Improving Nothingness. Refactoring Whitespace.
(Extended Abstract)

Rutger Witmans, Vadim Zaytsev

University of Twente. Enschede, The Netherlands

Abstract

In this paper we explore the possibilities of refactoring code in Whitespace, a programming language which only recognises
whitespace characters as code, and tolerates textual comments that describe the program. The paper presents a list of possible
refactorings applicable to Whitespace, and describes a tool that automates some of these refactorings. The functionality of
the tool is demonstrated with concrete examples.

Refactoring is a important systematic process of improving code without creating new functionality, improving long-
term properties of the code such as readability, maintainability, changeability, testability, extendability and safety. We argue
that, despite the lack of real-life applications for Whitespace specifically, it is beneficial to apply refactoring methodology to
it, since lessons learnt from esoteric languages can be ported elsewhere — in this case, to assemblers and similarly restrictive

software languages.

Keywords

Whitespace, program refactoring, esoteric languages, second generation languages

1. Motivation

There are many ways to classify software languages [10].
One of them is a spectrum from the most mainstream
and widespread languages, to most exotic and esoteric
ones. The mainstream side can be represented by the
TIOBE index [8], the current top ten being Python, C,
Java, C++, C#, Visual Basic, JavaScript, SQL, PHP and
Go. Esoteric' languages, on the other side, are designed
for one specific purpose of local interest: to have the
smallest compiler, as it was the case with BRAINF*CK [5],
to use statements that are as far from all other languages
as possible, as it was with INTERCAL [16], or to provide
a feasibly tiny playground for implementing legacy lan-
guages, as it happened with BaByCosoL [18]. One of
such languages is WHITESPACE [2], and it was designed
from a driving principle that whitespace — the part of
the source code which is traditionally ignored by the
compiler as insignificant — is precisely the only part of
the code which is significant, and the rest of the code
such as visible punctuation, letters and numbers, are in-
significant and skipped by the compiler. The language
was designed by Edwin Brady around 2003 [2], and has
enjoyed some attention in the meantime, leading to the

SATToSE’23: 15th Seminar on Advanced Techniques and Tools for

Software Evolution, June 12-14, 2023, Salerno, Italy

Q) r.ch.witmans@student.utwente.nl (R. Witmans);

vadim@grammarware.net (V. Zaytsev)

& http://grammarware.net (V. Zaytsev)

® 0000-0001-7764-4224 (V. Zaytsev)

T

=== CEUR Workshop Proceedings (CEUR-WS.org)
!“Esoteric — intended for or likely to be understood by only a

small number of people with a specialised knowledge or interest”

Oxford Languages Dictionary

existence of many implementations and programs to try
software evolution techniques and tools on.

Refactoring [11] can be used as a standalone technique,
often applied manually by developers (with automation
support from the IDE) with the original intent — to im-
prove the design of existing code [4]. However, it is also
very useful as a part of composite techniques. For in-
stance, one can apply it as a program transformation
on elements of a test suite, possibly augmenting it with
more test cases with known execution outcomes. In the
past, this is exactly what the second author has tried to
do [6] to augment the labour-intensive process of testing
the Raincode Assembler Compiler [1, 17] with mutative
fuzzing. The endeavour was ultimately unsuccessful:
fuzzing only worked on the level of macros (where it
did contribute somewhat, and found at least one off-by-
one bug in the compiler), but the original goal of testing
the instruction implementations failed. The main reason
was the difficulty to define any kind of refactoring trans-
formations that make sense: changing even one bit of
the test program had potentially numerous and hardly
predictable effects.

Several years later, we try a different approach: instead
of codeveloping all the elements of the fuzzing infras-
tructure, we focus only on refactorings; and instead of
facing a gigantic language requiring 1500+ pages of doc-
umentation just to cover the byte-level basics, we focus
on one tiny esoteric language with similar properties —
namely, difficulty of defining what constitutes a refactor-
ing within it. If by any chance our results will happen to
help some Whitespace developer to improve readability
of their code, that could only make the world a better
place to live in.


mailto:r.c.h.witmans@student.utwente.nl
mailto:vadim@grammarware.net
http://grammarware.net
https://orcid.org/0000-0001-7764-4224
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Possible Refactorings

Since the world has moved way past the list of refactor-
ings proposed by Opdyke [11] and Fowler et al [4] in the
1990s, we have mostly relied on developer-created grey
sources like Refactoring Guru [13]. We first looked at
what refactoring categories are possible. The following
categories are available:

+ [cM] Composing Methods

+ [MF] Moving Features between Objects

+ [oD] Organising Data

+ [SE] Simplifying Conditional Expressions
« [sM] Simplifying Method Calls

+ [DG] Dealing with Generalisation

« [cs] Code Smells

We are ruling out everything that has to do with object
programming patterns since Whitespace is an assembler-
like language. Such languages generally miss the ob-
ject programming data structures needed to perform
such refactorings. Thus [MF], [0OD] and [DG] are high-
level refactorings which we will not translate that well.
Whitespace does have instructions which are called labels.
These labels are points in the code you can jump to where
a certain piece of code gets executed. This functionality
borrows some refactoring ideas from the [SM] and [cM].
Whitespace also has instructions for conditional jumps.
This makes some of the ideas for [SE] possible. Next
to this, the list of code smells look promising enough to
deliver at least some refactorings for us to perform, so
we will be looking into [CS] as well. We will thus be
looking through the following categories:

« [cM] Composing Metheds Labels

«+ [SE] Simplifying Conditional Expressions

«+ [sM] Simplifying Methed-Calls Label Jumps
» [cs] Code Smells

With these chosen categories, we have created a list
of refactorings which can be performed on Whitespace
code. The following list is the refactorings is our result
so far:

« [EM] Extract method

« [1M] Inline method

« [RM] Rename method

« [cc] Consolidate conditional expression

« [cD] Consolidate duplicate conditional fragments
« [RD] Remove dead code

» [RC] Remove clone/duplicate methods

2.1. [EM] Extract method

The extract method refactoring is a refactoring where
a grouped sequence of instructions gets extracted into
its own method so that this new method describes with
its method name what the sequence of instructions is
supposed to do. This is useful when you have a large
method which does multiple sub-tasks to perform its
functionality. Making it clear what the function does in
these sub-steps is nice for the next reader of the code,
so the readers are able to easily deduce what your code
does.

2.2. [1M] Inline method

The inline method refactoring is the opposite of this. If
some functionality of a method is small, there is the pos-
sibility of performing that function on the spot. Refactor-
ing code with this method gets rid of code which clutters
the program without bringing new functionality. We see
that these first two methods of refactoring have opposite
ideas in mind, yet both methods are able to be utilized ex-
clusively from each other. For some methods, you might
have made use of too many methods. This makes it un-
clear how the method works. On the other hand, using
too few methods overwhelms the reader and makes the
reader get lost in certain details which are not important.
Because of this balance, it will be tricky to automate this
process. While it is possible to automate this based on
self-defined predicates, we will not be doing this in our
paper because this is beyond the scope of this research.

2.3. [RM] Rename method

The rename method refactoring is quite self-explanatory.
The purpose of this refactoring normally is to rename the
method in order to make it more clear what the method
does. In the case of Whitespace, this is impossible. La-
bels do not have ordinary names. Instead, they are made
up of a combination of tabs and spaces. Because of this,
the naming of labels is purely there to keep uniqueness.
However, since the naming does not matter, we instead
rename the labels to keep them as small as possible. Not
only will this increase the number of labels we will have
available to us, but it will also allow us to keep the Whites-
pace code as small as possible.

See subsection 3.1 for implementation details of this
refactoring.

2.4. [cc] Consolidate conditional
expression
The consolidate conditional expression refactoring is a

refactoring method where one looks at all the different
branches and then checks what branches lead to the same



instructions. We then group these branches into a sin-
gular conditional statement that performs these actions.
Grouping these conditionals gives clarity to code, espe-
cially if you name this expression. While this can be
done in Whitespace using labels and performing the con-
ditional logic under one of these labels, we would like
to argue that this refactoring is still too subjective. We
cannot easily decide whether a conditional statement is
complex and needs changing. We have thus decided not
to implement this refactoring into the tool.

2.5. [cD] Consolidate duplicate
conditional fragments

The consolidate duplicate conditional fragments refactor-
ing checks whether all branches execute the same piece
of code and then extracts this piece out of the branches.
This refactoring makes clear what piece of code always
needs to be executed no matter what conditional branch
you might have taken. This clears up confusion about
what the if-statement tries to separate resulting in cleaner
code. We have chosen not to implement this method.

2.6. [RD] Remove dead code

To explain removing dead code, we will first explain what
dead code is. "Dead or inactive code is any code that has
no effect on the application’s behaviour" [9]. With this
definition, we see that we want to remove code that has
no effect on the application we are writing. While this
is trivial to do as a human, as a robot it is quite hard
to notice when code is unused. Because of this, we will
eliminate unused methods instead, to keep complications
lower.

See subsection 3.2 for implementation details of this
refactoring.

2.7. [Rc] Remove clone/duplicate
methods

Last up, we will be removing duplicate methods. Du-
plicate methods are two methods which have the exact
same functionality. For Whitespace, this will mean to
us that there are two different labels which are followed
by the same code and are not (co)recursive. Our tool is
going to remove these methods since duplicate methods
only cause confusion and do not have any benefits to a
programmer.

See subsection 3.3 for implementation details of this
refactoring.

3. Implementation Details

Listing 1: "The IR of Whitespace"

Push {value: Integer},
PushBig {value: BiglInteger},
Duplicate,

Copy {index: usize},

Swap,

Discard,

Slide {amount:
Add,

Subtract,
Multiply,
Divide,
Modulo,

Set,

Get,

Label,

Call {index: usize},

Jump {index: usize},
JumpIfZero {index: usize},

usize},

JumpIfNegative {index: usize},
EndSubroutine,

EndProgram,

PrintChar,

PrintNum,

InputChar,

InputNum,

For this project, we wanted to rely on a tool which
parses Whitespace code and turns it into an intermedi-
ate representation, and after the refactorings turn the
newly refactored intermediate representation back into
Whitespace code. We have decided to use the Rust library
“whitespace-rs” [3]. This tool has all the features nec-
essary for testing, creating and transforming Whitespace
code. The library has created its own intermediate repre-
sentation, thus saving us the hassle of coming up with
such a representation. The library is able to run our
Whitespace programs, giving us the ability to test for
changes in behaviour.

To show what our Intermediate Representation (IR)
looks like, we first have to explain how Whitespace works.
Whitespace has five different types of commands. These
types all have a different Instruction Modification Param-
eter (IMP). The IMP is a unique sequence of whitespace
characters that selects one of these instruction types.
After choosing an instruction type, you now enter the
corresponding combination of whitespace characters to
select the instruction you want. Some of these instruc-
tions have parameters, which are a sequence of tabs and
spaces, terminated with a Line Feed character. All Whites-
pace programs end with three line feed characters, indi-
cating that there is no more code to parse. Combining
all these instructions gives us a total of 24 instructions
in the Whitespace language.

With this in mind, in Listing 1 you will see the IR




Figure 1: Hello, World in Whitespace and Whitespace IR

of the Whitespace library we have decided to use. All
the 24 commands have their own unique and human-
understandable name. Using this IR, we are able to create
our refactorings in an easier-to-understand language.

In Figure 1, on the left you will see a complete work-
ing program in Whitespace, specifically, a “Hello, world!”
program. In the example, you see a combination of spaces
(the vertical stripes), tabs (the horizontal stripes) and line-
end characters at the end of each line. For most people, it
is not clear how this program should behave. For exam-
ple, some lines contain more than one instruction. That
is why we would like to use the IR. In Figure 1, on the
right you can find the IR version of the same Whitespace
program. Here it becomes clear that every letter first
gets pushed onto the stack by their ASCII code and then
printed. When it finally finished printing the last charac-
ter, the program exits. Using the IR to create Whitespace
programs was convenient for us since it sped up the time
it took to create and analyse test programs.

3.1. [RM] Rename method

Given the small size of the space of possible label names

in Whitespace, the obvious automated refactoring would

be one that minimises label names. Serendipitously, this

functionality was already included in whitespace-rs,

so we could simply rely on their implementation to achieve
our first working refactoring [3].

3.2. [RD] Remove dead code

For our dead code removal, we have created a plan to
detect unused methods and then remove these methods.
Our plan is as follows:

« Look at all our jump instructions and store to
what label they jump to.

« If there is a label which is not jumped towards,
we will eliminate this label with the code corre-
sponding with this label.

Using this approach we are easily able to detect if
methods are not called. There are some downsides to
this method which we will now point out. If there are
two methods which will reference each other that are
not called through the main method, they will both still
be seen as used code. This can be fixed by storing the
label in which the method is called, and seeing whether
this name space is reached via the main method. If it is,
then this piece of code is not dead, otherwise, you can
mark it as dead code.

That would not fix the second issue, however. If the
code mentions a jump to a certain label, but it would
never take this jump, then this called method would still
be seen as a used piece of code. However, This cannot
be true since this part of the code is never reached. One
would have to guarantee that this piece cannot be reached
using more complicated techniques.

Finally, we are just looking at dead methods and not
dead code in general. If code is specifically told to stop
the execution and there are calls to other methods after
stopping execution, these called methods should be seen
as dead. However, since we have not put in checks to
detect this behaviour, these methods are not removed.

A combination of [RD] with [RM] can be seen on Fig-
ure 2 (in pure Whitespace) or on Figure 3 (in Whitespace
IR).

3.3. [RC] Remove clone/duplicate
methods

For removing duplicate methods, we have created a plan
to detect these instances. Our plan is as follows:

« Analyse the code of all the methods.

+ Group methods that have duplicate code.

« Remove grouped methods until there is one left.

«+ Change all jumps from the removed labels to the
grouped method that is left.

With this, we have created a way to remove duplicate
code without changing behaviour. There is one issue
left with this implementation. If two instructions are
swapped which are interchangeable, this plan would not
be comprehensive to detect all method duplication. The



Figure 2: Duplicate method removal: before and after

way to fix this interchangeable code problem is to find
all patterns where code can be interchanged without
changing behaviour and detect duplicate code using these
patterns.

A combination of [RC] with [RM] can be seen on Fig-
ure 4 (in pure Whitespace) or on Figure 5 (in Whitespace
IR).

4. Evaluation

With all of the refactorings finished, we needed some test
programs to test whether the refactorings are applied
correctly and kept their behaviour. This turned out to
be a problem, since writing valid Whitespace code is not

Figure 3: Duplicate method removal: before and after, in IR

human-friendly. However, we solved this problem by
writing in the format of the library their IR. The library
was then able to recognise this format and transform the
IR into a whitespace-encoded file, solving the issue of
writing Whitespace code.

4.1. Testing [RD]

In software languages that permit low-level branching
constructs, there are many ways to use a “method”, and
thus dead code detection must run very advanced code
analysis algorithms and apply domain-specific heuris-
tics. For example, HLASM has an EX(ECUTE) instruc-
tion which can modify the target address of a branching
instruction at runtime. COBOL has a statement that can
ALTER a target of an existing GO TO statement. Older
versions of FORTRAN had computable GOTOs. Luckily,
Whitespace is a bit more straightforward, and making
a call graph of all call and Jump locations to all the
Labels, is sufficient, if we take fall-throughs into ac-
count.

4.2. Testing [RC]

Code clone management has been a topic of research for
many years [12]. Researchers and practitioners identify
many different clone types and clone detection method
families [7]. For this research, we opted for type-1 equiv-
alence (precise character-level equality) of labelled sec-
tions after all possible [RM] and [RD] refactorings have
been applied. Our tool marks clone pairs and in the sec-
ond pass removes one of them and replaces all calls to it
with the calls to the remaining one.



Figure 4: Unused method removal: before and after

5. Concluding Remarks

In this extended abstract, based on recent graduation
project [14], we have described our approach to refactor-
ing in Whitespace. The tool is also available for public
use under GPL-3 license [15]. To answer our main re-
search question about what refactorings would make
sense in Whitespace, we first looked at different refactor-
ing categories. From there we identified seven refactor-
ings that are possible on Whitespace code. To address
the question of implementability, we chose three refac-
torings and implemented them into a tool. Our tool reads
Whitespace code, performs refactorings on this code us-
ing the generated IR, and transforms the IR back into

Figure 5: Unused method removal: before and after, in IR

Whitespace code. This shows that it is possible to create

a tool which detects and applies possible refactorings
on Whitespace. This work shows that even with mini-
mal circumstances, it is always possible to refactor code
even in minimal assembler-like languages. Furthermore,
refactoring code is always useful, be that code clarity or
a minimal code footprint. We conclude that refactoring

Whitespace code is possible and that refactoring Whites-

pace code improves the readability and usability of such
code.

The refactorings proposed in this extended abstract,
are a work in progress. Further research and development
are needed to fully realise the envisioned functionality.
Next to this, more refactorings can be implemented, such
as the different conditional refactorings mentioned in
section 2.

Furthermore, while some testing has been performed,
there could be more tests added. Generating tests to show
results that accurately depict the tool is something worth
considering to be done. Finally, profiling the tool itself
could help identifying useful optimisations to improve its
usability, especially regarding possible future extensions
For anyone who would like to look at the tool or work
on it further, you can find the tool over at GitHub [15].



References

(1]

(2]

(4]

(5]

(7]

(8]

(10]

(11]

(12]

V. Blagodarov, Y. Jaradin, V. Zaytsev, Tool Demo:
Raincode Assembler Compiler, in: T. van der
Storm, E. Balland, D. Varr6 (Eds.), Proceedings of
the Ninth International Conference on Software
Language Engineering (SLE), 2016, pp. 221-225.
doi:10.1145/2997364.2997387.

E. Brady, Whitespace, https://web.archive.org/
web/20150623025348/http://compsoc.dur.ac.uk/
whitespace, 2003.

CensoredUsername, whitespace-rs, https://github.
com/CensoredUsername/whitespace-rs, 2016.

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,
Refactoring: Improving the Design or Existing
Code, Addison-Wesley Professional, 1999.

S. Graue, R. Berge, C. Pressey, et al., brainfuck —
esolang, https://esolangs.org/wiki/Brainfuck, 2005.
A. Gil, V. Zaytsev, Mutative Fuzzing for an Assem-
bler Compiler, in: D. Di Nucci, C. De Roover (Eds.),
Post-proceedings of the 18th Belgium-Netherlands
Software Evolution Workshop (BENEVOL), volume
2605 of CEUR Workshop Proceedings, CEUR-WS.org,
2020, pp. 18-24. URL: http://ceur-ws.org/Vol-2605/
18.pdf.

A. Hamid, V. Zaytsev, Detecting Refactorable
Clones by Slicing Program Dependence Graphs, in:
D. Di Ruscio, V. Zaytsev (Eds.), Post-proceedings
of the Seventh Seminar in Series on Advanced
Techniques and Tools for Software Evolution (SAT-
ToSE 2014), volume 1354 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2015, pp. 37-48. URL: http:
//ceur-ws.org/Vol-1354/paper-04.pdf.

P. Jansen, et al., TIOBE Index for April 2023, https:
//www.tiobe.com/tiobe-index/, 2023.

C. de Kruif, Using 6-NFGs to Identify and Eliminate
Dead Code in C# Programs, Bachelor’s thesis, Uni-
versiteit Twente, 2022. URL: http://purl.utwente.nl/
essays/91890.

R. Lammel, D. Mosen, A. Varanovich, Method and
Tool Support for Classifying Software Languages
with Wikipedia, in: M. Erwig, R. F. Paige, E. Van
Wyk (Eds.), Proceedings of the Sixth International
Conference on Software Language Engineering, vol-
ume 8225 of LNCS, Springer, 2013, pp. 249-259.
doi:10.1007/978-3-319-02654-1_14.

W. F. Opdyke, Refactoring Object-Oriented Frame-
works, Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1992.

C. K. Roy, J. R. Cordy, Benchmarks for Software
Clone Detection: A Ten-Year Retrospective, in:
Proceedings of the 25th International Conference
on Software Analysis, Evolution and Reengineering,
IEEE Computer Society, 2018, pp. 26-37. doi:10.
1109/SANER. 2018.8330194.

(13]

(14]

A. Shvets, Refactoring: Clean Your Code, https://
refactoring.guru/refactoring, 2022.

R. Witmans, Improving Nothingness: Refactor-
ings on Whitespace, Bachelor’s thesis, Universiteit
Twente, 2023. URL: http://purl.utwente.nl/essays/
94374.

R. Witmans, whiteref,
rwitmans/whiteref/, 2023.
D. R. Woods, J. M. Lyon, The INTERCAL Program-
ming Language Reference Manual, https://www.
muppetlabs.com/~breadbox/intercal-man/, 1973.
V. Zaytsev, Modelling of Language Syntax and Se-
mantics: The Case of the Assembler Compiler, Pro-
ceedings of the 16th European Conference on Mod-
elling Foundations and Applications in the Jour-
nal of Object Technology (ECMFA@]JOT) 19 (2020).
doi:10.5381/jot.2020.19.2.a5.

V. Zaytsev, Software Language Engineers’ Worst
Nightmare, in: R. Limmel, L. Tratt, J. De Lara
(Eds.), Proceedings of the 13th International Con-
ference on Software Language Engineering (SLE),
ACM, 2020, pp. 72-85. doi:10.1145/3426425.
3426933.

https://github.com/


http://dx.doi.org/10.1145/2997364.2997387
https://web.archive.org/web/20150623025348/http://compsoc.dur.ac.uk/whitespace
https://web.archive.org/web/20150623025348/http://compsoc.dur.ac.uk/whitespace
https://web.archive.org/web/20150623025348/http://compsoc.dur.ac.uk/whitespace
https://github.com/CensoredUsername/whitespace-rs
https://github.com/CensoredUsername/whitespace-rs
https://esolangs.org/wiki/Brainfuck
http://ceur-ws.org/Vol-2605/18.pdf
http://ceur-ws.org/Vol-2605/18.pdf
http://ceur-ws.org/Vol-1354/paper-04.pdf
http://ceur-ws.org/Vol-1354/paper-04.pdf
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://purl.utwente.nl/essays/91890
http://purl.utwente.nl/essays/91890
http://dx.doi.org/10.1007/978-3-319-02654-1_14
http://dx.doi.org/10.1109/SANER.2018.8330194
http://dx.doi.org/10.1109/SANER.2018.8330194
https://refactoring.guru/refactoring
https://refactoring.guru/refactoring
http://purl.utwente.nl/essays/94374
http://purl.utwente.nl/essays/94374
https://github.com/rwitmans/whiteref/
https://github.com/rwitmans/whiteref/
https://www.muppetlabs.com/~breadbox/intercal-man/
https://www.muppetlabs.com/~breadbox/intercal-man/
http://dx.doi.org/10.5381/jot.2020.19.2.a5
http://dx.doi.org/10.1145/3426425.3426933
http://dx.doi.org/10.1145/3426425.3426933

	1 Motivation
	2 Possible Refactorings
	2.1 [EM] Extract method
	2.2 [IM] Inline method
	2.3 [RM] Rename method
	2.4 [CC] Consolidate conditional expression
	2.5 [CD] Consolidate duplicate conditional fragments
	2.6 [RD] Remove dead code
	2.7 [RC] Remove clone/duplicate methods

	3 Implementation Details
	3.1 [RM] Rename method
	3.2 [RD] Remove dead code
	3.3 [RC] Remove clone/duplicate methods

	4 Evaluation
	4.1 Testing [RD]
	4.2 Testing [RC]

	5 Concluding Remarks

