
Visualising CFG Differences Through Trace
Equivalence

Céline Deknop1,2, Johan Fabry2, Kim Mens1, Vadim Zaytsev3
1ICTEAM institute, UCLouvain, Belgium

2Raincode Labs, Brussels, Belgium
3Formal Methods & Tools, UTwente, The Netherlands

{celine.deknop, kim.mens}@uclouvain.be, johan@raincode.com, vadim@grammarware.net

I. INTRODUCTION

Refactoring is a common step in the process of modernising
software. This task is often delegated to experts, e.g. when
dealing with complex legacy software. An example of such
experts is the company Raincode Labs who provides services
in the realm of legacy modernisation.

When working on code critical to a business, it is important
to build up clients’ trust in refactorings being truly behaviour
preserving. One aid in building trust is formal proofs. Another
is providing clear visualisations of the refactoring process. In
this context, we are working on a comparison of Control-Flow
Graphs (CFGs) generated from programs before and after the
refactoring. In this extended abstract, we briefly cover our
specific use case as well as the techniques used to generate our
CFGs, and finally talk about how we envisage comparing and
visualising them for differences through trace equivalence.

II. USE CASE

One of the services provided by Raincode is PACBASE
migration [8]. PACBASE is a fourth generation language [11]
that generates COBOL code that is neither readable nor
maintainable by humans and is now out of support [3]. To
address this issue, this code is refactored to plain, human-
readable COBOL code using a set of bespoke refactoring rules
that are applied automatically to the code. An explanation of
what PACBASE is as well as more details on the migration
process can be found in our previous work [1].

Building trust in the beginning of such a migration project
has been addressed in our earlier paper [2]. We now focus
on when the code is delivered and the client requires some
kind of guarantee that the result is indeed equivalent to the
original. To achieve this, we extract CFGs from the programs
before and after the migration and compare them. Our goal
is to show that, while the structure of the code has changed
due to the refactoring, it is still semantically equivalent. For
example, transforming two nested IF-statements into a single
one containing both conditions linked by an AND will not
change the behaviour of the program.

This work is the CodeDiffNG AppliedPhD project funded by Innoviris.

III. COMPARING THE GRAPHS

Details on fuzzy parsing [10], the technique used to generate
our CFGs, as well as our algorithm and its results can be found
in our next ICSME paper, preprint made available.

Armed with our graphs, we now endeavour to find the best
way to compare them and to provide a compact visualisation of
the differences, if any. Both the techniques of bisimulation [9]
and trace equivalence [6] could be good possible fits for our
use case. We therefore started to explore existing tools, looking
for one that could directly be applied.

We have not found such an off-the-shelf tool yet. First, most
tools that perform bisimulation produce a binary answer: either
the graphs are equivalent to each other, or they are not. This
is the case for both the well-known CADP [4] as well as the
more recent Keq [7] tools. To achieve our goal of building
trust with the client, we need to have a more detailed and
more nuanced answer. Hobbit [5] seemed promising since it
gives a trace rather than a mere yes/no answer, but it will not
be compatible with CFGs since it takes code as input while
we need a higher level of abstraction. For those reasons, the
technique of trace equivalence was chosen over the one of
bisimulation.

While trace equivalence provides a weaker proof, it will
allow us to give details about where exactly the CFGs are
equivalent and where they are not, returned in a format that
can serve easily as input to a custom-made visualisation tool.

IV. VISUALISING GRAPH DIFFERENCES

Using our comparison tool, we then want to create a
visualisation allowing clients to first see general statistics
about the migration: a list of all the programs, colour-coded
to indicate where our tool is sufficiently sure that the seman-
tics is respected, where it suspects the programs not to be
behaviourally equivalent and where it was not able to decide.
Each of those programs would be clickable to open a more
detailed visualisation in a second window. In this view both
CFGs would appear side by side and the user could hover over
parts of the graphs to see if there is a corresponding structure
in the other graph. Such a visualisation would both increase
the client’s trust as well as allow them to have an easier time
pinpointing where additional testing or verification needs to be
performed in order to assure that the migration went smoothly.

mailto:celine.deknop@uclouvain.be
mailto:kim.mens@uclouvain.be
mailto:johan@raincode.com
mailto:vadim@grammarware.net
https://www.raincodelabs.com
https://grammarware.github.io/codediffng/
https://innoviris.brussels/
https://github.com/CelineDknp/SemiParsingCFG/blob/main/ICSME2022.pdf


REFERENCES

[1] C. Deknop, J. Fabry, K. Mens, and V. Zaytsev, “Improving Software
Modernisation Process by Differencing Migration Logs,” in Proceedings
of the 21st International Conference on Product-Focused Software
Process Improvement (PROFES). Springer, 2020, pp. 270–286, DOI:
10.1007/978-3-030-64148-1 17.

[2] C. Deknop, K. Mens, A. Bergel, J. Fabry, and V. Zaytsev, “A Scalable
Log Differencing Visualisation Applied to COBOL Refactoring,” in
Proceedings of the Ninth Working Conference on Software Visualization
(VISSOFT). IEEE, 2021, pp. 1–11.

[3] Hewlett-Packard Development Company, “Survival Guide to
PACBASETM end-of-life,” https://www8.hp.com/uk/en/pdf/Survival
guide tcm 183 1316432.pdf, Oct. 2012.

[4] INRIA, “CADP Homepage,” https://cadp.inria.fr/, 2022.
[5] V. Koutavas, Y.-Y. Lin, and N. Tzevelekos, “Hobbit: A tool for contex-

tual equivalence checking using bisimulation up-to techniques.”
[6] P. B. Levy, “Infinite trace equivalence,” Electron. Notes Theor.

Comput. Sci., vol. 155, p. 467–496, may 2006. [Online]. Available:
https://doi.org/10.1016/j.entcs.2005.11.069

[7] D. Park, T. Kasampalis, V. S. Adve, and G. Rosu, “Cut-bisimulation and
program equivalence,” 2020.

[8] Raincode Labs, “PACBASE Migration: Flexible Process,” https://www.
raincodelabs.com/pacbase/, 2021.

[9] D. SANGIORGI, “On the bisimulation proof method,” Mathematical
Structures in Computer Science, vol. 8, no. 5, p. 447–479, 1998.

[10] V. Zaytsev, “Formal Foundations for Semi-parsing,” in Proceedings of
the IEEE Conference on Software Maintenance, Reengineering and Re-
verse Engineering (CSMR-WCRE 2014 ERA), S. Demeyer, D. Binkley,
and F. Ricca, Eds. IEEE, Feb. 2014, pp. 313–317.

[11] V. Zaytsev and J. Fabry, “Fourth Generation Languages are Technical
Debt,” International Conference on Technical Debt, Tools Track
(TD-TD), 2019. [Online]. Available: http://grammarware.net/text/2019/
4gl-techdebt.pdf

https://doi.org/10.1007/978-3-030-64148-1_17
https://www8.hp.com/uk/en/pdf/Survival_guide_tcm_183_1316432.pdf
https://www8.hp.com/uk/en/pdf/Survival_guide_tcm_183_1316432.pdf
https://cadp.inria.fr/
https://doi.org/10.1016/j.entcs.2005.11.069
https://www.raincodelabs.com/pacbase/
https://www.raincodelabs.com/pacbase/
http://grammarware.net/text/2019/4gl-techdebt.pdf
http://grammarware.net/text/2019/4gl-techdebt.pdf

