
Visual Assurance in Refactoring through Trace
Equivalence of Control Flow Graphs

Céline Deknop∗†, Johan Fabry†, Kim Mens∗, Vadim Zaytsev‡
∗ICTEAM, UCLouvain, Belgium; †Raincode Labs, Brussels, Belgium

‡Formal Methods & Tools, UTwente, The Netherlands

Email: kim.mens@uclouvain.be, johan@raincode.com, vadim@grammarware.net

Abstract—Refactoring large legacy codebases, even with
industrial-strength tools, often leads to trust concerns with code
owners, in particular when the codebase underwent significant
changes. To provide more assurance to code owners, we integrate
visual analytics into the refactoring process. This method involves
transforming code into control flow graphs before and after
refactoring, followed by trace equivalence analysis on these
graphs. An innovative visualisation tool provides not only a
comprehensive overview of the refactorings’ impact across all
files, but also offers detailed insights into the trace equivalence
at individual file level. By presenting clear visual evidence of
code equivalence before and after refactoring, our visualisation
narrows the trust gap, offering refactoring experts and code
owners a transparent and understandable view of the changes.
We apply this visualisation on an industrial use case and discuss
its effectiveness with refactoring experts.

Index Terms—visualisation, trace equivalence, large-scale code
refactoring, control flow graph, industrial validation, COBOL

I. INTRODUCTION

Although many automated refactoring tools have been pro-
posed [1]–[3], developers are reluctant to use such tools [4],
[5]. One reason cited as an obstacle to the use automated
tools is that they are a black box and therefore their output
is not trusted. We propose a tool to compare two versions of
a program (before and after refactoring) and show whether
the control flows of both programs are trace equivalent. Our
visualisation tool then shows both a summary of the trace
equivalence for every refactored file and highlights details in
every equivalence graph. This allows a developer to either get
an overall idea of the effect of the refactoring process or to
manually analyse the differences in both versions of a single
file. We apply these tools to an industrial use case and discuss
the results of the validation we performed.

II. GOALS OF THE TOOL

One of the services that Raincode Labs offers is to refactor
generated COBOL programs into maintainable and human-
readable code [6]. For this, they use an automated tool that
iteratively applies around 140 different small refactoring rules,
increasingly improving the code. Although this refactoring
process has been perfected for 15+ years, in-house experts find
that code owners struggle to trust the refactored code. While
code owners are involved in the early stages of the projects to

This project was made possible by the AppliedPhD funding of Innoviris.

determine the configuration of the refactoring tool, the process
itself behaves as a black box to them. Since the code tends
to get refactored substantially, it is hard for them to recognise
and trust the refactored code. For this reason, the in-house
experts could benefit from a tool allowing them to facilitate
communication with their clients and provide them a visual
support that explains in detail the effects of the automated
refactoring [7]. Previous work has been done in the direction
of specifying how to make refactorings behaviour-preserving
in diverse contexts [8]. Comparing two versions of a program
through trace equivalence to prove that their behaviour remains
the same, is also not novel [9]. However, we take it a step
further by creating a visualisation tool to highlight where and
why the refactored code is not equivalent.

We established two main goals for our visualisation tool.
The first is to be able to offer a comprehensive global overview
of a refactoring project, showing at a glance the status of
all refactored files within the project. This overview needs
to be scalable and usable with thousands of files (the scale
of our industrial data). The second goal is to provide users
with a detailed visualisation of every analysed file individu-
ally. This detailed view includes graph models of the code
before and after refactoring. The emphasis is on making these
visualisations as informative as possible. Colour coding is
used to highlight important elements in the graphs, making
it easy for tool users to identify where and why the code
was considered equivalent or not. The graphical layout of
the graphs strives to emphasise key information effectively.
Uninteresting nodes and links are hidden whenever possible.
Finally, the visualisation is interactive to further facilitate the
exploration and analysis process.

III. TOOL ARCHITECTURE

The tool is divided in two parts: comparing models of the
code through trace equivalence (III-A) and visualising the
results (III-B) to enable a more detailed analysis.

A. Trace equivalence

A detailed explanation of the trace equivalence algorithm
is beyond the scope of this paper. In summary, the algorithm
takes as input two graph models. The graphs are composed
of nodes that represent key code structures found in the
(refactored) programs, and links representing the flow of

mailto:kim.mens@uclouvain.be
mailto:johan@raincode.com
mailto:vadim@grammarware.net
https://www.raincodelabs.com


execution of these programs. For example, a node representing
an IF statement would have two outgoing links corresponding
to both the condition and its negation.

The trace equivalence algorithm explores two graphs, trying
to match their traces (or paths). If all paths in the graph
representing pre-refactored code have an equivalent path in the
post-refactored graph, the program’s control flow behaviour
was preserved. In its basic version, the algorithm provides a
binary answer: the models are trace equivalent or they are not.

To create a more fine-grained answer, the basic algorithm
is modified to record every step of the trace equivalence
algorithm. We start by marking the transitions between the
states. Before starting the trace equivalence, every transition
is marked as ‘unexplored’. During its execution, the algorithm
marks the transitions. If a link has an equivalent in the other
path, it is marked as ‘matched’. If there is no equivalent
for a link, we allow the algorithm to skip up to X links
(configurable) to look for another match further down the path.
If a match can be found that way, the link is marked ‘skipped’.
If no match is found, the link is marked as ‘unmatched’.

The graphs obtained from our industrial data, are cyclic. To
handle cycles and achieve as much precision as possible in
our visualisation, we simply continue to add marks as long
as they are needed whenever we meet a transition again. This
means that any transition can be marked with all of the four
“base marks”: ‘unexplored’, ‘matched’, ‘unsure’ or ‘matched’,
or a combination of the last three (the ‘unexplored’ mark is
always removed when the algorithm explores a node).

B. Visualisation
Our visualisation tool consists of two views: an overview

and a detailed view. Figure 1 depicts the overview of the
entire refactoring project. On the left-hand side are two fields
used to specify the files that will be shown. Clicking on the
visualise button will populate the right-hand side. This left
panel also allows the user to order the files displayed on the
right: alphabetically or by most/least links marked as matched.

Fig. 1: Overview of the trace equivalence visualisation tool.

On the right-hand side of the Overview are the files from
the refactoring process. For each file, we display both its

name and a summary of the result of the trace equivalence
analysis. We calculate the percentages of every match type
over both models, and display a bar divided into areas of
colours corresponding to their percentages.

To obtain the detailed view, users simply select a file to
visualise from the list on the right. This opens a new window
showing the two control-flow graphs corresponding to the file
pre- and post-refactoring side-by-side (pre-refactoring on the
left, post- on the right). Figure 2 shows the detailed view on
small example of a file being refactored, for a simple case
where the models are trace equivalent. To avoid clutter, we
denoted nodes that can result in the end of the execution with
a thick black border (instead of a link towards an end node).

Fig. 2: Detailed view of a small COBOL file.

Our visualisation tool is interactive: when nodes get selected
in one model, matching nodes in the other model get high-
lighted. When trace equivalence explores execution paths, it
does so in both models simultaneously. In essence, it creates
groups of nodes that are matched together on either model, i.e.
nodes from the pre-refactoring graph are matched with nodes
on the post-refactoring graph and vice-versa. We distinguish
perfect matches, states that are exactly the same, from group
matches, which are nodes that have been explored together but
cannot be linked specifically to a corresponding node in the
other graph.

When presented with a detailed view, a user can interact
with it by hovering the mouse over different nodes and links.
For a node, it shows its label, e.g. PERFORM F94FT. For a
link, it reminds the user of the meaning of its colour (e.g.,
for all green links, tooltips are ‘matched’). It also shows the
match or match group for a node. If nodes are highlighted in
light blue, they do not have an exact equivalent in the other
graph (group match). If they are highlighted in dark blue, they
are a perfect match to each other. Examples of group match
(left) and perfect match (right) are shown in Figure 3.



Fig. 3: Highlighting of a group match (left) and perfect match
(right) on the example of Figure 2

While the example shown so far is fairly small in size to help
in understanding the visualisation tool (40 LOC and no more
than 20 nodes for the larger pre-refactoring model), larger
files quickly encounter scaling issues when visualising their
detailed view. For example, Figure 4 is an example of a full-
size file displayed as-is in our tool.

Fig. 4: Detailed view on a pre-refactored version, no post-
process (image cut off due to lack of space).

To address this scaling issue, we created a post-process
algorithm to ‘fuse’ together nodes that are either matching
(green) or unexplored (gray). Two contiguous nodes of a same
colour are grouped if they do not have any links that are
marked either unmatched or skipped. This fusing algorithm
allows us to greatly reduce the amount of nodes displayed, as
illustrated in Figure 5 (which is the fused version of Figure 4).

IV. INDUSTRIAL VALIDATION

A. Industrial context

Raincode Labs performs various services, COBOL refac-
toring being only one of them. The company is fairly small,
around 40 employees. Because of this, only two employees
are in charge of the COBOL refactoring projects we described
in this paper. Both were instrumental in defining the goals of
the tool as well as performing the industrial validation. One of
them (referred to as PC) was more Customer-oriented, focused

Fig. 5: Detailed view of Figure 4, with post-process.

on communication with the clients to configure the refactoring
process, while the other one (PT ) is more Technical, the main
developer of the refactoring process itself.

B. Interview set-up

In the first phase of our validation interview, we started
by contextualising the tool. We listed the code structures that
we extracted from the COBOL code and how we arranged
them into control-flow graphs. We told the participants how we
compared graphs using trace equivalence, giving an intuition
of the algorithm. We explained that they would use a visual-
isation tool to understand the result of the trace equivalence,
and prompted them to read the tool’s brief user manual.

During their use of the visualisation, we asked them to
“think aloud” in order for us to collect as much feedback as
possible from the interview. We recorded both the screen of
the computer used and the sound of our conversation.

In the second phase of the interview, the participants were
presented with five small handcrafted example files and the
fusing algorithm was turned off in the visualisation tool. They
were instructed to open them one after another, analyse them
to familiarise themselves with the tool, and ask questions
whenever something was unclear.

In the third phase, we turned fusing on and let the partici-
pants browse freely in files taken from a previous refactoring
project. We concluded the interviews by going over a set
of pre-defined questions and asked them if they had any
further remarks or feedback to give (a video is available at
https://zenodo.org/records/10162365).

C. Methodology

To structure the results of our user validation, we take inspi-
ration from Sillito et al. [10]. We used the vocal description
of the actions performed by our participants to analyse not
only the answers they gave to our questions, but also the
questions that arose from them. We divide our observations
in four categories:

1) Questions about the domain (input, output, inner repre-
sentation of data in the tool);

https://www.raincodelabs.com
https://zenodo.org/records/10162365


2) Questions about technical execution (related to how
we extracted things from the COBOL files or how we
computed the execution paths);

3) Questions about the meaning of a visual component (they
either asked us directly or used the user manual to look
for the answer);

4) Ideas for future work (when they asked if some feature
would be possible to add or implement).

This methodology allowed us to get the most feedback,
in terms of quality and quantity, to compensate for our low
number of participants in the validation.

D. Results of the validation

We highlight here the most relevant feedback that we received.
1) Domain: We had only very few domain questions, PC

being the only one to ask during phase 2: “Are you sure the
graphs are not flipped? Since the right graph is bigger than the
left, I would expect that one to be the pre-refactoring”. PC’s
confusion about which graph corresponds to which version of
the program is easily answered: while it is true that the amount
of nodes found in the model before refactoring is always larger
than the amount of nodes after refactoring, this is no longer
true in the visualisation when the fusing algorithm is applied.
This answer satisfied him.

We can explain the low amount of domain questions by
two factors. First, our validation participants are experts in
their field and therefore very familiar with the domain. Second,
the fact that we took time to contextualise how we obtained
the visualisation that was presented, helped in avoiding most
questions regarding the input or output of our tool.

2) Technical execution: PT had two technical questions.
One referred to the constructs that we extracted from COBOL:
“Do you handle the periods?”; the other was about our
handling of the way COBOL works “Can you deal with the
fact that a PERFORM comes back, but only if the execution
does not jump outside of its boundaries?”

The respective orientation of both participants explains why
only PT had technical questions. When PC looked at our
visualisation, he saw exactly what he expected and assumed
that we did our due diligence. For PT , since he has been
working on the automated refactoring process for years, he
is deeply aware of the challenges of COBOL and wanted to
make sure that we did as well so he could trust our tool. We
answered both his technical questions satisfactorily, allowing
him to move forward in the validation with more confidence.

3) Meaning of visual components: PC had a question
regarding the meaning of the large border denoting and ending
node : “Does this mean that the execution always stops there,
or that it can stop there?”. We explained that, if the node had
no outgoing link, it meant that the execution always ended
while if the node had (at least) one outgoing link, it meant
that the execution could end there. This answer satisfied PC

and could be included in a new iteration of the user manual
to avoid all confusion.
PT felt overwhelmed when reading the user manual and

when first interacting with the full graphs; he had to refer to

the manual several times to remember the meaning of colours,
although he did not ask us direct questions. However, after a
few minutes of using the tool, he was more confident and did
not express further confusion.

4) Ideas of future work: PC had two ideas about How to
use the tool at a smaller scale so it is less overwhelming
to analyse its output?”. First, he expects the output to be
more accessible if we focused not on the entire automated
refactoring process, but on the effects of a single refactoring
rule. It is possible for Raincode Labs to run the process with
a very limited amount of rules activated, and PC thinks this
visualisation could help convince a client that a specific rule
will not alter the behaviour of the code. The ability to say that
an automated process showed the two versions to be equivalent
would strongly benefit PC’s interactions with clients.

Second, he asked us if it would be possible to analyse the
code not at the level of an entire file, but at a smaller scale,
for example focusing on a few paragraphs. This would make
his analysis easier since it would greatly reduce the amount of
information shown at once. We informed him that this would
require some tweaking but would be easy to achieve and he
said that it would be a useful feature to have.

During his interview, PT conducted a detailed analysis of
a node flagged as unmatched. His analysis started in our tool.
He opened the first file, scrolled to a red (unmatched) node
on the pre-refactoring side and decided that he wanted to
understand why it was marked as not matching. He picked
a red node and was able, using our graph, to quickly find the
point of interest in the corresponding code files. He came to
the following conclusion: the refactoring process completely
deleted the IF statement because it was simply doing nothing
(his wording). This entire process, from picking the node to
analyse to opening the files and coming up with the answer,
took him around five minutes.

Indeed, the flagged node was an IF statement that only
contained jumps, both leading the execution to the same point,
meaning that the computation of the statement did not, in fact,
perform anything useful. This is why the statement simply got
deleted in the refactored version of the code.

After this analysis, PT asked why our tool was flagging this
as unmatching. We explained that, due to the partial nature of
our models, we have no way to know that the if statement did
not contain any other statement than the jumps, which is why
we flag it. He then asked us “Why not implement a few more
or the specifics of our process in order to not have so many
things flagged as unmached?” and we explained our reasoning
for not explicitly wanting to reimplement all refactoring rules
in our tool, in order to keep it more generic. He was not fully
satisfied with this answer, arguing that he would be interested
in seeing at least this case implemented and the effect it would
have on the output since he felt this specific situation would
occur frequently.

5) Open questions:
• Both participants agreed that the general design of the

tool was adequate. They also agreed that there was a lot
of information displayed on the screen, but that this was

https://www.raincodelabs.com


unavoidable due to the nature of the data and that the
fusing algorithm did help make the graphs more readable.
PC stated that he always encounters such limitations
when wanting to visualise graphs of this nature and size.

• Both participants said that the amount of nodes remaining
unexplored made them wary to show these graphs to
clients. They fear that showing a graph with 10 to 40% of
the nodes unexplored would stress the client even more.
However, PC would consider using this at a smaller scale
as discussed under Ideas of future work earlier on.

• Our participants’ opinions diverged about the final results.
PC was not surprised by the results and said: “I know how
complex our process is and I did not expect that it would
be possible to show trace equivalence for the entirety
of the programs”. PT on the other hand had expected
us to include more of the specificities of the automated
refactoring in our tool since they feel so natural to him.
He therefore expected our number of matches to be higher
and stated that he thinks implementing more special cases
would not introduce too much bias. As long as we do not
copy the code he wrote for the refactoring, he feels that
if two different persons arrive at the same result, it is a
form of verification.

E. Discussion

We conclude that the visualisation tool was easy to learn
and use by our participants. Neither felt the need to zoom or
scroll much in the graphs nor did they reposition any nodes.
Instead, they made use of the interactivity and expressed little
confusion. This suggests that the tool is well-designed and
that the first phase of the interview where we allowed them
to familiarise themselves with the interface did improve their
experience.

Interestingly, PT required strong evidence that our knowl-
edge of the inner workings of COBOL was sufficient before
he could trust our tool. This highlights that it is difficult
for someone to trust a tool when they do not know how it
works. In this case, much like with clients of the automated
refactoring process, showing how we did things and how we
documented ourselves, helped alleviate the skepticism of PT .

We have seen that the tool does not show trace equivalence
for every node in the graphs and is probably not suited for
code owners in its current form. However, it did allow PT to
quickly find lines of code flagged as unmatched in both pre-
and post-refactoring versions of a file and to demonstrate why
the flagged execution would not cause any bug for the client.
This proves that the tool can be used efficiently to pinpoint
points of interest in the code and helps support a more in-depth
analysis that is then necessary.

Furthermore, both participants see ways to improve and
make alternative uses of the visualisation tool. Using it with
fewer migration rules or on specific parts of programs could
help guide code owners in their testing or further help them
comprehend the effect of specific migration rules.

While implementing more special cases must be done with
caution, we believe that it is possible to do so without

jeopardising the generalisability of the tool, at least for the
case described above. For example, we could tweak our semi-
parser to denote when it ignores part of the code, indicating
the presence of some statements that it did not parse. With this,
we could detect that the removal of the IF statement analysed
by PT is indeed behaviour-preserving. An implementation of
this is a good avenue for future work with this tool, as would
be a deeper analysis (helped by PT ) of the migration rules to
identify other candidates for special cases.

V. CONCLUSION

We started this paper by arguing that automated refactoring
tools are often considered as black boxes and therefore not
easily trusted by code owners. To overcome this issue, we set
out to create a tool to compare two versions of a codebase, be-
fore and after refactoring, allowing to show that its behaviour
remains unaltered by refactoring and therefore augment trust.

The tool we created provides two views: one summarising
the state of the entire codebase being refactored, and a detailed
view focused on a single file. We model a program before
and after refactoring and compare them using the technique
of trace equivalence, that we extended to mark our models
with the information needed for our visualisation.

Our tool was intended to scale to industrial data—thus,
we made sure that its users would easily find what they are
looking for through a summary for every file. We also made
the graphs in the detailed view interactive, helping experts in
their analysis. We also created a post-process fusing algorithm
to emphasise the most relevant information only. Finally, we
evaluated if the tool we created attained the objectives we
established. To do so, we validated our tool on industrial
data and obtained feedback from two refactoring experts.
The validation participants reacted positively to the tool we
designed, although some more work would be required for it
to be used on concrete projects with actual customers.

REFERENCES

[1] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan, “Large-
Scale Automated Refactoring Using ClangMR,” in ICSM. IEEE, 2013.

[2] G. Szóke, C. Nagy, R. Ferenc, and T. Gyimóthy, “Designing and
Developing Automated Refactoring Transformations: An Experience
Report,” in SANER. IEEE CS, 2016, pp. 693–697.

[3] S. Thompson and H. Li, “Refactoring Tools for Functional Languages,”
Journal of Functional Programming, vol. 23, no. 3, p. 293–350, 2013.

[4] Y. Golubev, Z. Kurbatova, E. A. AlOmar, T. Bryksin, and M. W.
Mkaouer, “One Thousand and One Stories: A Large-Scale Survey of
Software Refactoring,” in ESEC/FSE. ACM, 2021, pp. 1303–1313.

[5] M. Wyrich and J. Bogner, “Towards an Autonomous Bot for Automatic
Source Code Refactoring,” in BotSE, 2019, pp. 24–28.

[6] C. Deknop, J. Fabry, K. Mens, and V. Zaytsev, “Improving Software
Modernisation Process by Differencing Migration Logs,” in PROFES.
Springer, 2020, pp. 270–286.

[7] C. Deknop, K. Mens, A. Bergel, J. Fabry, and V. Zaytsev, “A Scalable
Log Differencing Visualisation Applied to COBOL Refactoring,” in
VISSOFT. IEEE, 2021, pp. 1–11.

[8] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and P. Van Gorp,
“Refactoring: Current Research and Future Trends,” ENTCS, vol. 82,
no. 3, pp. 483–499, dec 2003.

[9] T. Wood and S. Drossopoulou, “Program Equivalence through Trace
Equivalence,” Foundations of Object Oriented Languages, FOOL, 2014.

[10] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and Answering
Questions during a Programming Change Task,” IEEE TSE, 2008.


