Deriving Modernity Signatures for PHP Systems
with Static Analysis

Wouter van den Brink
Technical Computer Science
University of Twente
The Netherlands
w.vandenbrink @student.utwente.nl

Abstract—The PHP language has undergone many changes
in its syntax and grammar, with respect to both features the
language has to offer as well as the distribution of language
features used by programmers in their projects. We present a
novel method of using grammar usage statistics to calculate a
modernity signature for a PHP system, so that we can determine
its age. The system will aid developers in choosing whether or
not to execute or use a PHP system, without having to perform
an extensive inspection.

I. INTRODUCTION

In its long history and many versions, the PHP language has
undergone many changes [21]. One of the first versions of PHP
used a Perl-like syntax in HTML comments. The rewrite of the
language by Andi Gutmans and Zeev Suraski into an extensi-
ble language made it possible for other developers to add new
functionality to the language, either by modifying its syntax or
by adding new functions and data types. The language is still
evolving nowadays, with the most recent development being
the release of PHP 8.1 in November 2021. This version adds
many major additions to the syntax such as enumerations [4]
and intersection types [1]. These syntax modifications encour-
age PHP programmers to use new programming paradigms
in their code. Other adjustments introduced by new language
versions do not change the syntax, but rather modify the
available functions and their signatures. For example, PHP 8.0
introduced the str_contains (), str_starts_with ()
and str_ends_with () functions. There exists a continuing
migration from resource types to standard class objects, further
elaborated by Karunaratne [12].

A. PHP Language Levels

For every PHP system, we can define its language level as
the minimum major PHP version required to be able to run the
code in the system. For example, version 9.11.0 of the Laravel
framework requires PHP version 8.0.2 or higher. The language
level is then PHP 8.0. Today, information about the minimum
required PHP version and other requirements imposed by

This is the last author’s version of the work. It is posted on the author’s
website for your personal use, and may differ slightly layout-wise from
the official published version. The definitive version was published in the
Proceedings of the 22nd IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM), New Ideas and Emerging Results
Track (NIER).

Marcus Gerhold
Formal Methods and Tools
University of Twente
The Netherlands
m.gerhold @utwente.nl

Vadim Zaytsev
Formal Methods and Tools
University of Twente
The Netherlands
vadim @ grammarware.net

a PHP system is usually contained in a composer. json
file, an artefact produced by the Composer package manager,
available at https://getcomposer.org.

The PHP language level indicated in the composer. json
file by means of the minimum required PHP version does what
it says on the tin: it tells other developers wishing to use a
system what version of PHP they should install to run the code.
However, it does not tell much about the actual modernity,
or rather, the age, of the codebase. While PHP regularly
has backwards incompatible changes between major versions,
much legacy PHP code will still run without problems in later
PHP versions, or will do so with few minor modifications.

As a result, it is possible to advertise a codebase as being
compatible with a recent version of PHP, thereby implying
that the system has been recently maintained, while most of
the code is in fact very old and might contain several bugs
and security issues. The actual modernity of the code is thus
invisible to users of the system without performing extensive
analysis. Thus, we wish to reliably determine the modernity
of a PHP codebase without needing to execute the code, and
without extensive human inspection.

The remainder of the paper will be spent on answering our
main research question: fo what extent can we use grammar
usage statistics to reliably determine the modernity of a PHP
system? We will explain our way of analysing the usage
statistics in § IV, describe the corpus we used in our research
in § V, report on our preliminary findings in § VI and conclude
with a discussion in § VII and closing remarks in § VIIIL.

II. MOTIVATION

Estimating the age of a codebase is a known problem in
software comprehension, useful for many purposes:

e Analysing IDENTIFICATION DIVISIONs and gen-
erated comments is one of the first steps in industrial
legacy codebase analysis, in order to determine the exact
language [13] and dialect [14] which define what tools
are needed to handle the code.

o Age ranges are used to partition projects into new, en-
hancement and maintenance [10].

o For frontend systems, the age of code determines ex-
plorable vulnerabilities that it inevitably contains [17].

mailto:w.vandenbrink@student.utwente.nl
mailto:m.gerhold@utwente.nl
mailto:vadim@grammarware.net
https://getcomposer.org

o For comprehension purposes, the age influences coding
idioms, programming style and required expertise [3].

« For mergers and acquisitions, comparing modernities and
styles of merging codebases leads to better cost estimates.

e The hazard function, failure rate, etc in information
management are age-specific and, depending on the age
of the project, can be negligible or overwhelming [22].

e In quantitative IT portfolio management, the age
of a project helps interpreting the data about its
costs(accounting for inflation and currency reforms) [22].

In this paper, we show how such process can work on PHP,
but the reliance on general language processing technologies
like grammars and tree traversals allows us to envision it being
generalised to any other language with an available parser.

III. RELATED WORK

With PHP being a rather dynamic language, there is a
spectrum of tools for it using dynamic analysis [16], [18],
static analysis or a combination thereof. Since we prefer to stay
with static analysis as far as possible, the most related existing
solutions for us are PhpStorm [9], PHP AiR [7], [8] and the
unnamed framework by Hauzar and Kofron [6]. Most PHP
code analysis tools have a strong focus on standard enforcing
(e.g., smell detection) and security (including instrumentation).

In the study by Hills et al [8], statistical analysis was
performed on feature usage in various open source projects.
Various interesting insights and conclusions come forward, but
no comments are made on the modernity, or lack thereof, of the
code in the corpus. Current efforts in analysing PHP systems
to determine its age are mostly focused on determining the
language level in terms of compatibility. For example, Php-
Storm [9] contains a static analysis tool to determine whether
language features are used which are not supported by the
minimum version specified by the developer:

© Enumerations are only allowed since PHP 8.1
O Arrow function syntax is only allowed since PHP 7.4
O Arrow function syntax is only allowed since PHP 7.4

Another example existing solution is PHP Compatinfo [15],
a tool which for any given system determines the minimum
required PHP version and installed extensions. The tool is
mature, and gives more information on the required PHP
version than PhpStorm. However, it does not give information
on the age of the codebase it analyses.

In general, statistical analysis of languages and programs
is a much more popular topic in natural language processing
(mostly with tree adjoining grammars), but there exist attempts
to use such techniques for language translation [11]. We are
not aware of any projects using construct usage based moder-
nity signatures to analyse and/or compare software systems.

IV. METHODOLOGY

We define modernity as a scale of measuring the age of a
codebase. For the context of PHP, modernity equals language
level (§ I-A), determining which version must be installed to

run the code. In the context of a legacy codebase of COBOL
generated from a 4GL [23], it could mean phases of 4GL’s
existence (e.g., “IEF” in the first comment dates the code back
to 1990-1996, “Composer” to 1996-1997, “COOL:GEN” to
1997-2004, “Advantage Gen” to 2004-2012 and “CA Gen”
to 2012+, while the language largely stayed the same [2]).

Our modernity signature takes a form of an n-tuple with
n being the number of PHP language levels we consider
(currently we support 13: 5.2-5.6, 7.0-7.4 and 8.0-8.2). Every
element of this tuple is supposed to be a quantitative repre-
sentation of the extent to which the analysed code base looks
like code written to be executed by this language level.

The modernity signature will use grammar usage statistics
to derive the modernity of a code base. Consider, for example,
the following grammar definition, which defines the grammar
for attributed statements in the PHP language.

attributed_statement ::=
function_declaration_statement
class_declaration_statement
trait_declaration_statement
interface_declaration_statement
enum_declaration_statement ;

\

\

|

The grammar defines an attributed statement to be the

declaration of either a function, a class, a trait, an interface

or an enumeration. In other words, there are five possibilities

to choose from when creating an attributed statement in this

grammar. By analysing a PHP system, we can add annotations
to the grammar of how often the different paths are taken:

attributed_statement ::=

[33%] function_declaration_statement
[48%] class_declaration_statement
[1%] trait_declaration_statement
[11%] interface_declaration_statement
[7%] enum_declaration_statement ;

\
\
|
In this example, enumerations are chosen in 7% of the cases,
but enumerations were only introduced in PHP 8.1.0. Thus,
we know that this code base will require at least language
level 8.1. By adding metadata on the language level associated
with the different paths in the grammar, and by adding usage
statistics to the different possibilities offered by the grammar,
we can infer the modernity signature of a PHP code base.
We have used the PHP Parser from https://github.com/nikic/
PHP-Parser which is the most up to date existing parser of
PHP (and thus capable of dealing with all possible versions
of PHP), to build our own library on. We parse the code and
annotate each node of the resulting parse trees with a range
(proxied by minimum and maximum for performance reasons)
of language levels that support that construct. Determining
these ranges was mostly straightforward since it is known
which language version introduced which constructs to the
language, with some very specific changes in the grammar, like
syntactically preventing octal numbers from overflowing [5].
We had to get slightly creative on this step in order to
declutter the signature as much as possible, up to considering
disregarding counting all the features which were introduced
in the oldest language version we supported (5.2). All this

https://github.com/nikic/PHP-Parser
https://github.com/nikic/PHP-Parser

designing and tweaking happened only while applying our tool
to the projects from the training part of the corpus.

Each leaf of each AST gets a range of language levels/ver-
sions assigned to it, but once this data is accumulated per
AST node type, the process gets somewhat more complex.
Consider the following simplified example. Let us suppose that
a particular node Name in a tree could only be an Identifier
in one version of a language, could be either Identifier or
an Expression in the second version, and only an Expression
in the latest version of the language. Focusing on these
three levels, our tool from six occurrences of a Name could
have collected tuples (4,4, 0) for the Identifier which occurs
four times across the tree, and (0,2,2) for the Expression.
We normalise both tuples such that their maximum values
become 1 (and lower ones are scaled down proportionally),
and calculate the resulting signature for Name as follows:

4f5 - (1,1,0) + 2/ - (0,0,1) = (2/3,1,1/3)

If a Name occurs in another context next to a node Type
with normalised signature (1/2,1/3,1), and there are 30 Name
nodes and 20 of Type nodes within some parent context, then
the signature of that context will be:

30/50 ’ <2/3’ L 1/3> + 20/50 : <1/27 1/37 1> = <3/5v 11/157 3/5>

This signature gets normalised as (9/11,1,9/11), and the
calculation continues. We continue traversing the nonterminals
(AST node types), keeping all counters normalised such that
the maximum value in each is 1, and then multiplying collected
language level estimations of lower nodes by how likely
such nodes were to occur according to the observed code.
Eventually, the weighted sum is calculated for the entire AST.
Now, the weight of the tuples is still equal to the distribution
of the occurrence of the node type. Again, in this weighted
sum, the tuples are normalised before the weighted sum is
calculated. To calculate the signature for an entire PHP system,
the weighted sum of the normalised tuples is calculated in a
similar way. Then, the weight of the tuple is the ratio of file
size to the sum of file sizes. For example, the tuple of a file
of 500 bytes in a directory with 5000 bytes of PHP code will
be granted a weight of 0.1 in the sum.

Our implementation is open source and can be explored at
https://github.com/WoutervdBrink/PHP-Modernity- Signature,
respecting the open source MIT license. We welcome forks
and accept pull requests.

V. CoRPUS CONSTRUCTION

We have collected a few PHP systems to test our moder-
nity signature, preferring well-known projects of which many
historical versions were available. Our corpus consisted of:

Project Home page Versions
CakePHP https://cakephp.org 29
Joomla! https://www.joomla.org 18
Laravel https://laravel.com 16
phpMyAdmin https://www.phpmyadmin.net 22
Symfony https://symfony.com 32
WordPress https://wordpress.org 44
Codelgniter https://codeigniter.com 8

Guzzle HTTP https://docs.guzzlephp.org/ 37
Monolog https://seldaek.github.io/monolog 36
PHPUnit https://phpunit.de 57

There is no available curated corpus of PHP systems readily
available for mining/evolution research. Thus, we assembled
a new corpus with two parts: the training set and the testing
set. All versions of all systems (299 in total) were annotated
with the time of their release (either available explicitly or
from the first git commit in the release tag) as belonging
to a particular PHP level. The repositories in the top part of
the table were used for developing the modernity signature
that could estimate the age of the system, and visualisations
obtained from them were actively used to develop and tweak
the definition of the signature; and the ones on the bottom were
used to verify how good those signatures work. As a matter
of principle and cleanness, we have not changed the design of
the modernity signature after the testing set was used.

VI. PRELIMINARY RESULTS

The training phase showed us that the signatures tend to be
heavily skewed to the right, independent of the release date of
the software — accumulated results can be seen in Figure 1.
This is probably due to the fact that, as explained above, most
node types in the PHP language have been supported since the
earliest versions, no matter their form. To compensate for this,
we present the signatures without the values representing these
older language levels in Figure 2. Next, we show the signatures
calculated in the testing phase. In Figure 3, the results are first
shown grouped by project. The values corresponding to the
earliest language levels have been omitted.

(a) With earliest levels

(b) Without earliest levels

Fig. 1: Modernity signatures in the training phase, with and
without signature values for the earliest language levels.

https://github.com/WoutervdBrink/PHP-Modernity-Signature
https://cakephp.org
https://www.joomla.org
https://laravel.com
https://www.phpmyadmin.net
https://symfony.com
https://wordpress.org
https://codeigniter.com
https://docs.guzzlephp.org/
https://seldaek.github.io/monolog
https://phpunit.de

(a) CakePHP

(d) phpMyAdmin

(b) Joomla!

(e) Symfony

82 2005

(c) Laravel

s
2015
o

&
2015
5 &
& &
&

2010

(f) WordPress

Fig. 2: Modernity signatures calculated in the training phase, grouped by project, without signature values for the earliest

language levels

VII. DISCUSSION

In Figures 2 and 3, we see different patterns in how the
signature changes over time. An unbiased signature would
have a similar shape for two different systems developed in the
same year, but unfortunately, this is not the case. We can thus
conclude that there exists a bias in our signature. This can be
partly explained by the nature of the projects in the corpus. We
remark that different project authors have different strategies
for maintaining their products. Compare, for example, the
charts for Laravel and Joomla!, where it becomes apparent
that the Joomla! team seems to strongly prefer supporting as
much PHP versions as possible, while newer Laravel versions
use newer PHP features.

This change in adoption of newer language levels is ex-
plained by the intended user base of the software. The average
Joomla! user will use Joomla! on a shared web hosting envi-
ronment, where they do not control the installed PHP version
and need to deal with dependencies on dozens of extensions
(some of which are legacy on their own). Unfortunately, older
versions are still actively in use today [20], and the Joomla!
developers will have to account for this. On the other hand,
Laravel is mostly used by “web artisans” (the term used on
the main website of Laravel) with full access to the server on

which their project is deployed, and will thus prefer to use the
latest stable PHP version and the features it introduces.

For most projects in the corpus, there is a strong connection
between the release date of a PHP system and the shape of the
modernity signature. The key exception is Joomla!, where this
pattern appears only starting from the versions released after
2021. The exact nature of the connection differs significantly
among projects. Laravel, for example, starts showing skewed
signatures as early as 2015, while WordPress only starts
behaving like this in 2020. We conclude that the signature is
able to determine the relative age of a PHP system, but in its
current form is not able to determine an absolute release date.
It remains to be investigated how much of this observation is
based (a) on the very concept of modernity based on grammar
usage statistics, (b) on the peculiarities of PHP, (c) on noise
and biases in our corpus.

VIII. CONCLUSION AND FUTURE WORK

We have built a prototype for calculating modernity signa-
tures for PHP code. Our tool uses an existing PHP parser,
implements several AST visitors and uses weighted sums
to converge to one n-tuple of version support estimations.
The approach looks promising, and even though it displays

(a) Codelgniter

Value

2
N2
2015 o@

L '
Mg 73
leve/ 8.0

8.1

8.2

(c) Monolog

.150
125

o
1100 3
g

.050
.025

.000

2
&
%3
2015@?/

8.1

8.2

(b) GuzzleHTTP

(d) PHPUnit

Fig. 3: Modernity signatures calculated in the testing phase, grouped by project, without signature values for the earliest

language levels.

certain bias, that bias can be explored and exploited further.
Perhaps such language usage signatures are a combination
of modernity signatures and some sort of coding convention
signature. It is known from prior research by Farooq et al that
language feature adoption typically follows one of the three
patterns: a steadily rising one (the working hypothesis for this
paper as well), a one time spike (the feature gets massively
adopted right after release and then massively abandoned) and
a “hype curve” pattern with a slowly rising adoption, a peak
of disappointment, a trough of disillusionment and an even

slower second-generation adoption phase [3]. If these patterns
are known per feature, it would be interesting in the future
to experiment with some normalisation of the signatures to
account for their shape.

In conclusion, we have shown that it is plausible to use
grammar usage statistics to determine the modernity of a PHP
system. At the moment our signature is able to determine the
relative age of a system, i.e. which of two versions of the
same software are newer, but not the absolute age. There is
room for improvement so that we will be able to determine

the absolute, rather than relative, age of a system.

Originally we have also intended to use Phabricator [19]
in the testing phase. Unfortunately, it became apparent that
Phabricator does not have a versioning scheme, but rather
recommends the user to download and run whatever is cur-
rently in the main branch of the Git repository. The testing
and validation of the signature could be expanded with the
inclusion of various snapshots of the repository.

Another direction to explore in the future would be to exper-
iment with the use of weighted sums. As § IV has shown, there
is a lot of normalisation and weighting already necessary to
condense the knowledge obtained from codebase traversal, into
a single signature, and we would rather base those weighting
and normalising strategies on statistical considerations than
on intuition. One could further research various alternative
methods of reducing the language level tuples in order to
improve the signature.

REFERENCES

[1] G. P. Banyard, “PHP RFC: Pure intersection types,” The PHP
Group, Tech. Rep., 2021. [Online]. Available: https://wiki.php.net/rfc/
pure-intersection-types

[2] CA Technologies, “5 Ways DevOps Practices Boost Innovation
on the Mainframe,” CS 200-227965, https://docs.broadcom.com/doc/
5-ways-devops-practices-boost-innovation-on-the-mainframe, 2016.

[3] A. Farooq and V. Zaytsev, “There Is More Than One Way to Zen
Your Python,” in Proceedings of the 14th International Conference
on Software Language Engineering (SLE), E. Visser, D. Kolovos,
and E. Soderberg, Eds. ACM, 2021, pp. 68-82. [Online]. Available:
https://doi.org/10.1145/3486608.3486909

[4] L. Garfield and I. Tovilo, “PHP RFC: Enumerations,” The PHP
Group, Tech. Rep., 2020. [Online]. Available: https://wiki.php.net/rfc/
enumerations

[5] S. Golemon, “PHP RFC: Fix Overflow in Octal Parsing,” The PHP
Group, Tech. Rep., 2016. [Online]. Available: https://wiki.php.net/rfc/
octal.overload-checking

[6] D. Hauzar and J. Kofron, “Framework for Static Analysis of PHP
Applications,” in Proceedings of the 29th European Conference on
Object-Oriented Programming, ser. Leibniz International Proceedings

in Informatics, vol. 37. Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2015, pp. 689-711. [Online]. Available: https:
//doi.org/10.4230/LIPIcs. ECOOP.2015.689

[71 M. Hills and P. Klint, “PHP AiR: Analyzing PHP systems

with Rascal,” in Proceedings of the Software Evolution Week:
Conference on Software Maintenance, Reengineering, and Reverse
Engineering, S. Demeyer, D. Binkley, and F. Ricca, Eds. IEEE
Computer Society, 2014, pp. 454-457. [Online]. Available: https:
//doi.org/10.1109/CSMR-WCRE.2014.6747217

[8] M. Hills, P. Klint, and J. J. Vinju, “Enabling PHP Software Engineering
Research in Rascal,” Science of Computer Programming, no. 134,
pp. 3746, 2017. [Online]. Available: https://doi.org/10.1016/J.SCICO.
2016.05.003

[9] JetBrains, “Code inspections — PhpStorm,” https://www.jetbrains.com/

help/phpstorm/code-inspection.html, 2022.

C. Jones, “Patterns of Large Software Systems: Failure and Success,”

Computer, vol. 28, no. 3, pp. 8687, 1995.

S. Karaivanov, V. Raychev, and M. T. Vechev, “Phrase-Based Statistical

Translation of Programming Languages,” in Proceedings of the ACM

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming & Software (Onward!), A. P. Black, S. Krishnamurthi,

B. Bruegge, and J. N. Ruskiewicz, Eds. ACM, 2014, pp. 173-184.

[Online]. Available: https://doi.org/10.1145/2661136.2661148

A. Karunaratne, “PHP’s Resource to Object Transformation,”

PHP:Watch, https://php.watch/articles/resource-object, 2020.

J. Kennedy van Dam and V. Zaytsev, “Software Language Identification

with Natural Language Classifiers,” in Proceedings of the 23rd

IEEE International Conference on Software Analysis, Evolution, and

Reengineering: the Early Research Achievements track (SANER ERA),

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]
[21]

[22]

[23]

K. Inoue, Y. Kamei, M. Lanza, and N. Yoshida, Eds. IEEE, 2016, pp.
624-628. [Online]. Available: https://doi.org/10.1109/SANER.2016.92

R. Lammel and C. Verhoef, “Cracking the 500-language problem,”
IEEE Software, vol. 18, no. 6, pp. 78-88, 2001. [Online]. Available:
https://doi.org/10.1109/52.965809

L. Laville, “PHP Compatinfo Home Page,” https://llaville.github.io/
php-compatinfo/6.x/, 2022.

E. Merlo, D. Letarte, and G. Antoniol, “Automated Protection of
PHP Applications Against SQL-injection Attacks,” in Proceedings
of the 11th European Conference on Software Maintenance and
Reengineering, R. L. Krikhaar, C. Verhoef, and G. A. Di Lucca,
Eds. IEEE Computer Society, 2007, pp. 191-202. [Online]. Available:
https://doi.org/10.1109/CSMR.2007.16

I. Muscat, “Web Vulnerabilities: Identifying Patterns and Remedies,”
Network Security, vol. 2016, no. 2, pp. 5-10, 2016. [Online]. Available:
https://doi.org/10.1016/S1353-4858(16)30016-2

I. Papagiannis, M. Migliavacca, and P. R. Pietzuch, “PHP aspis:
Using partial taint tracking to protect against injection attacks,” in
Proceedings of the Second USENIX Conference on Web Application
Development (WebApps), A. Fox, Ed. USENIX Association, 2011.
[Online]. Available: https://www.usenix.org/conference/webapps11/
php-aspis-using- partial- taint- tracking- protect-against-injection-attacks

E. Priestley, “Phacility — Phabricator,” https://www.phacility.com/
phabricator/, 2010.

B. Roose, “Php version stats: July, 2022, https://stitcher.io/blog/
php-version-stats-july-2022, 6 2022.

The PHP Documentation Group, “PHP: History of PHP,” https://www.
php.net/manual/en/history.php, 2022.

C. Verhoef, “Quantitative IT portfolio management,” Science of
Computer Programming, vol. 45, no. 1, pp. 1-96, 2002. [Online].
Available: https://doi.org/10.1016/S0167-6423(02)00106-5

V. Zaytsev and J. Fabry, “Fourth Generation Languages are Technical
Debt,” in International Conference on Technical Debt, 2019, Extended
Abstract, http://grammarware.net/text/2019/4gl-techdebt.pdf.

https://wiki.php.net/rfc/pure-intersection-types
https://wiki.php.net/rfc/pure-intersection-types
https://docs.broadcom.com/doc/5-ways-devops-practices-boost-innovation-on-the-mainframe
https://docs.broadcom.com/doc/5-ways-devops-practices-boost-innovation-on-the-mainframe
https://doi.org/10.1145/3486608.3486909
https://wiki.php.net/rfc/enumerations
https://wiki.php.net/rfc/enumerations
https://wiki.php.net/rfc/octal.overload-checking
https://wiki.php.net/rfc/octal.overload-checking
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.1109/CSMR-WCRE.2014.6747217
https://doi.org/10.1109/CSMR-WCRE.2014.6747217
https://doi.org/10.1016/J.SCICO.2016.05.003
https://doi.org/10.1016/J.SCICO.2016.05.003
https://www.jetbrains.com/help/phpstorm/code-inspection.html
https://www.jetbrains.com/help/phpstorm/code-inspection.html
https://doi.org/10.1145/2661136.2661148
https://php.watch/articles/resource-object
https://doi.org/10.1109/SANER.2016.92
https://doi.org/10.1109/52.965809
https://llaville.github.io/php-compatinfo/6.x/
https://llaville.github.io/php-compatinfo/6.x/
https://doi.org/10.1109/CSMR.2007.16
https://doi.org/10.1016/S1353-4858(16)30016-2
https://www.usenix.org/conference/webapps11/php-aspis-using-partial-taint-tracking-protect-against-injection-attacks
https://www.usenix.org/conference/webapps11/php-aspis-using-partial-taint-tracking-protect-against-injection-attacks
https://www.phacility.com/phabricator/
https://www.phacility.com/phabricator/
https://stitcher.io/blog/php-version-stats-july-2022
https://stitcher.io/blog/php-version-stats-july-2022
https://www.php.net/manual/en/history.php
https://www.php.net/manual/en/history.php
https://doi.org/10.1016/S0167-6423(02)00106-5
http://grammarware.net/text/2019/4gl-techdebt.pdf

