
A Refined Model of Ill-definedness in
Project-Based Learning

Arthur Rump
Computer Science

University of Twente
The Netherlands

a.h.j.rump@student.utwente.nl

Vadim Zaytsev
Formal Methods and Tools

University of Twente
The Netherlands

vadim@grammarware.net

ABSTRACT
Project-based courses are crucial to gain practically relevant knowl-
edge in modelling and programming education. However, they
fall into the “ill-defined” domain: there are many possible solu-
tions; the quality of a deliverable is subjective and not formally
assessable; reaching the goals means designing new artefacts and
analysing new information; and the problem cannot always be
divided into independent tasks. In this paper, we refine the exist-
ing two-dimensional (verifiability and solution space) classification
of ill-defined classes of problems, contemplate methods and ap-
proaches for assessment of projects, and apply the model to analyse
two study units of two different computer science programmes.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
learning objectives
ACM Reference Format:
Arthur Rump and Vadim Zaytsev. 2022. A Refined Model of Ill-definedness
in Project-Based Learning. In ACM/IEEE 25th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’22 Companion),
October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3550356.3556505

1 INTRODUCTION
Project-based learning is a student-centred form of learning based
on the constructivist ideas that learning is context-specific, that
students learn best when they are actively involved in the learning
process and that learning happens through social interaction and
the sharing of knowledge [9]. Although not every implementation
of a project means that project-based learning is applied, it is also
difficult to use projects purely for summative assessment because
students will almost always learn new things when working on a
complex project. This means that some of the benefits of project-
based learning are likely to occur to some degree in any course that
uses a project.

A project in project-based learning has two essential character-
istics: there is a driving question, often in the form of a problem

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems (MODELS
’22 Companion), October 23–28, 2022, Montreal, QC, Canada, https://doi.org/10.1145/
3550356.3556505.

to be solved, and the learning activities result in a set of artefacts
or products, which represent students’ solutions and reflect their
knowledge [4, 10]. The question and activities can be determined
by students or teachers, but it is important that the question is not
so constrained that the outcomes are predetermined. Blumenfeld
et al [4, p.372] note that “students’ freedom to generate artefacts
is critical, because it is through this process of generation that
students construct their knowledge.”

This freedom in generating artefacts that become the solution,
eventually delivered to the teachers for grading, leads to many
issues in assessment of that solution. Such problems are called
“ill-defined”, and this ill-definedness of a project is crucial to let
students construct their knowledge and thus learn. We will recall
the definition of ill-defineness and link it to our situations in § 2.
Then, in § 3, we will introduce two study units of two different
programs at our university, each being the first opportunity for
corresponding students to model an entire software system by
themselves by applying principles of object-oriented design. In § 4
we crystallise lessons learnt from analysing these two into concrete
refinements on the existingmodel of ill-definedness. In § 5, we apply
the resulting framework to the two study units we just introduced.
The paper ends with § 7 which draws some conclusions.

2 ILL-DEFINEDNESS
A word that is commonly used for problems that do not have a
definite solution is ill-defined. Such problems have an indefinite
endpoint, meaning that determining if the goal has been reached is
complex and imprecise, and it is one of three criteria Simon [15] (as
cited in [5], we lack access to the original) describes for calling a
problem ill-defined. The other two features they find are an indefi-
nite starting point, meaning that the problem description is vague or
incomplete, and unclear strategies for finding a solution. Wherever
a project description mentions “good” solutions or talks about a free
selection of additional features, we see ill-definedness. Additionally,
software engineering has, in general, no single strategy for finding
a solution: it always involves some creativity that starts to manifest
at use case diagrams and persists till the last line of code.

Lynch et al describe five features of an ill-defined domain [13]:
• There are multiple solutions, and which one is better is partly
subjective. This is certainly the case for project-based learn-
ing: every group will likely have very different solutions,
and which follows a better style is to some degree a matter
of taste.

• There is no formal theory for determining a problem’s outcome
and testing its validity. There is no formal theory of modelling
and programming that can derive a correct and valid program

https://doi.org/10.1145/3550356.3556505
https://doi.org/10.1145/3550356.3556505
https://doi.org/10.1145/3550356.3556505


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Arthur Rump and Vadim Zaytsev

from a problem description. As noted before, programming
involves some creativity.

• The task-structure is ill-defined: it involves the design of new
artefacts or analysis with incomplete information. The goal of
projects is the design of a new artefact, so the task structure
is ill-defined.

• The domain involves abstract concepts without absolute defi-
nitions. The project descriptions are written in natural lan-
guage, the meaning of which is not absolutely defined.

• The problem can not be subdivided into smaller independent
subproblems. While engineering does involve subdividing
tasks into smaller subproblems, these smaller parts are of-
ten not independent. Separation of features in classes, for
example, can always be done in a number of different ways,
and the resulting system will still function correctly, even
though components of one system will be interdependent
with other components of the same system is a different way
than that would happen in a different implementation.

Note how Lynch et al look at a whole domain when considering
ill-definedness. They do not see a distinction between domains and
problems and use the word “domain” to emphasise that the goal of
learning is general domain knowledge rather than an answer to a
specific problem. Fournier-Viger et al [5] argue that “the domain
dimension is debatable, especially from the point of view of ITS
researchers, because the main goal of building an ITS is to provide
support to the learner at the level of individual tasks. Since a domain
can contain both ill-defined and well-defined tasks, it does not seem
relevant to discuss the ill-definedness of a domain as a whole.”

Similarly, we argue that classification of a project as a whole
is not relevant since a project is assessed based on many criteria.
Instead, we should consider the ill-definedness of each criterion
separately. Teachers do not just look at a project and grade it on
a scale from 1.0 to 10.0 because that is indeed very difficult with
an ill-defined problem. Instead, they use a list of criteria which are
(hopefully) less ill-defined, or at least smaller in scope, so that the
assessment task becomes more manageable. In § 3, we will take a
closer look at the criteria in our projects.

One might ask: if ill-defined problems, like projects, are so diffi-
cult to assess, thenwhy dowe use ill-defined problems in education?
(And why do we assess them directly, since some authors claimed
we should assess gained insights instead of deliverables [1]). While
ill-definedness is not a great feature when it comes assessment, it
can be very beneficial for the learning process to work on com-
plex problems. The class of ill-defined problems is very similar
to the class of wicked problems [12], which are commonly used
in challenge-based learning to teach real-world problem solving
skills [6]. Project-based learning can be seen as a well-controlled,
focused and contained form of challenge-based learning.

3 CASE STUDIES
The following descriptions are based on course materials, like the
course manual, project description, and assessment forms. The first
course we consider is the programming part of the module Soft-
ware Systems (PSS from now on) for the Bachelor of Technical
Computer Science. It is the second module in the study programme,
and students are introduced to software modelling (conceptually in

general and concretely in UML) and programming (in Java) follow-
ing objected-oriented principles, building on a short introduction
to imperative programming with Python in the first module. The
core of the module consists of a design part and a programming
part, each weighing half of the grade, totalling 12 EC. Each part is
assessed through a written exam and a project. The final project
takes place in the final four weeks of the module and is executed
in teams of two students. According to the intended learning out-
comes (ILOs from now on), students should be able to implement,
document and test software of average size (10–20 classes).

The goal of the project is to develop a client-server multiplayer
game. The game varies from year to year, but it is usually a variation
on a board game where players take turns: one example would be
three-dimensional tic-tac-toe. Students get a description of the
game rules, the protocol that their client and server should use
to communicate and a reference server and client to test their
implementations. The client should have a textual user interface
(TUI) that shows the game state to the user and allows them to
make moves. The client should also include a computer player that
can make moves automatically or to give hints to the user.

Besides the correct implementation of this functionality, the
project is also assessed on the design and quality of the code, (auto-
mated) tests, documentation, and the explanations and reflection in
the report. Students are able to get bonus points by implementing
extra features like a chatbox or authentication, by handing in a min-
imal sufficient version a week before the deadline and by scoring
high in a tournament of computer players.

The second example is the 3 ECAlgorithms forCreative Tech-
nology course (ACT) that is part of the fourth module of the Bache-
lor of Creative Technology. In previous modules, students have
got some experience in programming with the Processing lan-
guage (https://processing.org) and the Arduino environment. In this
course, students continue with Processing and learn more about
object-oriented structure in larger programs, as well as algorithms
to represent physical phenomena in their animations, like flock-
ing and mass-spring-damper systems. The students are assessed
through a project and oral examination about their project. The
project is an individual assignment, though students are allowed
to collaborate as long as they can explain every part in an oral
examination. The project is executed in week 8 and 9 of the course,
followed by oral exams in the final week.

For this project, there are few functional requirements. Students
can choose their own topic for the project, as long as they combine
at least three topics covered in the course. The requirements instead
focus on the complexity of the program: there should be enough
interaction with the user, there should be at least two (non-trivial)
classes, etc. The code is also assessed on programming style and
code quality. Besides the code, the project is assessed on the ap-
pearance of the running program, documentation and the student’s
explanations during an oral exam.

While these projects are quite different in the freedom students
get to set their own goals, both projects give students a large degree
of freedom in the way they implement their solution. This is one
of the most important properties of projects when it comes to
automated assessments: even if the functional requirements are
well-specified, like in the PSS project, no two students will create
the same program, let alone if they are given the freedom to choose

https://processing.org


A Refined Model of Ill-definedness in Project-Based Learning MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

their own functional requirements. In a project, students have so
many choices to make that it becomes infeasible to anticipate every
choice in a tool.

3.1 Requirements and Rubrics
With both projects students get a description of what they are ex-
pected to create, what the expected functionality is and how the
project will be assessed. Both descriptions contain a list of require-
ments that the project should meet. The PSS project description
gives, for example, some detailed functional requirements [17, p.22]:

• When the server is started, it will ask the user to input a port
number where it will listen to. If this number is already in
use, the server will ask again.

• When the client is started, it should ask the user for the
IP-address and port number of the server to connect to.

• When the client is controlled by a human player, the user
can request a possible legal move as a hint via the TUI.

The ACT project description specifies, for example, how much
original work should be in a student’s project [7, p.23]:

• At least two (nontrivial) classes have to be written by your-
self (not from a tutorial or elsewhere from the web.

• Flocking and particles should not both be from a tutorial or
other sources on the web, at least one of them self written.

• Most code of significant complexity must be self-written.

Both projects also use a rubric for the grading process. Because
the main goal for the projects is summative assessment, these grad-
ing rubrics also describe the primary assessment criteria. For the
Software Systems project, this rubric is nine pages long, five of
which list requirements for the code and the other four describe the
requirements for the report. The rubric is used to grade different
aspects of the project, like game logic, networking, structure and
design patterns. For each aspect, there are five columns ranging
from poor to excellent, each of which contains one or more require-
ments that should be fulfilled to receive the corresponding grade.
For the game logic, the levels are described as follows [17, p.134]:

• 1 (poor/missing): Common execution flows in the game logic
are incorrect: basic game rules are not implemented correctly,
gameover conditions are not applied correctly, etc.

• 3 (subpar): One of the following is applicable:
– Game logic is almost correct except for corner cases.
– Implementation supports only a few games or only one
game simultaneously.

• 6 (sufficient): All game rules are correctly implemented.Many
games can be played independently.

• 8 (good): As sufficient and one of the following:
– Game logic methods do not crash with unchecked excep-
tions from incorrect usage by other classes (invalid moves,
negative indices, etc).

– Game logic is thread-safe (no race conditions even when
used from multiple threads)

• 10 (excellent): As good and both points apply.

From this line in the rubric, we can extract a few assessment
criteria, like “game rules are implemented correctly” (with three
levels: fully correct, corner cases permissing, incorrect).

The ACT project also uses a rubric, which fits on a single page
and looks like an evaluation form: it contains a list of requirements
which the assessor canmark to bemet on an exceptional, acceptable,
amateur or unsatisfactory level. Unlike a normal rubric, there are no
more specific criteria for each of these levels. The form is split in two
parts: the first part lists the features the project could incorporate
(like randomness, mechanics, particles etc), while the second part
describes quality and correctness criteria, like “pixels not hardcoded
in classes” and “no unused variables in code”. To summarise, the
assessment criteria are formulated like requirements, but some of
them have an associated minimal grade, while others influence the
final grade depending on the level.

Because of these similarities, we will treat “criteria” and “re-
quirements” as synonymous, even though conceptually they have
a subtly different meaning: a requirement is given apriori to guide
the implementation, while a criterion is used to assess a solution
after it has been created. In practice these two often coincide. Both
the PSS and ACT project descriptions urge students to read the
assessment criteria before starting the project, turning them into
de facto requirements.

3.2 Grade Forming
One can convert judgement to grades in multiple ways. Biggs and
Tang [3, p.238] describe three options:

(1) Quantitative marking: counting how many points have been
made, or how many criteria have been met. Here it does not
matter which items are correct, as long as enough points are
accumulated (generally, half of them is sufficient).

(2) Analytic assessment: the assignment is reduced to indepen-
dent components or aspects, which are each assessed quali-
tatively according to a rubric. Each aspect receives a grade
and the final grade is determined as a (weighted) average of
all subgrades.

(3) Holistic assessment: the task is viewed as a whole and graded
directly, based on the criteria. This is more similar to the
acceptance process for peer reviewed publications: an editor
or programme chair makes a judgement based on the value
of a paper and the advice given by reviewers. The result is not
determined by averaging the decisions of each reviewers, but
by taking into account their arguments and making a holistic
decision. For example [3, p.258], such a scheme can give the
highest grade to students who have clearly met all the ILOs
andwent beyond established practice; somewhat lower grade
when ILOs have been met well, even lower if they are met
only satisfactorily, and a failing grade only if some ILOs have
not been met at all (or in case of plagiarism/non-submission).
Notable is that, typically, in a holistic assessment all criteria
have to be met sufficiently, whereas marking and analytic
assessment allow students to compensate the weak spots of
their performance by scoring higher on other aspects. An
holistic grading scheme could also allow that, of course, if
that were desirable according to the ILOs.

The PSS project uses analytic assessment: each aspect of the
project is graded according to a row in the rubric and the final grade
is determined by taking the average of all those subgrades. In ACT,
a more holistic approach is used, though the criteria for awarding a



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Arthur Rump and Vadim Zaytsev

certain grade are not clearly specified. Instead, the assessment team
relies mainly on their own expertise and ability to judge quality,
while ensuring consistency by carrying out assessment in pairs with
changing formations. The criteria on the evaluation form are used
to judge the student’s work and give feedback, and then deciding on
a grade by taking into account those judgements. It is also the case
that students are not able to compensate for a clearly insufficient
aspect by performing strongly on other aspects: a program with
bad structure will be awarded with an insufficient grade, even if it
is quite good in all other aspects.

These different approaches mean that criteria are structured in
many different ways. A list of criteria is sufficient for marking,
while analytic assessment requires criteria to be listed in a rubric
where each row has an importance indicated by its weight in the
average. In that case the criteria could be specific to a certain level
(column) of the rubric, or a criterion can itself be judged with a
certain level as “output". This also holds for holistic assessment,
where rubrics are typically used to judge each aspect, but here the
rubric does not contain any information about the grading process
or importance of each aspect.

Marzano andMiedema [14] also recommend using rubrics, though
they directly assess the learning outcomes rather than certain crite-
ria. The goal of this rubric is not describe an ILO in more detail, but
rather to describe the different levels of mastery of that ILO. In their
scale from score 0 to 4, they recommend setting the ILO at level 3,
then level 4 could be about exceeding expectations, level 2 about
partial accomplishment, level 1 about questionable conformance
and level 0 means the lack of understanding. Note the similarity of
this structure with the Structure of the Observed Learning Outcome
(SOLO) taxonomy [2, 3]. This structure could also be applied to a
criterion: in that case the rubric describes multiple levels of mastery
for a single criterion, rather than criteria for different grades of an
aspect.

3.3 Properties and Categories of Criteria
We have found five general properties of assessment criteria. First,
a criterion relates to a certain aspect of the artefact (e.g., for PSS
these include networking functionality, clean code and structure).
Second, a criterion is more or less ill-defined. We have already
seen that projects as a whole are ill-defined, which is why we
use more granular assessment criteria to assess a project. Each
of these criteria can also be ill-defined to some degree, which we
will consider in the next section. Third, the criteria are structured
in some way (e.g., bundled in a group or a rubric). For instance,
in PSS: some requirements are listed as the primary functional
requirements, and other criteria in the rubric describe what it means
to score grade 10 on the client functionality and grade 6 on the
structure. Fourth, a criterion can have one of three types of “output
values”: binary (e.g., “the project contains 3–5 activity diagrams”),
scaled or numeric (“the game rules are implemented correctly” from
the example below with its levels of accomplishment), or counting
violations (e.g., if the criterion is “do not hide user interaction in
classes”, the assessment can be based on how many times this does
happen in a program). Fifth, a criterion can include some grading
information. In the case of analytic assessment, each criterion or
aspect has a weight to be used in the weighted average, while in a

marking scheme each criterion is worth a certain number of points.
In holistic assessment the grading policy is described separate from
the criteria.

The criteria for our projects fall into three categories, namely
the three aspects regarding which the code is typically assessed in
a programming project:

• Correctness: is the specification implemented correctly?
(Whatever that specification might be.)

• Scope: is the project sufficiently large in scope, i.e. are enough
features implemented?

• Quality: do the design and code follow good practices w.r.t.
style, structure and standards?

These are not necessarily the only aspects in which a project is
assessed: the quality of a report, the ability to answer questions
about the code in an oral examination, successful teamwork and
planning, and creativity in the addressed problem could, among oth-
ers, also be considered. These aspects, however, are not necessarily
apparent in the models and the code.

The line between correctness and scope is not always clear-cut:
if a feature that should be implemented according to the project
description is not there, you could argue that the program does not
follow the specification and is thus lacking in correctness, or that
the program does not implement the baseline of required features
and is therefore inadequate in scope. We will consider this case to
be lacking in scope: checking correctness is limited to features that
are implemented. Whether a specification is part of a feature or a
feature on its own, depends on the project description.

Assessing each of these types of criteria requires a different way
of looking at the program. To check correctness the program is
often executed and tested, either manually or using automated tests.
An experienced corrector could also scan the code or diagrams
for common mistakes. The scope is assessed on a holistic level,
checking for the presence of certain classes or functions, or certain
elements in the program UI. Style is assessed by reading the code,
but considering the way the code is written, rather than how the
code works. This means that an automated assessment tool requires
different views of the program to assess these different types of
criteria.

This categorisation of criteria seems to align with assessments
reported in the literature. Thompson [16] describes a set of assess-
ment criteria based on the SOLO taxonomy, related to the amount
of functionality delivered, to what degree the program operates
without errors, and to the quality of the code regarding program-
ming and UI design standards, code structure and documentation.
The first two clearly map to scope and correctness, while the latter
maps in part to quality (it also includes UI design standards, which
are visible in the running program, but not clearly a property of
the code itself).

Kao et al [8] give a rubric for scoring programming projects
in middle school, in which they assess three dimensions: holis-
tic review, programming fundamentals and programming style.
The holistic review includes five categories: program correctness,
usability, project scale, project complexity and creativity. In the pro-
gramming fundamentals dimension the use and mastery of basic
constructs like variables and loops are assessed. The programming
style dimension considers the use of comments and readability of



A Refined Model of Ill-definedness in Project-Based Learning MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 1: The 5 class scale of ill-definedness [11, p.262]

the code. The holistic review contains categories related to two
of our aspects: the program correctness category clearly maps to
correctness, while project scale and project complexity are part of
the scope aspect. The programming fundamentals dimension also
splits across correctness and scope: assessing mastery of constructs
involves checking if they are used correctly, while mere usage falls
in the scope bucket, because the project should be sufficiently large
in scope that multiple constructs are used. The programming style
dimension maps to the quality aspect, of course. This leaves two cat-
egories from the holistic review: usability and creativity. Usability
is a property of the running program, not of the code, and thus goes
beyond our categorization. Creativity can be viewed in many ways.
As mentioned before, creativity in the problem that was chosen or
creativity in properties of the running program are not part of the
code assessment, even though they could well be valid assessment
criteria for the project. In this rubric, creativity was restricted to the
code, as can be seen from the guidance for scoring [8, p.1136], talk-
ing about projects being near-clones, extensions or non-duplicates
of learnt components. This definition of creativity would place it
under the scope aspect, as it is reflecting the scope of the work the
student has done themselves.

With these three classes of criteria, we start to see some structure
in the long list of criteria for our projects. The distinction is also
relevant when considering automated assessment: assessing the
correctness of a program is quite different from assessing quality.
Criteria of the first type care about the behaviour of the program,
while those of the latter care just about the models and code. When
assessing behaviour, many stylistic differences in the models and
code should be normalised away, because they do not influence
behaviour, while those details can be very important in assessing
the quality.

4 MODELS OF ILL-DEFINEDNESS
Now that we have seen how assessment criteria are defined for our
projects, the next question to answer is how well- or ill-defined
these criteria are. In this section we will introduce a classification
to help us make more useful distinctions than just marking every
criterion ill-defined or not. This classification will be applied to the
criteria of PSS and ACT in the next section.

A great variability of
solution strategies

A known number of
typical

solution strategies
One solution strategy,

alternative imple-
mentation variants

One solution strategy,
one implementation

Specified requirement Free
Objectively Subjectively Subjectively choice
assessable assessable assessable, of

with a rubric no rubric req

Figure 2: Our extended classification of ill-definedness, us-
ing seven levels of verifiability

Fournier-Viger et al [5] argue that “there are no clear boundaries
between ill-defined and well-defined domains. Rather, there is a
continuum ranging from well-defined to ill-defined”. Le et al [11]
take this notion and consider the solution space of a problem based
on three characteristics: (1) the number of alternative solution strate-
gies: the different approaches that could be used to solve a problem;
in programming, these often correspond with different algorithms;
(2) the implementation variability: the different ways in which a
strategy could be implemented, for example, using more or less
intermediate variables in a calculation or simply using different
variable names; (3) the solution verifiability: whether a solution
can objectively be verified as correct; this is not the case when, for
example, aesthetics or usefulness are evaluated.

Based on these characteristics, they define five classes of prob-
lems (see Figure 1). In this classification, one axis is formed by the
alternative solution strategies and implementation variability char-
acteristics, which we will call the variability axis. The other axis is
the solution verifiability, here shortened to the verifiability axis.

Class 1 problems have one correct solution which is also veri-
fiable. Modelling exercises in this class could be small fill-in-the-
blanks exercises. Class 2 contains problems where there may be
multiple ways to execute one solution strategy. Modelling problems
in this category often are templated or templatable, with the exact
number of entities in a model and exact nature or their associations
being debatable. Class 3 contains problems for which there are
a known number of solution strategies. For a modelling exercise,
this could mean choosing among Visitor, Observer and Interpreter
design patterns, where each option leads to a different solution
with pros and cons, but all are acceptable. If the number of different
solution strategies is very low, it is even possible to write them all
down as grading instructions or for auto-grading.Class 4 problems
have a great variability of solution strategies, where their number
is so large that it becomes infeasible to enumerate the all. These
problems still have an objectively verifiable solution. In program-
ming, this can be done with test cases or with invariants, and it
is much trickier to automate in modelling (unless some advanced
tooling can, for instance, ensure that all use cases are covered by
the interactions diagrams). Class 5 contains problems for which
the solutions are not objectively verifiable. It is the only class on
the right side of the verifiability axis, covering the full range of the
variability axis, though these problems are likely to have multiple
solution strategies.



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Arthur Rump and Vadim Zaytsev

Le et al use the classification to group intelligent tutoring and
automated assessment systems based on the class of problems these
tools can be used with. They find that different approaches work
well to deal with problems of different classes, which is why they
recommend that tool creators use the classification to describe its
capabilities more precisely.

We believe there is room for extension in this classification by
differentiating more in the verifiability axis. Some criteria can be
verified objectively, others have agreed upon rubrics that guide
more subjective verification. There are also cases where students
are allowed to choose their own verification criteria. From this
observation, we define four levels of verifiability:

• The requirement is specified and objectively assessable.
• The requirement is specified and subjectively assessable fol-
lowing an agreed upon rubric.

• The requirement is specified, it is subjectively assessable and
there is no agreed upon rubric.

• Students are free to choose their own requirements.

Combined with the four levels of variability defined by Le et
al [11], this results in the classification shown in Figure 2.

In the process of defining this classification, we considered some
alternatives. For example, we considered a middle ground between
specified and free choice requirements: a set of given requirements
from which the students can choose. This type of requirement is
found in both of our example projects: in PSS students can choose
to implement some additional features (like a leaderboard or en-
cryption of the client-server communication), and in ACT students
can choose (with some restrictions) which elements of the course
content are included in their project. While this certainly makes
a difference for the students, there is little difference in terms of
assessment: the requirement still has to be verified to determine
if the student implemented it, which is no different from require-
ments that are fully specified. The case could be made that there
is a difference in choosing to implement a requirement and doing
so correctly, but that is also the case for mandatory requirements:
students may still decide not to implement them all, for example
due to time constraints.

Another aspect we considered in extending the classification is
explainability. Intuitively, there is a difference between decisions
that have an answer and decisions for which this answer can be
explained, in the same sense as “explainable artificial intelligence”
is different from “normal” AI. Explainability, however, is a property
of the tool (or process) that makes the decision, not of the decision
itself and thus is not a factor of the verifiability of a solution.

Also note that a specified requirement does not necessarily have
to be shared with the students. While it is generally considered
good practice to be transparent about assessment requirements, not
sharing certain requirements (or not sharing all details) does not
change the verifiability of a solution regarding that requirement.
Guidelines such as “if the class diagrams contains fewer than five
classes, reject it” also usually are shared with teaching assistants,
but not with students because such a numeric limit does not guide
their learning into any useful direction.

5 APPLICATION TO CASE STUDIES
We have seen the three different types of criteria the deliverable in a
software project is typically assessed on and a classification of how
ill-defined a criterion is. We will put them to the test by applying
them to the projects introduced in § 3. For this, we consider the
project descriptions and rubrics or assessment forms used during
assessment. We only considered the categories of criteria concerned
with the assessment of the code and the models, ignoring the report
and the oral exams. However, some criteria not directly related to
models and code remained: for example, the “appearance: attention
for details” in the ACT project or the “usability of the client” in
the PSS project. For completeness, these have been included in the
fourth Non-code category.

Our main motivation for introducing this classification is to
investigate ways to automatically assess such projects. We already
discussed that different types of criteria need different approaches,
and a similar argument can be made on the degree of ill-definedness:
objective criteria are assessed differently from subjective criteria
and thus require a different approach. Therefore, we will be looking
at the lowest, most specific level of criteria.

This poses a challenge for working with rubrics: one of the
levels in the classification is subjectively assessable with a rubric,
but it is quite common for the levels of a rubric to contain different
criteria. In some cases, these are specifications about the quantity
or quality with which a criterion is met, for example, from “no
documentation comments are present at all” to “all classes and
methods have documentation comments”. This is a single criterion,
which is subjectively assessable with a rubric, and while “none”
and “all” are quite objective, the levels in between are less clear
cut. In other cases, the levels contain very different criteria. For
example, from “there are protocol violations” to “the networking
code is thread-safe”. These are clearly two different criteria, and we
will treat them as such. This means we use a narrower definition
of what constitutes a rubric than is common in practice at courses
like PSS and ACT: we only consider it a rubric when judgement is
required as to the level to which a criterion is met. The different
levels in a line in the rubric describe a different level of meeting
the criterion, based on quality or quantity (or both).

Our findings are shown in Figure 3 for the PSS project and in
Figure 4 for the ACT project. Remember that the size of a bubble is
not representative of the grade weight carried by criteria in that
category, but just of the number of criteria in that category. Also,
note that the bubble size between the images is not on the same
scale, as the ACT project has shorter assessment guidelines and
fewer criteria overall than PSS. These figures show that there is
some hope for automated assessment of projects: there are many
objectively assessable criteria, even in the lower ranges of variability
(where it is feasible to describe all different approaches). For the
PSS project, this includes some requirements on the lowest level of
variability, like “all fields except constants are private”. In § 4 we
noted that these Class 1 problems often take the form of fill-in-the-
blanks exercises, of which this is a variation: the student has to fill
in the access modifier for a field, and if it is not a constant, there is
only one correct answer.

On the other hand, the ACT project only has a single correctness
criterion: the program should be functionally correct. This creates



A Refined Model of Ill-definedness in Project-Based Learning MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 3: Classification of assessment criteria for PSS

a free choice of requirements, because students decide what the
functionality of their program should be. A free choice requirement
will generally be at the top of the classification, as there are a lot
of strategies to implement whatever requirements the students
come up with. Their specific requirements may have fewer solution
strategies, but that is unknowable unless those requirements are
specified.

The correctness criteria form the main difference between these
projects: in the PSS project, most correctness criteria are well speci-
fied and objectively assessable, while in the Algorithms for Creative
Technology project, students get a lot more freedom in this respect.
In scope and quality, the projects have a lot more in common: these
criteria spread around the specified area, with both objective and
subjective assessments required, and a variation in the variability
of solutions.

6 REFLECTION ON THE MODEL USEFULNESS
Besides getting an overview of what types of assessment a support-
ing tool would have to work with, the classification and visuali-
sation applied here could also be used in course design. It gives
an overview of how well-defined the assessment criteria for that
course are and how much freedom students get in what the results
of their projects would be. In this context, some modifications could
be helpful.

We already noted that there is a middle ground between specified
requirements and free choice: namely, a choice from a given set.
We argued that for automated assessment the distinction between
specified and choice from a set is not relevant, but looking through
the lens of course design it would be: a project where students
are allowed to choose which requirements to implement is very

Figure 4: Classification of assessment criteria for ACT

different from a project with strict requirements. For this context,
we should extend the classification with three categories along
the verifiability axis: between the specified requirements and free
choice of requirements, we add a category choice out of a given
set of requirements with the subcategories objectively assessable,
subjectively assessable with a rubric and subjectively assessable with
no rubric. This gives more insight into the freedom students have
to decide the goal of their project.

We noted before that the bubbles in the visualisation represent
the number of criteria rather than the importance of those criteria.
For automated assessment we would care about the implementation
of checks for these, so we care about their number and less about the
influence on a grade of each criterion, which is simply a matter of
configuration. However, for course design this is definitely relevant.
If an analytic assessment approach is used, it would be more useful
to scale bubble size with the total weight of the criterion in the
final grade. This would give a better overview of the distribution
across the classification from a grading perspective. With holistic
assessment there is no predetermined weight, but an approximate
relative importance could be assigned to each criterion or category
of criteria for the purposes of this visualisation.

The amount of criteria in a circle of certain weight is still relevant,
as it also tells us something about how strictly defined these aspects
are. This could be included in the visualisation by changing the
opacity of a bubble based on the criteria density or by showing
each criterion as a point inside the bubble. We would expect this
density to softly correlate with the verifiability axis, but including
it in the visualisation could be useful to spot irregularities in this
regard.



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Arthur Rump and Vadim Zaytsev

Finally, the categories correctness, scope and quality are chosen
specifically for the assessment ofmodels and code in a programming
project and are interpreted in this strict sense. In a broader meaning
of their terms, these categories may well apply to other types of
assignments, but it seems likely that other categories could be
added.

7 CONCLUSION
In this paper we have considered many issues around assessment of
projects in introductory software engineering courses, where stu-
dents already familiar with the basics of programming, are exposed
to modelling, teamwork and agile processes. First, what are the
assessment tasks used in such a software engineering course? In
our examples, two types of tasks are used: PSS uses a written exam,
and both courses use a project. Given the ILOs for both courses, the
projects seem to be the most aligned task, so that is what we focus
on in our research. The project is assessed according to certain
assessment criteria.

Next, how are the assessment criteria defined? In general, the
criteria are formulated as requirements that a good project should
fulfil. Some of these requirements are simply listed out in a project
description, for example if they are absolutely required. Other re-
quirements can be written in a rubric: in this case a project should
fulfil those requirements to receive a certain grade. In the detailed
specification of the PSS project, most requirements are binary in
nature: the project fulfils the requirement or it does not. Others
can be fulfilled to a certain degree, in which case the assessor has
to grade the level to which a requirement is fulfilled. Those levels
may be clarified in the form of a rubric, but that is not necessarily
the case in practice.

In terms of the structure for those criteria, we found three grad-
ing methods in the literature that influence the structure of the cri-
teria: marking, analytic assessment and holistic assessment. When
marking is applied, each criteria is worth some number of points,
which are awarded as criteria are fulfilled. Analytic and holistic as-
sessment are both qualitative methods, assessing aspects according
to a rubric or list of criteria. In analytic assessment, these indepen-
dent assessments are averaged to determine a final grade, whereas
the holistic approach uses that data to argue for a grade based
on the value of the whole artefact. In our courses the latter two
methods are used. This means that our criteria are structured to
correspond to certain aspects of the artefact.

Then, how should the assessment criteria be defined? Given
the assessment method used, the criteria should be qualitatively
assessable. In general, a rubric is the preferred way to describe the
different levels of quality that may be encountered and also clarify
what is considered insufficient, sufficient and good.

Finally, howwell-defined are the assessment criteria? Even though
students get a lot of freedom to make design decisions in their
projects, we still find a large number of criteria that are more on
the well-defined side of the spectrum for both projects. In the ACT
project, about half of the criteria are classified as objectively as-
sessable with up to a known number of solution strategies. In the
PSS project, this is the case for about one third of the criteria, with
another 40% objectively assessable but with a great variability of
strategies. This means that an automated assessment tool should

potentially be able to cover a large part of the assessment crite-
ria quite well. Other criteria for both courses are more ill-defined,
occupying the upper right corner of the diagram. Covering these
criteria in an automated fashion could prove to be challenging to
the point of impossibility.

In conclusion, how is the achievement of ILOs assessed in a soft-
ware engineering course? Starting from the ILOs, teachers define
assessment criteria and set tasks for the students, which generally
results in a deliverable artefact. Given that the ILOs of a software
engineering course often use verbs that indicate designing and
writing code, these artefacts are mostly programs. Teachers then
assess the artefacts according to the criteria.

We hope this investigation into ill-definedness is useful for other
educators working in project-based learning, and that our descrip-
tive model could serve as a convenient stepping stone to further
research ways to assess students’ contributions reliably, fairly and
transparently.

REFERENCES
[1] Anya Helene Bagge, Ralf Lämmel, and Vadim Zaytsev. 2015. Reflections on

Courses for Software Language Engineering. In Proceedings of the MoDELS Ed-
ucators Symposium (EduSymp’14), Birgit Demuth and Dave Stikkolorum (Eds.),
Vol. 1346. CEUR-WS.org, 54–63.

[2] John Biggs and Kevin Collis. 1982. Evaluating the Quality of Learning: The SOLO
Taxonomy. Academic Press, Inc.

[3] John Biggs and Catherine Tang. 2011. Teaching for Quality Learning at University
(4th ed.). McGraw-Hill/SRHE/Open University Press.

[4] Phyllis C. Blumenfeld, Elliot Soloway, Ronald W. Marx, Joseph S. Krajcik, Mark
Guzdial, and Annemarie Palincsar. 1991. Motivating Project-Based Learning:
Sustaining the Doing, Supporting the Learning. Educational Psychologist 26, 3-4
(June 1991), 369–398. https://doi.org/10.1080/00461520.1991.9653139

[5] Philippe Fournier-Viger, Roger Nkambou, and Engelbert Mephu Nguifo. 2010.
Building Intelligent Tutoring Systems for Ill-Defined Domains. In Studies in
Computational Intelligence. Springer, 81–101. https://doi.org/10.1007/978-3-642-
14363-2_5

[6] Silvia Elena Gallagher and Timothy Savage. 2020. Challenge-Based Learning
in Higher Education: An Exploratory Literature Review. Teaching in Higher
Education (Dec. 2020), 1–23. https://doi.org/10.1080/13562517.2020.1863354

[7] Marcus Gerhold et al. 2021. Algorithms for Creative Technology manual. Technical
Report. Creative Technology, University of Twente.

[8] Yvonne Kao, Irene Nolan, and Andrew Rothman. 2020. Project Scoring for
Program Evaluation and Teacher Professional Development. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. ACM. https:
//doi.org/10.1145/3328778.3366959

[9] Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. 2016. Project-Based
Learning: A Review of the Literature. Improving Schools 19, 3 (July 2016), 267–277.
https://doi.org/10.1177/1365480216659733

[10] Joseph S. Krajcik and Namsoo Shin. 2014. Project-Based Learning. In The
Cambridge Handbook of the Learning Sciences, R. Keith Sawyer (Ed.). Cambridge
University Press, 275–297. https://doi.org/10.1017/cbo9781139519526.018

[11] Nguyen-Thinh Le, Frank Loll, and Niels Pinkwart. 2013. Operationalizing the
Continuum between Well-Defined and Ill-Defined Problems for Educational
Technology. IEEE Transactions on Learning Technologies 6, 3 (July 2013), 258–270.
https://doi.org/10.1109/tlt.2013.16

[12] Johanna Lönngren. 2017. Wicked Problems in Engineering Education: Preparing
Future Engineers to Work for Sustainability. Ph.D. Dissertation. Chalmers, Sweden.
https://publications.lib.chalmers.se/records/fulltext/250857/250857.pdf

[13] Collin F. Lynch, Kevin D. Ashley, Vincent Aleven, and Niels Pinkwart. 2006.
Defining Ill-defined Domains: A Literature Survey. In Intelligent Tutoring Systems
(ITS 2006): Workshop on Intelligent Tutoring Systems for Ill-Defined Domains.

[14] Robert J. Marzano and Wietske G. Miedema. 2018. Leren in 5 dimensies: Moderne
didactiek voor het voortgezet onderwijs (7th ed.). Koninklijke Van Gorcum.

[15] Herbert A. Simon. 1978. Information-Processing Theory of Human Problem
Solving. In Handbook of Learning and Cognitive Processes (Volume 5), William
Estes (Ed.). Psychology Press. https://doi.org/10.4324/9781315770314-14

[16] Errol Thompson. 2007. Holistic Assessment Criteria: Applying SOLO to Pro-
gramming Projects. In Proceedings of the Ninth Australasian Conference on Com-
puting Education - Volume 66 (ACE ’07). Australian Computer Society, 155–162.
https://doi.org/10.5555/1273672.1273691

[17] Tom van Dijk et al. 2021. Software Systems manual. Technical Report. Technical
Computer Science, University of Twente. Version of 18 January 2022.

https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1007/978-3-642-14363-2_5
https://doi.org/10.1007/978-3-642-14363-2_5
https://doi.org/10.1080/13562517.2020.1863354
https://doi.org/10.1145/3328778.3366959
https://doi.org/10.1145/3328778.3366959
https://doi.org/10.1177/1365480216659733
https://doi.org/10.1017/cbo9781139519526.018
https://doi.org/10.1109/tlt.2013.16
https://publications.lib.chalmers.se/records/fulltext/250857/250857.pdf
https://doi.org/10.4324/9781315770314-14
https://doi.org/10.5555/1273672.1273691

	Abstract
	1 Introduction
	2 Ill-definedness
	3 Case Studies
	3.1 Requirements and Rubrics
	3.2 Grade Forming
	3.3 Properties and Categories of Criteria

	4 Models of Ill-definedness
	5 Application to Case Studies
	6 Reflection on the Model Usefulness
	7 Conclusion
	References

