools based on how developers
actually use refactorings in practice. However, the majority of
studies in this regard have focused on refactorings applied in Java
programs, and the other programming languages have received
significantly less attention. The primary obstacle can be the lack
of automated tool support for identifying refactorings applied in
programs implemented in other languages. In reality, the lack
of a comprehensive dataset of real-world applied refactorings
makes it challenging for researchers to conduct comprehensive
studies in programming languages other than Java.

To mitigate this limitation, we extended a previously available
refactoring detection tool, REFDETECT, to be able to identify
refactorings applied in Kotlin programs. We conducted an
experiment on 180 commits of 9 Kotlin repositories sourced
on GitHub and compared the performance of our tool with an
existing Kotlin refactoring detection tool called KOTLINRMINER.
We found that our tool has a precision of 92% and a recall
of 83%, achieving an average F-score of 86% which is 13%
better than the one achieved by KOTLINRMINER. We also
provide the resulting dataset containing 1,485 true refactoring
instances validated by one up to three refactoring experts publicly
accessible. By releasing this initial dataset, we aim to address the
existing gap in the availability of Kotlin refactoring datasets.

Index Terms—Refactoring, Automated refactoring mining,
Kotlin, dataset

I. INTRODUCTION

Refactoring, the process of altering a program’s code with-
out affecting its behaviour [10], is considered one of the
best practices in software development. However, refactoring
is not without its challenges [15]. For example, while it is
demonstrated that refactoring has a positive impact on software
quality for instance by minimising technical debt effects [19],

it may negatively affect the quality of the software if not
applied carefully. This includes, for instance, introducing new
faults [8], violating security best practices [13] and even
introducing new bad smells [26] which contradict the primary
objective of refactoring to improve program quality [10]. The
reluctance of developers to use refactoring tools and their
preference to manually apply refactorings may be a probable
cause for these issues [23]. In any case, a comprehensive
understanding of refactorings, applied in real-world scenarios,
will help to emphasise the benefits of refactorings as well as
better know the issues with the current practice of refactoring
and grasp the underlying reasons behind them. This knowledge
may also help to effectively address the issues, for instance, by
developing enhanced refactoring recommendation tools [4].

To acquire this knowledge, it is crucial to have access to
comprehensive datasets of refactorings applied in real-world
scenarios and across various programming paradigms and
frameworks. The existing version-controlled repositories such
as GitHub provide convenient methods to know about changes
applied in projects [21]. However, it is still challenging to
create a dataset of applied refactorings even with this valuable
information [3]. To highlight some challenges in designing
tools capable of mining applied refactorings, some key points
are reviewed. Firstly, refactorings are usually interleaved with
other non-refactoring changes [20], and this overlapping makes
the refactoring mining process significantly challenging even
for the state-of-the-art refactoring mining tools [12], [22], [27].
In addition, while analysing the commit messages in version-
controlled repositories may facilitate this process [17], recent
studies show that developers rarely document their refactoring
operations [2], [16], [20]. Furthermore, the developer may use
different patterns to document the applied refactorings [1],
[16], which increases the complexity of the process. In
addition to that, each programming paradigm has its own
characteristics, and this makes it significantly difficult, if not
impossible, to find a one-size-fits-all solution for identifying
applied refactorings in different programming paradigms.

However, with the existence of these difficulties, impres-
sive performance has been achieved to date in identifying

mailto:iman.hematimoghadam@utwente.nl
mailto:vadim@grammarware.net
https://doi.org/10.1109/SANER60148.2024.00034


refactorings applied in programs implemented in Java [12],
[22], [24], [27]. Evidence of this success is the existence
of a dataset containing more than two million refactorings
from 11,149 real-world Java programs [4] mined with the
help of the current state-of-the-art refactoring detection tool,
RefactoringMiner [24]. However, Java is not the only program-
ming language employed in the current software development
practice. Therefore, it is still essential to facilitate the creation
of such datasets for other programming languages.

Recently, several studies have focused on bridging this
gap by developing tools capable of identifying refactorings
in programs implemented by other programming languages.
This includes programming languages such as Python [5],
[9], Kotlin [18], Go [7], C++ [12] and JavaScript [22]. There
are two particular similarities among these recent studies.
Initially, the introduced approaches are all constructed on the
basis of the current state-of-the-art refactoring detection tools
in Java, namely RefactoringMiner [24], RefDetect [12] and
RefDiff [22]. In addition to that, the introduced tools lack
a comprehensive evaluation; for example, in languages like
Kotlin [18], C++ [12] and JavaScript [22] and even in cases
where comprehensive evaluations are conducted, as seen in
Python [5], [9] and Go [7], only a minor portion of identified
refactorings are manually validated by experts. It is worth
noting that while manual validation of identified refactorings
is necessary, especially in the absence of comparative tools, it
is a time-consuming and error-prone task, as reported by the
prior researchers [12], [22], [25], [27]. For instance, it took
Tsantalis et al. [25] a total of 9 person-months to manually
validate approximately 4,000 refactorings. However, despite
its difficulties, it is a necessary step in assessing the accuracy
of the proposed tool and providing an accurate dataset serves
as a foundational resource for other related research activities.

Consequently, while significant progress in the field of
refactoring mining has been made to date, there still exists
a considerable untapped potential, especially in providing
datasets including refactoring instances in diverse program-
ming languages. To advance in this direction, we provide an
extension to REFDETECT [12], a state-of-the-art refactoring
detection tool in Java, in order to identify refactorings applied
in programs implemented by Kotlin. We chose Kotlin as
it is one of the most widely used programming languages,
especially in the Android development community.1 Further-
more, while Java and Kotlin share similarities, they also have
differences, and in order to better understand the landscape
of refactorings in these languages, a comprehensive under-
standing of refactorings applied in programs written in these
programming languages is necessary.

To assess the effectiveness of our tool extension, we con-
ducted a performance comparison with KOTLINRMINER [18],
which was the only tool capable of detecting refactorings
in Kotlin programs. It is worth mentioning that the original
paper on KOTLINRMINER only evaluated the tool based on

1Kotlin is recommended by Google as an official language for building
Android applications, and is officially supported by JetBrains. Kotlin is well-
supported in major IDEs such as IntelliJ IDEA, Eclipse and Android Studio.

its execution time and its accuracy in terms of precision and
recall was not evaluated [18]. In experiments, we applied
both REFDETECT and KOTLINRMINER to 180 commits of 9
Kotlin repositories containing nearly 1,500 true refactoring in-
stances, where REFDETECT demonstrated an F-score approx-
imately 13% better than that achieved by KOTLINRMINER
(86% vs. 73%). In summary, our contributions are as follows:

1) An extension to REFDETECT for the identification of
refactorings applied in Kotlin programs. The implemented
tool is evaluated and compared for its accuracy with
KOTLINRMINER.

2) The introduction of an initial publicly available
dataset [11], comprising 1,485 manually validated refac-
torings found in 180 commits across 9 open-source Kotlin
repositories.

The remainder of this paper is organised as follows: we first
provide a review of related work in Section II, and discuss our
approach to automatic detection of the refactorings in Kotlin
programs in Section III. We present experiment results and
threats to the validity of our study in Section IV, and finally
conclude with future work in Section V.

II. RELATED WORK

Among the existing tools, RefactoringMiner, proposed by
Tsantalis et al. [24], exhibited the highest precision in identi-
fying refactorings in Java programs. RefactoringMiner’s supe-
riority arises from its unique characteristic of not relying on
any similarity thresholds for matching program entities (e.g.,
classes, methods, etc.). Indeed, Tsantalis et al. employed a
replacement technique and used some predefined heuristics to
match entities without requiring user-specified thresholds [24].

Recently, researchers have adapted RefactoringMiner to
identify refactorings applied in programs implemented in
Python and Kotlin. For instance, Dilhara et al. [9] developed
Python-adapter RefactoringMiner, which converts Python code
to Java and employs RefactoringMiner to identify refactorings
in the resulting Java codes. The other introduced tools, such
as PyRef [5] and KotlinRMiner [18], adapted replacement
and heuristics rules defined by Tsantalis et al. [24] to suit
their respective languages. However, a significant challenge
arises due to the unique features inherent in each language,
which makes code translation challenging. In addition, an
incomplete set of replacement and heuristics rules may result
in a reduction in the accuracy of the tool as confirmed by
Tsantalis et al. [24], and demonstrated by other researchers
including Silva et al. [22] and Hemati Moghadamd et al. [12].

To overcome such limitations, researchers such as Xing
and Stroulia [27], Hemati Moghadam et al. [12], and Silva
et al. [22] proposed to employ a unified view from the source
code applicable across various programming languages. The
idea, while implemented differently in each of these ap-
proaches, is to abstract away the language-dependent program-
ming instructions (e.g., while, if statements, etc.) and include
only essential program features such as entities’ signatures and
their relationships with other entities (which are essential in

https://kotlinlang.org/


Fig. 1: RefDetect Workflow: Steps in Refactoring Detection

the process of refactoring identification) in the view. While
the proposed approaches demonstrated success in identifying
refactorings across different programming languages such as
Java [12], [22], [27], C++ [12], Go [7], JavaScript and C [22],
the employed technique has its own challenges and drawbacks.
Initially, as the programming instructions (such as while, if,
return, etc. included in the method body) are not taken into
account, the introduced tools are not capable of detecting low-
level refactorings such as Replace Conditional with Polymor-
phism, or Replace Loop with Pipeline, etc. In addition, the
proposed approaches rely on similarity thresholds to identify
refactorings, which is proven to be difficult, if not impossible,
to select a universe threshold to work perfectly in programs in
different domains and implemented by different programming
languages as confirmed by various tools [7], [12], [22], [27].

Hopefully, with the help of existing refactoring identifica-
tion tools, there exists a set of datasets containing refactorings
applied in real-world scenarios across programs implemented
by different programming languages. Among the existing
datasets, the most noteworthy one is provided by Aniche et
al. [4], who employed RefactoringMiner and identified more
than two million refactorings applied in more than 11,000
open-source Java programs. It is worth mentioning that while
refactorings included in this dataset lack manual validation,
their reliability is ensured as the accuracy of RefactoringMiner
is confirmed by numerous research studies. Recently, Dilhara
et al. [9] used Python-adapter RefactoringMiner and extracted
more than 8,000 code change patterns from 4 million commits
in Python programs. In another study, Brito and Valente [7]
extracted over 68,000 refactorings applied across six open-
source Go projects. However, in this case, only 258 instances,
approximately 0.4% of the identified refactorings, were man-
ually validated [7]. Worth mentioning that the automatic
creation of large refactoring datasets by the existing refactoring
detection tools requires significantly less effort, but it may
result in many false-positives samples where human experts
are needed to validate the results. In our project, the goal is to
extend refactoring detection to Kotlin and also create an initial
validated dataset of refactorings applied in Kotlin programs.

III. REFDETECT:
ARCHITECTURAL INSIGHTS AND KOTLIN INTEGRATION

Recently, Hemati Moghadam et al. [12] introduced a
language-neutral technique for identifying refactorings. The
effectiveness of the introduced tool called REFDETECT, was

comprehensively assessed on Java programs and compared
with RefactoringMiner. Additionally, the authors evaluated the
tool’s performance in detecting refactorings applied to C++
programs through a small dataset containing 300 refactorings.

The RefDetect’s language neutrality is achieved through two
key strategies. Firstly, the specific details of each programming
language especially statements defined in the method’s body
(e.g., while, if, etc.) are abstracted away and only program
entity declaration (e.g., method name and its parameters),
and their relationships (e.g., method invocation, field access)
are extracted and saved in an intermediate representation.
Subsequently, REFDETECT uses this information - the entities
declaration and their relationships - to match entities in the
initial and refactored versions of input programs and identifies
applied refactorings according to matched entities [12].

Fig. 1 illustrates the workflow of steps taken by
REFDETECT to identify applied refactorings. As depicted
in the figure, the workflow comprises four distinct steps,
each accompanied by a concise description as follows: The
initial step, Source Data Extraction, is the only language-
dependent step and different code analysis tools must be used
for different programming languages [12]. In this paper, we
used the Program Structure Interface (PSI) for parsing Kotlin
files and extracting the necessary data information, as required
by REFDETECT. It is worth mentioning that, while Java
and Kotlin exhibit similarities, their source code extraction
processes differ due to distinct characteristics inherent to each
language. For instance, extension functions and properties 2,
smart casts, type inference, and null safety are common
practices in Kotlin programming [14] while these features are
either non-existent or less practical for Java programmers [6].

In the second step, Inconsistency Detection, the two input
program versions are compared with each other, and their
inconsistency in terms of entities (e.g., class, field, etc.) deleted
from the previous version and those introduced in the new
version are determined. Entities of the same type are compared
based on their signatures. For instance, methods are compared
based on their names, input parameters, and return types.

The goal of the third step, Entity Matching, is to establish
associations between inconsistent entities identified in the pre-
vious step. The entities that differ in each version are compared

2Using extension functions and properties, programmers can write new
functions and properties for a class from a third-party library and call them in
the standard manner as if they were methods or properties of the class [14].



with the entities differing in the corresponding version, and
those with a similarity value higher than a similarity threshold
are considered to be the same. The similarity threshold can be
calibrated using a dataset of refactorings from programs sim-
ilar to the input program or can be determined by developers
based on their understanding of the input program [12].

Finally, as the last step, named Refactoring Identification,
candidate refactorings are identified by applying some pre-
defined rules to the entities that have been matched in the
previous step. For example, PushDown/PullUp Filed refactor-
ings are detected when a field in the initial version is matched
with a field in the refactored version, with the condition that
there exists an inheritance relationship between their classes.
Conversely, a Move Field is detected if there is no inheritance
relationship between the classes of the respective fields [12].

IV. EVALUATION

To evaluate the efficacy of our extension to REFDETECT,
we conducted a set of experiments on various Kotlin
repositories and compared the accuracy of our ap-
proach with KOTLINRMINER [18]. As mentioned earlier,
KOTLINRMINER is the only introduced tool capable of de-
tecting refactorings applied in Kotlin programs. Essentially, it
is an extension to RefactoringMiner, with adaptations made
to its replacement and heuristics rules for compatibility with
Kotlin language [18]. Worth mentioning that KOTLINRMINER
is only evaluated for its execution time in its original paper,
and this paper is the first study that evaluates its accuracy.

In the experiments, we ran both KOTLINRMINER and
REFDETECT on 180 commits extracted from 9 popular Kotlin
repositories hosted on GitHub.3 Table I shows the list of
repositories employed in this study. We selected 20 commits
from each repository, and to determine the chosen commits, we
initially ran KOTLINRMINER on each repository and sorted
their commits based on both the quantity and diversity of
refactorings identified by KOTLINRMINER. We then chose the
first 20 commits and ran REFDETECT on this subset. Indeed,
to prevent any bias in favour of our tool, the commits are
selected based on the results of KOTLINRMINER.
REFDETECT relies on similarity thresholds to match enti-

ties in two versions of the input program. To determine the
similarity threshold values, we calibrated thresholds based on
a dataset containing more than 3,000 refactorings applied in
Java programs. These refactorings are validated by Tsantalis
et al. [24] and Hemati Moghadam et al. [12]. We adopted
this approach as we anticipate similarities in the refactorings
applied in Java and Kotlin programs and expect this similarity
to help identify more appropriate threshold values.

Our experiment aims to answer this research question: Is
REFDETECT effective than KOTLINRMINER in accurately
identifying refactorings applied in Kotlin programs, consid-
ering both correctness (precision) and completeness (recall)?

3The repositories were sorted by the GitHub API based on their star counts.

A. Comparison of precision/recall with KOTLINRMINER

Table II shows a comparison of the performance of
REFDETECT and KOTLINRMINER across 180 commits used
in the experiment. In total, the employed tools identified a
total of 1,485 instances of true refactorings across 21 different
refactoring types. The breakdown of refactorings detected in
each repository is shown in Table I. In terms of the number of
identified refactorings, method-level refactorings were nearly
twice and four times as numerous as those detected at the
class and field levels respectively. A nearly similar pattern was
observed in the study done with Java applications [12].

As depicted in Table II, REFDETECT outperforms
KOTLINRMINER with an average overall F-score of 86%
which is 13% higher than that of KOTLINRMINER. While
both tools show comparable accuracy in detecting class-
level refactorings (87% vs. 84%), REFDETECT worked bet-
ter in identifying method-level refactorings (81% vs. 73%)
and, notably, field-level (93% vs. 53%) refactorings. Worth
mentioning that REFDETECT in its original version [12]
also demonstrated a better accuracy compared with Refac-
toringMiner in detecting class and method-level refactorings
applied in Java programs. However, RefactoringMiner out-
performed REFDETECT in detecting field-level refactoring.
Hence, this reduction in the accuracy of field-level refactoring
in KOTLINRMINER, especially in Rename Field, might be
attributed to a bug in the implementation during the conversion
of rules from RefactoringMiner to KOTLINRMINER. Worth
mentioning that KOTLINRMINER shows a slightly better
precision in field-level refactoring compared to REFDETECT.

Referring to Table II, REFDETECT demonstrated almost a
balance between precision and recall in the majority of refac-
toring types. However, in specific refactoring types specifically
Move and Inline Method refactoring, recall is comparatively
weaker than precision. Our close inspection revealed that when
the refactored entity and its relationships with other enti-
ties change significantly, especially through non-refactoring
changes, REFDETECT is not capable of detecting the applied
refactoring. As an example, in the Inline Method refactoring
when changes in the calling method exceed those associated
with the inlined method, REFDETECT may not detect the
refactorings as the similarity between the inserted statements
and those in the inlined method falls below the established
threshold. Worth mentioning that while we calibrate similarity
thresholds on a dataset of refactorings applied in Java pro-
grams, selecting an appropriate threshold is still a limitation
in REFDETECT. Worth mentioning that, all limitations men-
tioned by Hemati Moghadam et al. [12] for REFDETECT had
negative impacts on our results as well.

In addition to the inherent limitations of REFDETECT, our
experiments also face certain threats to validity. The first
threat is the experiment scale. While our resulting Kotlion
dataset contains 1,485 manually validated refactorings, it is
roughly half of the Java refactoring datasets [12], [22], [25].
In addition, as part of future work, we aim to enhance
the comprehensiveness of the dataset by including additional



TABLE I: Kotlin repositories used in the evaluation

Repository Commits Identified Refs. Repository Commits Identified Refs. Repository Commits Identified Refs.
iosched 3,139 283 BaseRecyclerView 1,481 164 okhttp 5,473 148
leakcanary 2,072 408 plaid 1,277 163 shadowsocks-android 3,694 124
picasso 1,651 82 architecture-samples 807 78 sunflower 551 35

TABLE II: Precision (P), Recall (R), and F-Score (F) results

RefDetect KotlinRminer

Refactoring Type #TP P R F P R F

1. Rename Class 87 0.99 0.8 0.89 0.92 0.93 0.93

2. Move Class 215 1 1 1 1 0.84 0.91

3. Move & Rename Class 17 0.92 0.71 0.8 0.79 0.88 0.83

4. Extract Superclass 7 0.86 0.86 0.86 1 0.71 0.83

5 Extract Subclass 4 1 1 1 1 1 1

6. Extract Class 28 0.62 0.93 0.74 0.85 0.39 0.54

7. Extract Interface 15 0.8 0.8 0.8 0.92 0.8 0.86

Class-Level Refactorings 373 0.88 0.87 0.87 0.93 0.79 0.84

8. Rename Field 40 0.95 1 0.98 1 0 0

9. Move Field 75 0.92 0.93 0.93 1 0.4 0.57

10. Push Down Field 18 1 0.89 0.94 0.91 0.56 0.69

11. Pull Up Field 23 1 0.78 0.88 1 0.74 0.85

Field-Level Refactorings 156 0.97 0.9 0.93 0.98 0.43 0.53

12. Rename Method 168 0.99 0.8 0.88 0.96 0.72 0.82

13. Move Method 124 0.86 0.88 0.87 0.77 0.85 0.8

14. Push Down Method 42 1 0.88 0.94 1 0.98 0.99

15. Pull Up Method 74 1 0.91 0.95 1 0.49 0.65

16. Extract & Move Method 8 0.83 0.62 0.71 0.75 0.38 0.5

17. Extract Method 22 0.94 0.73 0.82 0.94 0.68 0.79

28. Inline Method 11 0.8 0.73 0.76 0.53 0.91 0.67

19. Move & Inline Method 8 1 0.25 0.4 0.6 0.75 0.67

20. Change Method Parameters 491 0.9 0.85 0.87 0.9 0.57 0.7

21. Move&Change Method Parameters 8 0.8 1 0.89 1 0.5 0.67

Method-Level Refactorings 956 0.91 0.77 0.81 0.85 0.68 0.73

All Refactoring Types 1485 0.92 0.83 0.86 0.9 0.68 0.73

repositories in the experiments. Experimenter bias in the
manually validating refactorings may be considered another
threat to validity. To mitigate this threat, three of the authors
of the paper validate refactorings, and in cases of uncertainty,
discussions were held until a consensus was reached. Another
factor that may affect the results is the chosen threshold values.
Specifically, we might miss some refactorings due to a high
threshold. We used two tools to detect applied refactorings, but
we acknowledge that in our manual validation, we observed
refactorings which were not detected by the employed tools.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced an enhancement to
REFDETECT to identify refactorings applied in Kotlin
programs. In experiments, we observed an F-score of 86%,
which is 13% better than KOTLINRMINER. This study is the
first that presents the initial publicly available dataset [11] of
nearly 1,500 manually validated refactorings applied in 180
commits of 9 Kotlin repositories. However, we are actively
expanding the dataset to offer a more comprehensive resource

for the community, hoping it helps to improve understanding
of refactoring practices, and designing better refactoring tools.

https://github.com/google/iosched
https://github.com/CymChad/BaseRecyclerViewAdapterHelper
https://github.com/square/okhttp
https://github.com/square/leakcanary
https://github.com/nickbutcher/plaid
https://github.com/shadowsocks/shadowsocks-android
https://github.com/square/picasso
https://github.com/android/architecture-samples
https://github.com/android/sunflower


REFERENCES

[1] E. AlOmar, M. W. Mkaouer, and A. Ouni, “Can Refactoring be Self-
affirmed? An Exploratory Study on How Developers Document Their
Refactoring Activities in Commit Messages,” in Proceedings of the 3rd
IEEE/ACM International Workshop on Refactoring (IWoR). IEEE,
2019, DOI:10.1109/IWoR.2019.00017.

[2] E. A. AlOmar, H. AlRubaye, M. W. Mkaouer, A. Ouni, and M. Kessen-
tini, “Refactoring Practices in the Context of Modern Code Review:
An Industrial Case Study at Xerox,” in Proceedings of the 43rd
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice (ICSE/SEIP). IEEE, 2021, DOI:10.1109/ICSE-
SEIP52600.2021.00044.

[3] E. A. AlOmar, M. W. Mkaouer, and A. Ouni, “Mining and Managing
Big Data Refactoring for Design Improvement: Are We There Yet?”
Knowledge Management in the Development of Data-Intensive Systems,
2021, DOI:10.1201/9781003001188.

[4] M. Aniche, E. Maziero, R. Durelli, and V. H. Durelli, “The Effectiveness
of Supervised Machine Learning Algorithms in Predicting Software
Refactoring,” IEEE Transactions on Software Engineering, vol. 48, no. 4,
2020, DOI:10.1109/TSE.2020.3021736.

[5] H. Atwi, B. Lin, N. Tsantalis, Y. Kashiwa, Y. Kamei, N. Ubayashi,
G. Bavota, and M. Lanza, “PyRef: Refactoring Detection in Python
Projects,” in Proceedings of the 21st IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM). IEEE,
2021, DOI:10.1109/SCAM52516.2021.00025.

[6] J. Bloch, Effective Java. Addison-Wesley Professional, 2017.
[7] R. Brito and M. T. Valente, “RefDiff4Go: Detecting Refactor-

ings in Go,” in Proceedings of the 14th Brazilian Symposium on
Software Components, Architectures, and Reuse (SBCARS), 2020,
DOI:10.1145/3425269.3425274.

[8] M. Di Penta, G. Bavota, and F. Zampetti, “On the Relationship between
Refactoring Actions and Bugs: A Differentiated Replication,” in Pro-
ceedings of the 28th ACM Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, DOI:10.1145/3368089.3409695.

[9] M. Dilhara, A. Ketkar, N. Sannidhi, and D. Dig, “Discovering Repetitive
Code Changes in Python ML Systems,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE). IEEE/ACM,
2022, DOI:10.1145/3510003.3510225.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[11] I. Hemati Moghadam, M. M. Afkhami, P. Kamalipour, and V. Zaytsev,
“Extending Refactoring Detection to Kotlin: A Dataset and Comparative
Study: Supplementary Material,” DOI:10.5281/zenodo.10465264, Jan.
2024.

[12] I. Hemati Moghadam, M. Ó. Cinnéide, F. Zarepour, and M. A.
Jahanmir, “RefDetect: A multi-language refactoring detection
tool based on string alignment,” IEEE Access, vol. 9, 2021,
DOI:10.1109/ACCESS.2021.3086689.

[13] E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia, and F. Palomba,
“Rubbing Salt in the Wound? A Large-Scale Investigation into the
Effects of Refactoring on Security,” Empirical Software Engineering,
vol. 28, no. 4, 2023, DOI:10.1007/s10664-023-10287-x.

[14] D. Jemerov and S. Isakova, Kotlin in Action. Simon&Schuster, 2017.
[15] M. Kim, T. Zimmermann, and N. Nagappan, “A Field Study of Refac-

toring Challenges and Benefits,” in Proceedings of the 20th Interna-
tional Symposium on the Foundations of Software Engineering, 2012,
DOI:10.1145/2393596.2393655.

[16] ——, “An empirical study of refactoring challenges and benefits at
microsoft,” IEEE Transactions on Software Engineering, vol. 40, no. 7,
2014, DOI:10.1109/TSE.2014.2318734.

[17] R. Krasniqi and J. Cleland-Huang, “Enhancing Source Code Refac-
toring Detection with Explanations from Commit Messages,” in Pro-
ceedings of the 27th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2020,
DOI:10.1109/SANER48275.2020.9054816.

[18] Z. Kurbatova, V. Kovalenko, I. Savu, B. Brockbernd, D. Andreescu,
M. Anton, R. Venediktov, E. Tikhomirova, and T. Bryksin, “RefactorIn-
sight: Enhancing IDE Representation of Changes in git with Refactor-
ings Information,” in Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021,
DOI:10.1109/ASE51524.2021.9678646.

[19] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
Smells and Refactoring: A Tertiary Systematic Review of Challenges
and Observations,” Journal of Systems and Software, vol. 167, p. 110610,
2020, DOI:10.1016/j.jss.2020.110610.

[20] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and
How We Know It,” IEEE Transactions on Software Engineering, vol. 38,
no. 1, 2012, DOI:10.1109/TSE.2011.41.

[21] A. S. Nyamawe, “Research on Mining Software Repositories to Facil-
itate Refactoring,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 13, no. 5, 2023, DOI:10.1002/widm.1508.

[22] D. Silva, J. Silva, G. Santos, R. Terra, and M. T. Valente,
“RefDiff 2.0: A Multi-language Refactoring Detection Tool,” IEEE
Transactions on Software Engineering, vol. 47, no. 12, 2020,
DOI:10.1109/TSE.2020.2968072.

[23] D. Silva, N. Tsantalis, and M. T. Valente, “Why We Refactor? Confes-
sions of GitHub Contributors,” in Proceedings of the 24th ACM Inter-
national Symposium on Foundations of Software Engineering. ACM,
2016, DOI:10.1145/2950290.2950305.

[24] N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,”
IEEE Transactions on Software Engineering, vol. 48, no. 3, 2020,
DOI:10.1109/TSE.2020.3007722.

[25] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and Efficient Refactoring Detection in Commit History,” in
Proceedings of the 40th International Conference on Software Engineer-
ing (ICSE). ACM, 2018, DOI:10.1145/3180155.3180206.

[26] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and Why Your Code Starts to Smell Bad,”
IEEE Transactions on Software Engineering, vol. 43, no. 11, 2017,
DOI:10.1109/TSE.2017.2653105.

[27] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented
Design Differencing,” in Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering (ASE). ACM,
2005, DOI:10.1145/1101908.1101919.

https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/ICSE-SEIP52600.2021.00044
https://doi.org/10.1109/ICSE-SEIP52600.2021.00044
https://doi.org/10.1201/9781003001188
https://doi.org/10.1109/TSE.2020.3021736
https://doi.org/10.1109/SCAM52516.2021.00025
https://doi.org/10.1145/3425269.3425274
https://doi.org/10.1145/3368089.3409695
https://doi.org/10.1145/3510003.3510225
https://doi.org/10.5281/zenodo.10465264
https://doi.org/10.1109/ACCESS.2021.3086689
https://doi.org/10.1007/s10664-023-10287-x
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/SANER48275.2020.9054816
https://doi.org/10.1109/ASE51524.2021.9678646
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1002/widm.1508
https://doi.org/10.1109/TSE.2020.2968072
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1109/TSE.2017.2653105
https://doi.org/10.1145/1101908.1101919

	Introduction
	Related Work
	RefDetect: Architectural Insights and Kotlin Integration
	Evaluation
	Comparison of precision/recall with KotlinRMiner

	Conclusion and Future Work
	References

