
There Is More Than One Way to Zen Your Python
Aamir Farooq

University of Twente

Enschede, The Netherlands

aamir@grammarware.net

Vadim Zaytsev

University of Twente

Enschede, The Netherlands

vadim@grammarware.net

Abstract
The popularity of Python can be at least partially attributed

to the concept of pythonicity, loosely defined as a combina-

tion of good practices accepted within the community. De-

spite the popularity of both Python itself and the pythonicity

of code written in it, this concept has not been studied that

well, and the first attempts to define it formally are rather

recent. In this paper, we take the next steps in exploring

this topic by conducting an independent literature review in

order to create a catalogue of pythonic idioms, reproduce the
results of a recent paper on the usage of pythonic idioms,

perform an external direct replication of it by reusing the

same open source toolset and dataset, and extend the body

of knowledge by also analysing how the use of pythonic

idioms evolve over time in open source codebases.

CCS Concepts: • Software and its engineering → Pat-
terns; Scripting languages.

Keywords: Python, pythonicity, pythonic idioms

ACM Reference Format:
Aamir Farooq and Vadim Zaytsev. 2021. There Is More Than One

Way to Zen Your Python. In Proceedings of the 14th ACM SIGPLAN
International Conference on Software Language Engineering (SLE
’21), October 17–18, 2021, Chicago, IL, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3486608.3486909

1 Introduction
A software language is not only its syntax and semantics, but

also a set of known effective ways to solve actual problems

with it. Some authors refer to this elusive part of a software

language as its pragmatics [8, 79], but it is an overloaded

term very frequently used to refer to language implementa-

tion [59, 74]. Studying the syntax of a successful language

could help to find better ways to express language concepts.

Studying the semantics potentially leads to discovering new

concepts or alternatives to existing ones. Studying language

implementation is also useful since it helps tomake languages

more efficient and to reach the Holy Grail of domain-specific

SLE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published in

Proceedings of the 14th ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’21), October 17–18, 2021, Chicago, IL, USA, https:
//doi.org/10.1145/3486608.3486909.

languages [73] and language-oriented programming: rapid

language prototyping. However, studying those “ways to

solve actual problems” may lead us to the real cause of pop-

ularity and success of some languages and the esoteric and

obscure reputation of others. For the lack of an even better

term, we will use traditions to refer to idioms, conventions,

styles and patterns.

Software language traditions have been studied fairly well

— we present some insights into the existing body of knowl-

edge on them in the next section. It is worth noting that

many claims about coding traditions that seem reasonable,

are much more complex upon closer inspection. For instance,

coding styles associated with expert developers, are not al-

ways perceived as more readable and understandable by

language learners, and learning to write in an idiomatic style

does not guarantee the development of a preference to find

idiomatic code more readable [77]. Adherence to a certain

convention also does not necessarily grow as the project

matures: quite often it remains stable, varies per convention

and for some even declines over time [40], and even system-

atic code review does not stop the growth of violations [27],

the number of which simply yet inevitably grows together

with the LOC count [67].

The prevalence of coding traditions in software engineer-

ing practice being indisputable, we still proceed with cau-

tion. We zoom in on Python, one of the most popular pro-

gramming languages, where the concept of pythonic idioms

as “reusable abstractions” has been defined and studied by

Alexandru et al. [1]. Python developers call code pythonic
when such idioms are used. The pythonicity of a piece of

code stipulates how concise, easily readable, and in general

terms, “good” the code is. This concept of pythonicity and

the concern of code being pythonic or not pythonic, is es-

pecially pronounced in the Python community. There is a

general “feeling” shared among the community that it goes

beyond a set of practices — it is rather a philosophy that

the community strives to uphold. Python developers are in

constant pursuit of upholding the so-called Zen of Python
rules, such as “There should be one — and preferably only one
— obvious way to do it.”, and “Beautiful is better than ugly. [...]
Simple is better than complex.” [43]. Not all these rules are
immediately actionable, implementable and detectable.

Given a piece of code, any experienced Python developer

can easily tell whether it is pythonic or not. Sakulniwat et

al. were able to demonstrate, in a case study of the with
open idiom, that in Python developers tend to adopt idioms

https://doi.org/10.1145/3486608.3486909
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.1145/3486608.3486909

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

over time to improve their codebase [55] (as we have stated

above, this observation does not generalise well over lan-

guages and even over conventions within one language). In

the interviews conducted by Alexandru et al., experienced

developers stated that year after year, their code became

more pythonic [1]. However, to programming novices or

newcomers to Python, as Alexandru et al. also contend, it

is not completely obvious how to incorporate the so-called

pythonic idioms in their code [1]. In their study, many inter-

viewees also indicated that junior Python programmers can

even be distinguished from more experienced ones simply

by observing the usage of pythonic idioms, and further, the

interviewees agreed that they learnt pythonicity from expe-

rience — by reading books, source code from other projects

and StackOverflow responses [1].

Since Alexandru et al. identified a lack of research in the

phenomenon of pythonicity as they felt that there was no

clear definition as to what “pythonic” means andwhat should

developers do to make their code pythonic. They conducted a

literature review to identify the pythonic idioms from numer-

ous sources such as The Zen of Python [43],Writing Idiomatic
Python [31], The Hitchhiker’s Guide to Python [51], Effective
Python [65], The Little Book of Python Anti-Patterns [49], as
well as direct interviews with developers with varying lev-

els of expertise. They wrote an idiom detection library to

support the claim that idioms were in use in the most popu-

lar open-source Python projects on GitHub. The library is

available at https://github.com/jjmerchante/Pythonic, and
we report below on our activities to reproduce the results.

To guide our investigation, we have devised the following

research questions which are intended to be answered and

commented on by the end of this paper. Our null hypothesis

is that the popularity of each idiom did not change between

2018 and 2021. (It is based on the sentiment from the devel-

opers Alexandru et al. interviewed, that they do not go back

and make their old code pythonic [1]).

RQ1: What idioms should be included in an updated, extended
catalogue of pythonic idioms?
By reinferring and updating the catalogue of idioms

that Alexandru et al. have identified based on their

literature review from Python books, we can form

a comprehensive picture of what idioms make code

pythonic.

RQ2: How widely adopted are the new idioms?
We will also need to find empirical evidence to sup-

port the claim that both reconfirmed and newly docu-

mented idioms are accepted as pythonic by the Python

community. This means extending the idiom detection

code of Alexandru et al. to include the newly found

idioms and analysing the statistics we find.

RQ3: How has the usage of pythonic idioms evolved in soft-
ware projects over time?
As stated previously, some years have passed since the

experiment of Alexandru et al. It is possible that among

the idioms they have identified and counted, certain

idioms have gone out of style and other, possibly new,

idioms, have become more popular. By answering this

question, we can provide empirical evidence to not

only support the results of RQ2 but also to comment

on our hypothesis.

The rest of the paper is structured as follows. In § 2 we

proceed with the preliminaries and go deeper into the field

of coding traditions, their prevalence across software lan-

guages, and impact on the practices and the practitioners of

software engineering. In § 3, we answer RQ1 by performing

a systematic review of existing literature about pythonicity,

pythonic idioms and recipes. As a result, we compose a cata-

logue of 46 pythonic idioms, combining 21 reconfirmed ones

with 25 newly identified traditions. In § 4, we perform a full

external replication of the idiom detection work by Alexan-

dru et al. [1], since that not only strengthens and verifies

the original claims, but gets us closer to answering RQ2 and

RQ3. In § 5, we go beyond the straightforward replication

and perform detection of a subset of pythonic idioms on a

new set of code repositories. Again, this helps to shed light

on RQ2 and provides us with tools and data to tackle RQ3.
Then, we perform a new experiment with the freshly col-

lected data, in order to analyse how the usage of pythonic

idioms evolves over time in different repositories, and report

on a small selection of illustrative idiom evolution patterns.

§ 6 concludes the paper by summarising its findings and

explicitly answering the research questions defined above.

2 Related Work
The oldest paper on idiomatic code patterns is dated 1987: it

concerned APL [41] and considered “collections of symbols

commonly recognised as a useful building block” which were

analysed by “scales” (metrics). Since that time, there have

been around 500 papers published on coding conventions,

calling conventions, naming conventions, formatting con-

ventions, coding styles, coding guidelines, idioms, implemen-

tation patterns, antipatterns, nanopatterns, micropatterns,

code snippets and idioms. The full analysis of them is be-

yond the scope of the paper, but we would like to note that

these papers covered idioms in almost all existing software

languages from assembly [54] to C++ [11], from Erlang [58]

to Haskell [36], from UML [13] to EBNF [81], from C# [15]

to F# [57], from SQL [39] to OWL [53], from Javascript [9]

to CSS [26], from COBOL [14] to PL/I [6]. They have been

investigated for the obvious reasons such as readability and

other aspects of maintainability, but also in the context of

security [28], performance [61], code review [27], teaching

novices [78], software migration [33], etc. Attempts were

made to solve the problem with DSLs like CCL [4], a calling

convention specification language. One of the foci of mod-

ern research on coding traditions is to use code snippets as

somewhat parametric pieces of idiomatic code for solving

https://github.com/jjmerchante/Pythonic

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

Figure 1. An example of a new pythonic idiom Alexandru et al. did not cover, known as f-strings, a much less cumbersome

and more readable approach to traditional string formatting methods [69]. The code above shows the language features slowly

improving and becoming more powerful and expressive, but also adapting themselves to the programming practices. The first

variant is based on string concatenation and required either a str() call for non-string values or backticks that implicitly called

repr(). It is cumbersome to use for the developer, as well as inefficient for the interpreter. The second variant is positional

formatting, which used the percent symbol, inspired by the classic %s and similar formatters for printf and scanf in C. Since

the first versions of Python, this way was considered more pythonic than the first one. The third variant was introduced

several years later and was widely considered more superior to the positional formatting, because it allowed to use the same

value in multiple places and also allowed to assign names to placeholders. This is still the most powerful pythonic way of

formatting strings. However, the most common use for string formatting in Python code is straightforward splicing of values

stored elsewhere into an ad hoc composed string (as opposed to, say, storing a template with named placeholders and filling

them differently on several occasions, for which str.format() is still the best pythonic way). This led to f-strings being

introduced in Python 3.6, which are shown as the fourth variant above.

typical problems, and advise them to the developer, essen-

tially providing powerful code completion IDE support way

beyond pure syntax like bracket matching [76].

Despite some discussion on Python being themost popular

programming language, as claimed by the PYPL index [10],

or the third most popular one, as claimed by the TIOBE

index [72], its widespead use and ever raising popularity is

beyond dispute. Yet, in 2018 Alexandru et al. claimed to be

the first ones to attempt forming a tangible definition and

catalogue of what constitutes pythonic code. At the time

of writing, we were only able to identify one other paper

by Sakulniwat et al. [55] which attempts to improve upon

their results. We join this initiative as well. The paper from

Alexandru et al. was published along with a catalogue of

idioms [34] and a repository with the idiom detection code,

which makes use of the LISA library [60].

The list of idioms on Alexandru et al.’s website and paper

is not complete, and there are some unavoidable reasons

for that. The experiment was conducted before 2018, which

coincides with the release of Python 3.7. Since then, Python

2 has also been officially deprecated [46], which forced some

projects to hastily convert to Python 3. Additionally, several

major Python 3 versions have been released (at the time of

writing, the most recent version is 3.9.6, with a beta release of

3.10.0b4 also available). Each of these releases adds a number

of features to the language [48], thus potentially enhancing

the arsenal of pythonic traditions. There is obviously some

adoption time for newer versions, and for these reasons, there

may have been significant shifts in the popularity of idiom

usage; one such idiom is seen in Figure 1. Later in the paper

we will describe out process of systematically extending the

catalogue of Alexandru et al.

An additional application is technical debt remediation in

Python. Feltosa et al. describe the notion of technical debt
as the result of cutting corners in the short term on the

“long term sustainability” of the software project [70]. As

pythonic code is considered generally more maintainable,

efficient, and overall state-of-the-art, it suffices to say that

being able to detect the usage of such idioms would go a

long way in quantifying code quality. A potential future

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

application of the results of this paper could be automated

detection of anti-idioms [80], or malpractices, in the pursuit

of preventing technical debt from accumulating in the first

place. A similar practice is widespread and accepted as useful

in other languages, such as Java [17, 37].

Researching language traditions in general, as well as

pythonic code in particular, contributes to the general body

of knowledge about software languages, their design, adop-

tion and the mutual effect languages have on programming

practices and vice versa. It is a widely known fact from the

software engineering lore that successful idioms from older

languages tend to get “legalised” as language features in

newer software languages, with the appropriate support in

the form of syntactic sugar, IDE referencing and completion,

static analysis checks at compile-time, correctness guaran-

tees, etc. Researching this topic is crucial so that software

languages can continue to improve and move forward. One

initiative is the Software Language Engineering Body of

Knowledge (SLEBoK) [82], which makes an effort to com-

pare and consolidate the implementation of features and

paradigms across programming and software languages. In

doing so, the developers of software languages may identify

discrepancies between their language and others, and then

improve their own feature set.

As Shull et al. explain, replicating results of empirical

studies in software engineering is key in proving their ve-

racity, citing the difficulty of extrapolating results due to

“uncontrollable sources of variation from one environment

to another” [63]. The same argument holds here; the efforts

of Alexandru et al. needed to be verified through an external

replication, and that is one of the contributions we claim

for this paper, even though we did not limit ourselves to the

replication only.

In the next section we will use grounded theory [12, 25]

to build the catalogue of idioms bottom-up from the avail-

able literature. Grounded theory is known to consistently

deliver reliable results in many areas [35], especially for

topics that attracted little prior research attention [56]. Its

known disadvantages are limited generalisability (meaning

that our findings might not translate well to software lan-

guages other than Python), methodological error-proneness

(such as relying on one kind of data source, like interviews-

only or code-only, which we explicitly cater) and the virtual

impossibility to conduct a review of related work without

developing assumptions [16]. As stated before, there is not

much related work on researching pythonic idioms to be-

gin with, and we follow the advice of grounded theorists

on theoretical sensitivity [12, 16, 24, 25, 30], and omit the

detailed review of it for the sake of methodological purity.

That allows us to develop a neutral view and understanding

of the chosen phenomenon of pythonicity that is neither

pre-formed nor pre-theoretically developed with existing

theories and paradigms [18, 64].

3 Literature Review
With the literature review, we intend to provide an answer

for RQ1. The goal is to not only confirm the idioms that

Alexandru et al. were able to identify but to further discover

new pythonic idioms as well as idioms that were not covered

in their research.

3.1 Suitable Sources
To discover our idioms, we use the grounded theory [12, 18,

24, 25, 30, 56] in a bottom-up approach: searching the world

wide web for the most popular Python books, then scanning

literature based on a set of keywords and cross-referencing

the results across books. As such, we are confident that our

methodology leads to uncovering all of the most commonly

used pythonic idioms since the findings are rooted in a large

variety of the literature available.

The literature sources were uncovered by searching the

internet using key terms such as:

• python tricks book
• python cookbook
• books “pythonic”
• books “idioms” “python”

The results we found were programming blog posts, Red-

dit threads, StackOverflow questions, where users linked

their favorite Python books. We took note of the books that

were talked about the most across these sites (as well as

which responses were upvoted the most) and created a list of

books, articles and conferences discussing pythonic idioms.

From all the books we were able to identify, we first elimi-

nated the complete beginner books because after reviewing

them, we discovered that they focus on the fundamentals of

programming in general and introducing syntax. This is not

appropriate for our research, as opposed to books covering

good programming practices. We also eliminated some ad-

vanced books which tend to cover Python for very specific

applications and patterns, for example, data science. These

are also not appropriate for our research because we want

to find generalised results about the Python language as

a whole rather than idioms that are only used in domain-

specific applications.

The optimal balance we found was with intermediate-

level books which assume that readers have prior program-

ming knowledge of some form and generally understand the

Python syntax, and read to improve their Python skills. Each

book here made some reference to pythonicity, programming

patterns and idioms in the description or blurb.

From the selection process, we started with the books:

• Practical Python Design Patterns: Pythonic Solutions to
Common Problems [2],

• Python Tricks: A Buffet of Awesome Python Features [3],
• Learn Python The Hard Way [62],

• Python Cookbook, Third Edition [5], and

• Effective Python: 90 SpecificWays toWrite Better Python [66].

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

We also reviewed several online sources, such as blog

posts, which we used to confirm our previously found idioms

rather than to identify new ones.We eliminated Learn Python
The Hard Way from this list; after further review, it did not

provide any useful references to pythonic idioms. Similarly,

we also eliminated Practical Python Design Patterns because it
was focused on specific use cases and design patterns rather

than generalised scenarios.

Additionally, we re-reviewed a selection of 2 of the books

Alexandru et al. chose:

• Writing Idiomatic Python [31] and

• The Little Book of Python Anti-Patterns [49]

This helped us to make comparisons between our newly

identified idioms and the results of the original paper [1].

We scanned each source for keywords and phrases such as:

“pythonic”, “clean[er]”, “readable”, “idiom”, “style”, “pattern”,

“easy/easier”, “fast”, “quick”, “commonly used” and “maintain-

able”. Topics that mentioned these terms were noted down

in the form of a spreadsheet, matching the topic on one axis

with the sources on the other.

3.2 Identified Idioms
Having created the spreadsheet with codes, we noticed that

nearly all the new idioms we managed to identify were also

present in the two older sources we chose from the original

paper. Conversely, almost every one of the idioms discovered

in the original paper were mentioned in the newly identified

literature as well. This validates the approach of the original

authors, and also shows that the sources we chose were

generally reliable and accurate.

We managed to find a significant amount of new idioms

(29) using this approach. 4 of these idioms were filtered out

due to a lack of explanation as to the use case or usefulness,

being refuted as not pythonic by another conflicting source,

or not being mentioned in a significant amount of sources

(for example, only 1 source).

Some of the newly identified idioms, such as the “f-strings”
feature which was released at the end of 2016 [44], were

not mentioned in the older sources due to being Python

features that were not widely known or used at the time

of publishing; however, they have since gained attention

and received mentions in our new sources. Meanwhile, the

“walrus operator” was released with Python 3.8 [45] at the

end of 2018 [32]; however, almost all of our sources were

published before 2018, except for Effective Python’s Second
Edition, the only book that mentioned it. Perhaps in the

future, it will gain some popularity and be discussed in newer

books, but for now, we exclude it from our list.

Conversely, the “using else after a for-loop” idiom was

discussed in the older literature sources but not in the new

ones, so we also decided to filter it out. Perhaps it seemed

like a good idea from the language design view but ended

up being less useful in practice than anticipated.

Table 1. Overview of idioms

(a) Pythonic idiom counts

Original list of idioms 21

Newly identified idioms 29

Filtered from new list 4

Final number of new idioms 25

Total set of idioms 46

Detectable idioms from original list 21

Detectable idioms from new list 6

Total number of detectable idioms 27

(b) Full updated list of idioms [23], new detectors

highlighted

a = b = 1
a = b if c else d
a, b = c
a, b, *c = d
a, _, c = d
a, b = b, a
@a def b():
@classmethod
@staticmethod
@property
defaultdict
namedtuple
deque
heapq
Counter
[a for b in c]
{a: b for c in d}
{a for b in c}
with
finally
dict.get()
collections.defaultdict
f’abc’
yield
next
if a: # instead of '== True'
if a is None:
if a is not None:
if not a: # instead of 'len(a) == 0'
if a in (b,c,d):
for a in b:
for a, b in enumerate(c):
for a, b in zip(c, d):
’,’.join(a)
def __eq__(self, other):
functools.total_ordering
PEP 8 Style Guide

assert
pprint
Naming conventions

virtualenvs
__repr__ and __str__
set(a)
for a in set(b):
a & b - c # for sets
a[b:c]

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

Having filtered out 4 idioms, we are left with 25 newly

identified idioms, and togetherwith the 21 idioms that Alexan-

dru et al. had already covered, this comes to a total of 46

idioms covered. An overview of these numbers is given in Ta-

ble 1, as well as the full list where each idiom is represented

by a tiny code fragment.

3.3 The Catalogue of Idioms
After identifying these pythonic idioms, we compiled our

results in the form of an online catalogue [23]. Initially, the

idioms were categorised into distinct groups so that separate

pages could be made for each topic. We provided definitions

and explanations for each idiom, followed by simple exam-

ples of how to incorporate them in example use cases. We

also provide references to a list of resources on each idiom

category: links to relevant Python documentation, books that

mention the topic, and where possible, links to the relevant

detection code.

Interestingly, all of the identified idioms were discussed

either in the Python documentation [47] or as a PEP (Python

Enhancement Proposal) [42]. By taking these into account, as

well as definitions from our chosen literature sources, we also

wrote a condensed definition and purpose for each idiom. In

addition, there are examples of what the “not pythonic” im-

plementation is, which should be avoided, and provided the

converse “pythonic” implementation using the idiom, taking

inspiration from the Python docs and literature sources for

the examples.

4 External Replication
As previously stated, one of the goals of this paper was to

verify the idiom usage count results of Alexandru et al. by

employing an external replication of their experiment.

Experiment 1 — replicating original results
Initially, we reached out to the authors and requested

their idiom detection code which they used to produce their

results. We studied the code they provided, in order to under-

stand how it worked and observed whether there were any

outdated dependencies, if the project was still able to com-

pile, and if running the project produced any fatal run-time

errors that would produce incorrect results.

Next, we replicated the experiment where Alexandru et

al. ran their detector on 1,000 popular Python GitHub repos-

itories, and observed whether or not the results were in line

with what they had recorded in their paper. The replication

package contained a list of the repositories that they used

in the original experiment, together with the results from

when the experiment was run. We re-ran the detector using

the same list of repositories, with some slight differences

that are discussed below.

Because the replication experiment is conducted on the

latest code of each repository in the original list, some years

after the original experiment, the results from this exper-

iment will additionally help us to answer RQ3 as we can

compare the results Alexandru et al. from some time ago to

new results from today. (A precise replication was impos-

sible because the exact date(s) of the original experiments

were unknown, and we could not roll back all repositories

to corresponding commits closest to that day).

Discussion. After analysing their idiom detector, we can

only conclude that the approach Alexandru et al. used was

adequate and appropriate.

The idiom detector, written in Scala, works by pulling

a Git repository using a given link, then calling a Python

script that parses every Python file in the repository, making

use of the built-in AST module. This results in an abstract
syntax tree, which the detector can then analyse to count the

occurrences for each idiom we are interested in by looking

for patterns such as function call identifiers, keywords, or

the usage of certain Python features.

The counts are accumulated per project in the form of

CSV files, and the authors also include a separate Python

script that can aggregate the results across all the CSVs to

produce a LATEX table.

Included in their source code was also a set of tests with

sample files, where each file contained one variation of the

idiom they intended to detect. We verified that these tests

were appropriate and ensured that they still passed.

A limitation we identified with this approach during one

of the experiments was that the detector can only find in-
stantiations of certain data structures or classes, such as

“collections.namedtuple”, but not track how many times

the variables are then used. This is rather difficult to detect

in Python due to the lack of strong typing, and as such, there

are additional uses that are not included in the results.

In the original experiment, the authors ran their detector

on 997 repositories. They include the list of repositories in

the form of a .txt file in the replication package in addition

to the resulting CSV data files. However, we noticed that

only 396 of the repositories in the data files overlap with

the 997 sources given in the .txt file, which is a flaw with

the replication package. We believe that sometime after the

experiment, someone inadvertently re-ran the repository col-

lection script, overwriting the original list. Nonetheless, we

attempted to reconstruct the original list based on metadata

from the CSV files but could not do so for 9 repositories due

to incomplete metadata.

An additional issue was that 11 of the repositories used in

the original experiment no longer exist. As a result, our re-

run experiment had 977 repositories instead of the original

997. To counteract this, we excluded the data pertaining to

the 20 missing projects from the “original” results so that

we can make a meaningful comparison for the projects that

were still available.

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

Table 2. A comparison between the results of Alexandru et al. and the reconducted experiment results (Experiment 1)

∗
— repaired; † — normalised

More insight needed | projects ± same, usage ± same | Projects ± same, usage up | projects, usage up

Original results
∗

2021 results
∗

Difference†

Idioms Projects Use count Projects Use count Projects Use count

List comprehension 851 74763 848 87104 0.35% 16.51% Group 1

Dict comprehension 143 791 194 1145 35.66% 44.75% Group 2

Generator expression 697 32867 713 41493 2.3% 26.25% Group 1

Decorator 753 113841 765 166569 1.59% 46.32% Group 1

Simple magic methods 748 77999 746 81870 0.27% 4.96% Group 0

Intermediate magic methods 412 13227 417 13007 1.21% 1.66% Group 0

Advanced magic methods 189 2612 184 2548 2.65% 2.45% Group 0

finally 496 18881 509 18887 2.62% 0.03% Group 0

with 835 141435 833 219089 0.24% 54.9% Group 1

enumerate 671 19178 676 21605 0.75% 12.66% Group 1

yield 661 56396 676 56537 2.27% 0.25% Group 0

Lambda function 653 109369 667 45632 2.14% 58.28% Group -1

collections.defaultdict 310 2908 320 3996 3.23% 37.41% Group 2

collections.namedtuple 258 2197 275 2589 6.59% 17.84% Group 2

collections.deque 176 1685 186 1862 5.68% 10.5% Group 2

collections.Counter 130 1036 158 1360 21.54% 31.27% Group 2

@classmethod 512 22129 523 29615 2.15% 33.83% Group 1

@staticmethod 482 11486 503 15986 4.36% 39.18% Group 2

zip 544 14812 550 17013 1.1% 14.86% Group 1

itertools 126 835 129 918 2.38% 9.94% Group 1

functools.total_ordering 29 81 35 98 20.69% 20.99% Group 2

Results. The results of this experiment can be seen in

Table 2. When drawing conclusions based on our results, it

is important to keep in mind that the increase in use count of

idioms, can be a result of the projects themselves naturally

growing over time. The most indicative metrics to consider

are when the number of projects using a particular idiom

strictly increases with a margin of error of 3% (7 idioms),

which indicates adoption by more Python developers, or

when the use count for an idiom strictly decreases (3 idioms),

signaling that Python developers have begun to move away

from them.

However, we also note that overall, the number of lines

across all projects increased between the original experiment

and the re-run by 5.67% which we can also consider as a

reasonable margin of error; on average, differences larger

than this indicate increased adoption as well (15 idioms).

From Table 2, we conclude that there were 5 idioms where

the usage remained more or less constant, supporting the

hypothesis we made. However, 15 idioms increased in pop-

ularity by looking at the increase in use count (indicated

with yellow and green), thus disproving the hypothesis. Fur-

ther, 7 of these idioms saw increased adoption by developers,

as they were used in a significant amount of projects they

previously were not (indicated in green).

Lastly, we do not consider the “lambda” idiom in our con-

clusions as we discovered that an anomalous project [68]

contained an exceptionally high count (74,593) in the original

data but not in the re-run (4,482), thus heavily skewing the

results. We investigate this further in one of the following

sections to ensure this was not due to a bug with the detector

and to form a conclusion about it.

5 Beyond Replication
Previously it was discussed that one of the desired outcomes

when answering RQ2 was to provide some evidence with

regards to the popularity of our newly discovered idioms,

and as such, demonstrate that they are accepted as being

pythonic. We can do this through Experiment 2. We also

wanted to comment on how the usage of pythonic idioms

had evolved to answer RQ3, and Experiment 3 is how we

can derive these results.

Experiment 2 — detection on 1000 new repositories
Since we had previously established in § 4 that the existing

detection techniques were able to accurately detect the usage

of the original set of idioms, we chose 6 of the 25 new idioms

we identified during the § 3 (bringing us to a total of 27

detectable idioms, as can be seen in Table 1) such that we

could detect them by simply making adjustments to the

existing code. Thus, we can be sure that the usage counts

are accurate.

An additional reason we chose these 6 idioms is that they

are built-in functions that are typically only used for one

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

intended purpose, and insight into the context the idioms

were used is not required. One example where it would be

required is when detecting the use of set() to clear dupli-
cate elements in a list; there are several possible reasons to

call set() and pinpointing the developers’ intent to the pur-

pose we are interested in is not possible through automated

detection.

We subclassed some of the analyses from the original

project and extended them to detect the “heapq”, “pprint”,
“@property”, “__repr__ and __str__”, “format” and “join”
idioms. The new detectors can be found in a GitHub reposi-

tory [19], and this repository is also referred to in our online

catalogue [23]. They are not technically interesting to explain

here in detail — in fact, we chose these six new idioms to

detect because it was possible by making small adjustments

to existing techniques in the original detection code reposi-

tory. Anyone vaguely familiar with compiler technologies

and tree traversals will have no trouble reading the detection

code.

A fresh set of 1,000 most popular Python repositories was

collected using the bash script the original authors used,

and the detector was run on this new set of repositories,

using the enhanced analyses we wrote. If the usage counts

of the new idioms align with those we were already able

to discover, we can conclude that the newly identified id-

ioms are demonstrably in wide use, and as such embraced

as pythonic.

Results. The results from running the detector using the

enhanced analyses can be found in Table 3, and the scripts,

list of repositories, and result data files can be found in our

GitHub repository [19].

As can be seen from the table, the inter-idiom differences

in usage for Experiment 2 are aligned with the results from

Experiment 1. We also observe that “__repr__ and __str__”
and “@property” are two idioms that have particularly high

usage counts, being more widely used than 17 and 16 other

idioms respectively. Under the assumption that the idioms

Alexandru et al. discovered were pythonic, and as the usage

for the new idioms are demonstrated to have similar usage

statistics, we can therefore conclude that our newly identified

idioms are also pythonic.

Experiment 3 — repository snapshots over time
We selected 10 repositories that were included both in the

original list of repositories and our newly collected ones. The

repositories we selected have been and are still under active

development, which we verified by checking if there was at

least one commit 6 months apart for the past 3 years, from

May of 2021 going back to May of 2018. This was verified au-

tomatically using a Python script which queried the GitHub

API for this information [21]. The repositories were cho-

sen using these constraints because they are demonstrably

well-maintained and receive regular updates and feature im-

provements, consistent with developments in Python itself.

As such, they are best suited for a study on how pythonic

idiom usage evolves over time.

In the same script, we collected the hashes for the first

commit that landed in the chosen time periods (one commit

from May and November of each year up until May 2021)

for each of the 10 repositories and stored these in text files.

The detector from Alexandru et al. contains an agent which

takes a file containing a list of Git repository links and auto-

matically clones them, runs the detection, and then deletes

the files afterward. We extended this agent to additionally

checkout a given commit after cloning, and then run the

detector. By doing this, we can essentially use snapshots

of projects to detect and observe how the usage of idioms

evolved every 6 months from May 2018.

Results. Some of the resulting graphs are seen in Fig-

ure 2, and the rest can be found in the artefacts [20, 22]. We

categorised the results into distinct groups in Table 4.

From this table, it is seen that the usage count against

time grew over time for 21 out of the 27 detectable idioms,

including 12 of the 15 idioms we previously said to have

gained popularity in § 4. For the remaining idioms out of the

27, 3 idioms had usage that remained constant, and 3 had

results where additional insight was needed.

With regards to the idioms from § 4, 7 out of 15 the idioms

we said to have increased in popularity saw some differences

in results that are worth pointing out. In Figure 2(e), the

usage of “collections.namedtuple” nearly doubled, then

remained constant for some time. This is still an increase

from where it started, however, it is worth pointing out

that the usage stagnated. The same pattern is seen with

“collections.Counter”. The reason behind this is most

likely the limitation we identified with the detector in § 4.

The same pattern was also seen with “yield”, “pprint”
and “join” and we believe this is due to a “saturation point”

that has been reached in the projects where it was simply

not necessary to use the idioms more than the already had

been, or because these idioms are not as widely applicable as

other idioms. The “join” pattern (Figure 2(c)) also showed

the typical “hype curve” profile, slowly gaining popularity,

then peaking and dropping to a “plateau of productivity”.

Conversely, we observed that for each of the idioms we

previously claimed to have remained constant of usage, the

usage actually increased for this selection of projects. Mean-

while, the usage of “heapq”, “functools.total_ordering”,
and “itertools” remained more or less constant in this

selection of projects. With the community context taken

into account, we can explain this, as well as a visible dip

between 2018 and 2020, as can be seen on Figure 2(d), by

the fact that many typical functional programming instru-

ments were forcibly, after many heated discussions, moved

from the standard library to packages like functools and

itertools, which in turn forced developers to update their

code with references to those. Since some code did not look

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

(a) list comprehension (b) dict comprehension

(c) join (d) itertools

(e) collections.namedtuple (f) lambda expression

Figure 2. Number of uses of some idioms over time, snapshots taken 6 months apart [22]. One can see patterns of steady

linear growth (a) (b), the typical full hype curve pattern (c), the hype curve with the forced peak of inflated expectations (d),
the saturable evolution pattern (e) and an example of an outlier (f).

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

Table 3. Results of Experiment 1 next to Experiment 2.

Idioms Re-run original experiment Experiment with new list

Projects Use Count Projects Use Count

List comprehension 848 87104 829 56115

Dict comprehension 194 1145 144 699

Generator expression 713 41493 592 22719

Decorator 765 166569 644 101208

Simple magic methods 746 81870 650 44586

Intermediate magic methods 417 13007 263 7173

Advanced magic methods 184 2548 102 1196

finally 509 18887 325 8282

with 833 219089 872 109501

enumerate 676 21605 705 18071

yield 676 56537 518 35768

lambda 667 45632 557 23498

collections.defaultdict 320 3996 258 2589

collections.namedtuple 275 2589 200 1472

collections.deque 186 1862 126 697

heapq — — 43 193

collections.Counter 158 1360 129 840

@classmethod 523 29615 380 16711

@staticmethod 503 15986 435 11841

@property — — 464 37795

zip 550 17013 552 12553

itertools 129 918 74 445

functools.total_ordering 35 98 21 58

__repr__ and __str__ — — 470 15031

pprint — — 131 1076

format — — 165 2720

join — — 143 4617

all that pythonic anymore after the migration, developers

were refactoring their code by either decreasing the use of

functools and itertools functionality, or encapsulating

it within a wrapper library of their own, thus in any case

decreasing the observable use of the concerned idioms. After

that transition period, the usual expected growth continued

naturally with the growth of the lines of code in a codebase.

The authors anecdotally confirm recalling going through the

same process in their own codebases.

While these results are noteworthy, they only pertain to

a small sample of projects, and the larger sample of 977

projects shows more generalised results across the Python

community.

We also observed once again that in Figure 2(f), as with

the results of Experiment 1, the usage of the anomalous

“lambda” idiom decreased from roughly 75,347 uses to 3,940.

This is due to the same anomalous project from the § 4 being

present in our selection of repositories here. To investigate

this further, we cloned the repository using the commit hash

from the original experiment’s metadata and ran a grep
search through the repository. By doing so, we verified that

the exceptionally high use count of “lambda” was legitimate

and not due to a bug with the detector. We then cloned the

repository from the next timeframe (November 2018) and

ran the search again, and indeed the usage of “lambda” was
significantly lower, caused by a major refactoring effort.

The conclusion here is that while the numbers in Table 2

were correct, the choice of including this repo in Alexandru

et al.’s experiment heavily skewed the popularity of “lambda”
in the original results. However, after the anomalous time

period, the usage then rose again steadily to 5,498 as seen

in Figure 2(b), we can conclude here that “lambda” grew in

popularity for this selection of repositories.

A similar result was observedwith @staticmethod, which
increased in usage since May of 2018, but curiously, the

usage decreased by nearly a quarter between November

2020 and May 2021. After investigating these two snapshots,

we observed a similar result as with “lambda” — once again,

the same anomalous project underwent another refactor

which caused the usage of “@staticmethod” to decrease

from 515 to 314, skewing the results again. Nonetheless, we

again conclude that “@staticmethod” grew in popularity by

referring to our generalised results from Table 2.

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

Table 4. Results of Experiment 3, categorised.

More insight needed | usage ± constant | usage up,

then stagnated | usage up

Idioms Conclusions

List comprehension Group 2

Dict comprehension Group 2

Generator expression Group 2

Decorator Group 2

Simple magic methods Group 2

Intermediate magic methods Group 2

Advanced magic methods Group 2

finally Group 2

with Group 2

enumerate Group 2

yield Group 1

lambda Group -1

collections.defaultdict Group 2

collections.namedtuple Group 1

collections.deque Group 2

heapq Group 0

collections.Counter Group 1

@classmethod Group 2

@staticmethod Group -1

@property Group 2

zip Group 2

itertools Group 0

functools.total_ordering Group 0

__repr__ and __str__ Group 2

pprint Group 1

format Group -1

join Group 1

As for the 6 newly identified idioms we were able to write

detectors for, “heapq” and “pprint” stay constant in terms

of usage, while “@property” went up. The usage of “format”
decreased, and we hypothesise that this is due to the intro-

duction of “f-strings”, one of the idioms we covered that

was introduced in Python 3.6 [69], and as we previously

illustrated, a cleaner way to approach string interpolation.

Additionally, the usage of “join” increased then stayed con-

stant, and “__repr__ and __str__” increased steadily.

6 Conclusion
Through the course of this paper, using the great efforts of

Alexandru et al. as a foundation, we dove deeper into the

ecosystem of Python and its pythonic values. In this final

section of the paper, we provide definitive answers for our

research questions through the results we gathered across

each of our experiments and the literature review.

6.1 Results
Research Question 1. Through a literature review per-

formed in the principles of grounded theory, we were able to

uncover 25 new pythonic idioms, increasing the total num-

ber of pythonic idioms discovered to 46. An overview of the

idiom counts and their list is seen in Table 1. Every idiom is

given with detailed definitions, use cases, links to detectors,

and examples inspired by the literature sources, and these

can be found on our online catalogue [23]. Further, the data

files, list of repositories, aggregation scripts, and detectors

can be found in a GitHub repository [19].

Research Question 2. We extended Alexandru et al.’s de-

tectors to include 6 out of the 25 newly identified idioms.

From the results of our experimentation (Experiments 2 and

3), we have established that each of the 6 idioms are under

wide use in the most popular Python projects, and as such,

are pythonic. The usage statistics are comparable to the id-

ioms previously identified by Alexandru et al. as pythonic;

in some cases, even more so, by observing the number of

projects using the “__repr__ and __str__” and “@property”
idioms in Table 3.

Research Question 3. As can be seen in Table 1, we were

able to experiment on a set of 27 idioms, of which 21 were

from the original set of idioms, and 6 were part of our newly

identified idioms.

6.2 Threats to Validity
The biggest threat to validity in our project comes from using

the number of times a particular pattern occurs in the code,

as a proxy for that code being pythonic. The essence of the

Zen of Python [43] is in principles like “beautiful is better

than ugly” and “should be one obvious way to do it”, which

are principles of software design, inherently inexpressible

in automatic detectors. The technical subject of this study is

indeed the number of times a particular idiom occurs in code

(over time), and not how those statistics correspond to the

actual perceived pythonicity of the code by an expert. This

is particularly important in the context of idiom evolution:

for example, a codebase that moves away from named tuples

because it grows and needs actual fully implemented classes,

does not necessarily lose in pythonicity.

Python is also a dynamically typed language with a lot of

features that make it hard to parse and analyse [75]. Hence,

there is a good chance that the detectors suffer from false

negatives or positives. Yet, we expect few problems stemming

from deliberate abuse of the language: as we know from

prior research on Python [38], as well as on PHP [29] and on

JavaScript [52], most harmful language constructs tend to be

avoided by developers in practice or used in a harmless way.

Just like we have claimed some degree of incompleteness

in the work of Alexandru et al [1] because their experiments

were completed before the release of Python 3.7, our own

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

replication and extension was performed before September

2021 when Python 3.10 was released, incling new features

like natural syntax for union types and structural pattern

matching with the match statement. With time, some of

these new features have a chance of becoming new pythonic

idioms worthy of adding to our catalogue.

With regards to the internal validity of our literature re-

view to discover idioms, as our literature sources [3, 5, 31,

49, 66] were chosen based on sentiment from posters on on-

line media such as forums and blogs, it is possible that the

most prominent results are purported by highly opinionated

individuals, not representative of the majority of the Python

community. We also have assumed that the idioms that are

discussed in literature sources and idioms that are used in

actual code, overlap heavily. Finally, it is probable that id-

ioms authors choose to write out, are biased to their own

personal preferences, which means that certain idioms are

given more attention than others, or that there is a conflict of

opinions among sources. We aimed to alleviate most of these

threats to validity by cross-referencing our results across a

large variety of different sources, and through our filtering

process, we hope to have ruled out most instances of bias.

A threat to the external validity of this research could

arise from the choice of only using prominent open source

projects during our idiom detection phase, which threat-

ens the generalisability of our results to the pythonicity of

closed source projects. There is some debate about the code

quality of open source projects as opposed to proprietary

or closed source projects. As Raghunathan et al. contend,

open source software projects often suffer from the “free

rider effect” where the majority of users prefer to benefit

from the efforts of the few who actually contribute to the

projects [50]. Proponents in favour of closed source projects

would claim that as developers have a monetary incentive

(through employment), the quality of contributions to closed

source code is higher. Conversely, it has been experimentally

demonstrated that providing extrinsic motivation to work-

ers through rewards (e.g., paying them a salary) conflicts

with intrinsic motivation [7]. In the short-term, extrinsically

motivated workers are more interested in the work than

intrinsically motivated workers (those who simply enjoy the

work, without any rewards), but even after removing the

rewards, those who were already working without rewards

will be more interested in the work than those who have now

lost the rewards. In other words, in the long term, monetary

incentives harm the quality of code. In cognitive psychology

and economics this phenomenon is known as overjustifica-

tion [71]. Currently it can be assumed that the quality of

code in closed source projects is not necessarily higher than

that of open source projects [50]; as such, we believe that our

results are generalisable to closed source projects as well.

6.3 Future Work
A wide array of research based on this paper can be con-

ducted, some very straightforward such as writing new de-

tectors for the remaining new idioms, as well as discover-

ing their usage in projects. The anomalous project [68] that

we have pinpointed (and excluded) here, could also be ex-

amined closer. A less trivial application, as we previously

described, would also be to determine and detect all of the

“anti-patterns” in Python, for which we illustrated potential

uses in the introductory sections.

There is a certain connection between the concept of

pythonicity and the results we have obtained as a part of

this extended replication — or so we assumed. However,

the nature of this connection, its inevitability, proportion

and persistence, can and should be investigated further. For

example, this can be done by comparing detector output

with human assessment, or by specifically looking for code

fragments where local application of pythonic idioms led to

unpythonic designs.

6.4 Lessons Learnt
To conclude, we have investigated the notion of pythonic-

ity by replicating a previous research effort by Alexandru

et al. [1], strengthening the statements made in the orig-

inal paper by generalising them to a wider collection of

Python idioms [23], applying the detection procedure with a

wider collection of detectors [19] to a wider selection of open

source repositories, using sources of different kind to collect

ground data, and finally taking first steps in investigating

how the usage of pythonic idioms evolves over time. The

linked artefact is released publicly [22].

We uncovered from the results in Experiment 2 and Ex-

periment 3 that from the original list of pythonic idioms

provided by Alexandru et al., 16 out of 21 idioms saw an

increase in popularity, including the “lambda” idiom which

required additional research through Experiment 3. 5 idioms’

usage remained constant (all 3 of the “magic method” cat-

egories, as well as “finally” and “yield”). In addition to

the original set of idioms, 2 of the 6 new idioms we wrote

detectors for, had constant usage (“heapq” and “pprint”), 3
saw increased usage (“@property”, “join”, “__repr__ and
__str__”) and the usage of “format” decreased. For the lat-
ter we conjectured potential reasons, which in turn now

require additional research to be validated.

We hope this replication of the research on coding tradi-

tions in Python, augmented by the analysis of the evolution

of these coding traditions, will serve as a good stepping stone

to future research in this area.

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

References
[1] Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Sebastian

Proksch, Harald C. Gall, and Gregorio Robles. 2018. On the Usage of

Pythonic Idioms. In Proceedings of the International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!). ACM, 1–11. https://doi.org/10.1145/3276954.3276960

[2] Wessel Badenhorst. 2017. Practical Python Design Patterns: Pythonic
Solutions to Common Problems. Apress. https://www.apress.com/gp/
book/9781484226797

[3] Dan Bader. 2017. Python Tricks: A Buffet of Awesome Python Features.
Dan Bader. https://realpython.com/products/python-tricks-book/

[4] Mark W. Bailey and Jack W. Davidson. 1995. A Formal Model and

Specification Language for Procedure Calling Conventions. In Proceed-
ings of the 22nd Symposium on Principles of Programming Languages
(POPL). ACM, 298–310. https://doi.org/10.1145/199448.199517

[5] David Beazley and Brian K. Jones. 2013. Python Cookbook (3rd ed.).

O’Reilly Media, Inc.

[6] Dmitrij Yu. Boulychev, Dmitrij V. Koznov, and Andrey A. Terekhov.

2002. On Project-Specific Languages and Their Application in Reengi-

neering. In Proceedings of the Sixth European Conference on Software
Maintenance and Reengineering (CSMR). IEEE Computer Society, 177–

185. https://doi.org/10.1109/CSMR.2002.995802
[7] Roland Bénabou and Jean Tirole. 2003. Intrinsic and Extrinsic Mo-

tivation. The Review of Economic Studies 70, 3 (07 2003), 489–520.

https://doi.org/10.1111/1467-937X.00253
[8] Robert D. Cameron. 2002. Four Concepts in Programming Language

Description: Syntax, Semantics, Pragmatics and Metalanguage. https:
//www2.cs.sfu.ca/~cameron/Teaching/383/syn-sem-prag-meta.html.

[9] Uriel Campos, Guilherme Smethurst, João Pedro Moraes, Rodrigo

Bonifácio, and Gustavo Pinto. 2019. Mining Rule Violations in

JavaScript Code Snippets. In Proceedings of the 16th International Con-
ference on Mining Software Repositories (MSR). IEEE / ACM, 195–199.

https://doi.org/10.1109/MSR.2019.00039
[10] Pierre Carbonnelle. 2021. PopularitY of Programming Language. On-

line: https://pypl.github.io/PYPL.html.
[11] James Coplien. 1997. Advanced C++ Programming Styles and Idioms.

In Proceedings of the 25th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS). IEEE Computer Soci-

ety, 352. https://doi.org/10.1109/TOOLS.1997.681881
[12] Juliet M. Corbin and Anselm Strauss. 2014. Basics of Qualitative Re-

search. Techniques and Procedures for Developing Grounded Theory (4th

ed.). Sage.

[13] Vittorio Cortellessa, Antinisca Di Marco, Romina Eramo, Alfonso

Pierantonio, and Catia Trubiani. 2010. Digging into UML Models to

Remove Performance Antipatterns. In Proceedings of the Workshop on
Quantitative Stochastic Models in the Verification and Design of Software
Systems (QUOVADIS). ACM, 9–16. https://doi.org/10.1145/1808877.
1808880

[14] Dario Di Nucci, Hoang Son Pham, Johan Fabry, Coen De Roover,

Kim Mens, Tim Molderez, Siegfried Nijssen, and Vadim Zaytsev. 2019.

A Language-Parametric Modular Framework for Mining Idiomatic

Code Patterns. In Post-proceedings of the 12th Seminar on Advanced
Techniques and Tools for Software Evolution (SATToSE) (CEURWorkshop
Proceedings, Vol. 2510), Anne Etien (Ed.). CEUR-WS.org, 38–44. http:
//ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf

[15] Shouki A. Ebad and Danish Manzoor. 2016. An Empirical Comparison

of Java and C# Programs in Following Naming Conventions. Inter-
national Journal of People-Oriented Programming (IJPOP) 5, 1 (2016),
39–60. https://doi.org/10.4018/IJPOP.2016010103

[16] Mohamed El Hussein, Sandra Hirst, Vince Salyers, and Joseph Osuji.

2014. Using Grounded Theory as a Method of Inquiry: Advantages

and Disadvantages. The Qualitative Report 19, 27 (2014), 1–15.
[17] Eva van Emden and Leon Moonen. 2002. Java Quality Assurance by

Detecting Code Smells. In Proceedings of the Ninth Working Conference

on Reverse Engineering (WCRE). IEEE Computer Society, 97–106. https:
//doi.org/10.1109/WCRE.2002.1173068

[18] H. Engward. 2013. Understanding grounded theory. Nursing Standard
28, 7 (2013), 37–41. https://doi.org/10.7748/ns2013.10.28.7.37.e7806

[19] Aamir Farooq. 2021. Detect Your Zen: Experimentation and Detection

Code. https://github.com/SlimShadyIAm/DetectYourZen.
[20] Aamir Farooq. 2021. How To Zen Your Python – Graphs. Technical

Report. University of Twente. https://doi.org/10.6084/m9.figshare.
14782170.v1.

[21] Aamir Farooq. 2021. get-commits.py: Python commit fetching

script. https://github.com/SlimShadyIAm/DetectYourZen/blob/main/
src/main/python/get-commits.py.

[22] Aamir Farooq and Vadim Zaytsev. 2021. Artefact for “There Is More
Than One Way to Zen Your Python”. Technical Report. University of

Twente. https://doi.org/10.6084/m9.figshare.16825933.
[23] Aamir Farooq and Vadim Zaytsev. 2021. Zen Your Python. https:

//slimshadyiam.github.io/ZenYourPython.
[24] Barney G. Glaser. 1998. Doing Grounded Theory: Issues and Discussions.

Vol. 254. Sociology Press.

[25] Barney G. Glaser and Anselm L. Strauss. 2017. Discovery of Grounded
Theory: Strategies for Qualitative Research. Routledge.

[26] Boryana Goncharenko and Vadim Zaytsev. 2016. Language Design and

Implementation for the Domain of Coding Conventions. In Proceedings
of the International Conference on Software Language Engineering (SLE).
ACM, 90–104. https://doi.org/10.1145/2997364.2997386

[27] DongGyun Han, Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus

Paixão, and Giovanni Rosa. 2020. Does Code Review Really Remove

Coding Convention Violations?. In Proceedings of the 20th International
Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, 43–53. https://doi.org/10.1109/SCAM51674.2020.00010

[28] Michael P. Heinl, Alexander Giehl, and Lukas Graif. 2020. AntiPatterns

Regarding the Application of Cryptographic Primitives by the Example

of Ransomware. In Proceedings of the 15th International Conference on
Availability, Reliability and Security (ARES). ACM, 64:1–64:10. https:
//doi.org/10.1145/3407023.3409182

[29] Mark Hills. 2015. Evolution of Dynamic Feature Usage in PHP. In

Proceedings of the 22nd International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE Computer Society, 525–529.

https://doi.org/10.1109/SANER.2015.7081870
[30] Margaret H. Kearny. 2001. NewDirections in Grounded Formal Theory.

In Using Grounded Theory in Nursing. Springer, 227–246.
[31] Jeff Knupp. 2013. Writing Idiomatic Python 3.3. Createspace Indepen-

dent Pub.

[32] Łukasz Langa. 2018. PEP 569 – Python 3.8 Release Schedule. https:
//www.python.org/dev/peps/pep-0569/.

[33] Cristian Mateos, Alejandro Zunino, Andres Flores, and Sanjay Misra.

2019. COBOL Systems Migration to SOA: Assessing Antipatterns

and Complexity. Inf. Technol. Control. 48, 1 (2019), 71–89. https:
//doi.org/10.5755/j01.itc.48.1.21566

[34] Jose Javier Merchante. 2019. Pythonic Examples. https://pythonic-
examples.github.io/.

[35] P. Jane Milliken and Rita Schreiber. 2012. Examining the Nexus

between Grounded Theory and Symbolic Interactionism. Interna-
tional Journal of Qualitative Methods 11, 5 (2012), 684–696. https:
//doi.org/10.1177/160940691201100510

[36] Markus Mohnen. 1996. Context Patterns in Haskell. In Proceedings
of the Eighth International Workshop on Implementation of Functional
Languages (IFL) (LNCS, Vol. 1268). Springer, 41–57. https://doi.org/10.
1007/3-540-63237-9_18

[37] M. J. Munro. 2005. Product Metrics for Automatic Identification of

“Bad Smell” Design Problems in Java Source-Code. In Proceedings of
the International Software Metrics Symposium, Vol. 2005. IEEE, 15–24.

https://doi.org/10.1109/METRICS.2005.3

https://doi.org/10.1145/3276954.3276960
https://www.apress.com/gp/book/9781484226797
https://www.apress.com/gp/book/9781484226797
https://realpython.com/products/python-tricks-book/
https://doi.org/10.1145/199448.199517
https://doi.org/10.1109/CSMR.2002.995802
https://doi.org/10.1111/1467-937X.00253
https://www2.cs.sfu.ca/~cameron/Teaching/383/syn-sem-prag-meta.html
https://www2.cs.sfu.ca/~cameron/Teaching/383/syn-sem-prag-meta.html
https://doi.org/10.1109/MSR.2019.00039
https://pypl.github.io/PYPL.html
https://doi.org/10.1109/TOOLS.1997.681881
https://doi.org/10.1145/1808877.1808880
https://doi.org/10.1145/1808877.1808880
http://ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf
http://ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf
https://doi.org/10.4018/IJPOP.2016010103
https://doi.org/10.1109/WCRE.2002.1173068
https://doi.org/10.1109/WCRE.2002.1173068
https://doi.org/10.7748/ns2013.10.28.7.37.e7806
https://github.com/SlimShadyIAm/DetectYourZen
https://doi.org/10.6084/m9.figshare.14782170.v1
https://doi.org/10.6084/m9.figshare.14782170.v1
https://github.com/SlimShadyIAm/DetectYourZen/blob/main/src/main/python/get-commits.py
https://github.com/SlimShadyIAm/DetectYourZen/blob/main/src/main/python/get-commits.py
https://doi.org/10.6084/m9.figshare.16825933
https://slimshadyiam.github.io/ZenYourPython
https://slimshadyiam.github.io/ZenYourPython
https://doi.org/10.1145/2997364.2997386
https://doi.org/10.1109/SCAM51674.2020.00010
https://doi.org/10.1145/3407023.3409182
https://doi.org/10.1145/3407023.3409182
https://doi.org/10.1109/SANER.2015.7081870
https://www.python.org/dev/peps/pep-0569/
https://www.python.org/dev/peps/pep-0569/
https://doi.org/10.5755/j01.itc.48.1.21566
https://doi.org/10.5755/j01.itc.48.1.21566
https://pythonic-examples.github.io/
https://pythonic-examples.github.io/
https://doi.org/10.1177/160940691201100510
https://doi.org/10.1177/160940691201100510
https://doi.org/10.1007/3-540-63237-9_18
https://doi.org/10.1007/3-540-63237-9_18
https://doi.org/10.1109/METRICS.2005.3

SLE ’21, October 17–18, 2021, Chicago, IL, USA Aamir Farooq and Vadim Zaytsev

[38] Bence Nagy, Tibor Brunner, and Zoltán Porkoláb. 2020. Unambiguity

of Python Language Elements for Static Analysis. In Proceedings of the
21st International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM). IEEE, 1–12. https://doi.org/10.1109/SCAM52516.
2021.00017

[39] Takao Okubo and Hidehiko Tanaka. 2007. Secure Software De-

velopment through Coding Conventions and Frameworks. In Pro-
ceedings of the Second International Conference on Availability, Re-
liability and Security (ARES). IEEE Computer Society, 1042–1051.

https://doi.org/10.1109/ARES.2007.131
[40] Aggelos Papamichail, Apostolos V. Zarras, and Panos Vassiliadis. 2020.

Do People Use Naming Conventions in SQL Programming?. In Proceed-
ings of the 46th International Conference on Current Trends in Theory
and Practice of Computer Science (LNCS, Vol. 12011). Springer, 429–440.
https://doi.org/10.1007/978-3-030-38919-2_35

[41] Howard A. Peell. 1987. An APL idiom inventory. In Proceedings of
the International Conference on APL: APL in Transition. ACM, 362–368.

https://doi.org/10.1145/28315.28360
[42] Python Software Foundation. 2000. PEP 0 – Index of Python Enhance-

ment Proposals (PEPs). https://www.python.org/dev/peps/.
[43] Python Software Foundation. 2004. The Zen Of Python. https://github.

com/python/peps/blob/master/pep-0020.txt.
[44] Python Software Foundation. 2016. What’s New In Python 3.6. https:

//docs.python.org/3/whatsnew/3.6.html.
[45] Python Software Foundation. 2019. What’s New In Python 3.8. https:

//docs.python.org/3/whatsnew/3.8.html.
[46] Python Software Foundation. 2020. Sunsetting Python 2. https://www.

python.org/doc/sunset-python-2/.
[47] Python Software Foundation. 2021. Python 3.9.7 documentation. https:

//docs.python.org/3/.
[48] Python Software Foundation. 2021. What’s New In Python. https:

//docs.python.org/3/whatsnew/index.html.
[49] Quantified Code. 2014. The Little Book of Python Anti-Patterns. https:

//github.com/quantifiedcode/python-anti-patterns.
[50] Srinivasan Raghunathan, Ashutosh Prasad, Birendra Mishra, and Hsi-

hui Chang. 2005. Open Source Versus Closed Source: Software Quality

in Monopoly and Competitive Markets. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans 35 (12 2005), 903 –
918. https://doi.org/10.1109/TSMCA.2005.853493

[51] K. Reitz and T. Schlusser. 2016. The Hitchhiker’s Guide to Python: Best
Practices for Development. O’Reilly Media.

[52] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011.

The Eval That Men Do — A Large-Scale Study of the Use of Eval in

JavaScript Applications. In Proceedings of the 25th European Conference
on Object-Oriented Programming (ECOOP) (LNCS, Vol. 6813). Springer,
52–78. https://doi.org/10.1007/978-3-642-22655-7_4

[53] Catherine Roussey, Óscar Corcho, and Luis Manuel Vilches Blázquez.

2009. A Catalogue of OWL Ontology Antipatterns. In Proceedings
of the Fifth International Conference on Knowledge Capture (K-CAP).
ACM, 205–206. https://doi.org/10.1145/1597735.1597784

[54] JamesW. Rymarczyk. 1982. CodingGuidelines for Pipelined Processors.

In Proceedings of the First International Symposium on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
I). ACM, 12–19. https://doi.org/10.1145/800050.801821

[55] Tattiya Sakulniwat, Raula Gaikovina Kula, Chaiyong Ragkhitwet-

sagul, Morakot Choetkiertikul, Thanwadee Sunetnanta, Dong Wang,

Takashi Ishio, and Kenichi Matsumoto. 2019. Visualizing the Us-

age of Pythonic Idioms Over Time: A Case Study of the with open
Idiom. In Proceedings of the 10th International Workshop on Empiri-
cal Software Engineering in Practice (IWESEP). IEEE, 43–435. https:
//doi.org/10.1109/IWESEP49350.2019.00016

[56] N. J. Salkind. 2010. Grounded theory. Encyclopedia of research design 1

(2010), 549–553. https://doi.org/10.4135/9781412961288.n169

[57] Kevin Schneider and Timo Mühlhaus. 2019. FSharpGephiStreamer:

An Idiomatic Bridge between F# and Network Visualization. J. Open
Source Softw. 4, 38 (2019), 1445. https://doi.org/10.21105/joss.01445

[58] Dale Schumacher. 2012. Actor Idioms. In Proceedings of the Second
Workshop on Programming Systems, Languages and Applications based
on Actors, Agents, and Decentralized Control Abstractions (AGERE!).
ACM, 123–128. https://doi.org/10.1145/2414639.2414655

[59] Michael L. Scott. 2021. Programming Language Pragmatics, Third
Edition (4th ed.). Morgan Kaufmann, San Francisco, CA, USA.

[60] seal UZH. 2019. LISA Workspage. https://bitbucket.org/sealuzh/
workspace/projects/LISA.

[61] Vibhu Saujanya Sharma and Samit Anwer. 2014. Performance An-

tipatterns: Detection and Evaluation of Their Effects in the Cloud.

In Proceedings of the International Conference on Services Computing
(SCC). IEEE Computer Society, 758–765. https://doi.org/10.1109/SCC.
2014.103

[62] Zed A. Shaw. 2017. Learn Python 3 the Hard Way: A Very Simple
Introduction to the Terrifyingly Beautiful World of Computers and Code
(1st ed.). Addison-Wesley Professional.

[63] F. Shull, V. Basili, J. Carver, J.C. Maldonado, G.H. Travassos, M. Men-

donca, and S. Fabbri. 2002. Replicating Software Engineering Ex-

periments: Addressing the Tacit Knowledge Problem. In Proceedings
International Symposium on Empirical Software Engineering. IEEE, 7–16.
https://doi.org/10.1109/ISESE.2002.1166920

[64] Odis E. Simmons. 2006. Some Professional and Personal Notes on Re-

search Methods, Systems Theory, and Grounded Action. World Futures
62, 7 (2006), 481–490. https://doi.org/10.1080/02604020600912772

[65] Brett Slatkin. 2015. Effective Python: 59 Specific Ways to Write Better
Python (1st ed.). Addison-Wesley Professional.

[66] Brett Slatkin. 2019. Effective Python: 90 Specific Ways to Write Better
Python, 2nd Edition. Addison-Wesley Professional.

[67] Michael Smit. 2019. Code Convention Adherence in Research Data

Infrastructure Software: An Exploratory Study. In Proceedings of the
International Conference on Big Data. IEEE, 4691–4700. https://doi.
org/10.1109/BigData47090.2019.9006130

[68] Christopher Smith, Aaron Meurer, Mateusz Paprocki, Oscar Benjamin,

Matthew Rocklin, S. Y. Lee, Ondřej Čertík, Francesco Bonazzi, Oscar

Gustafsson, Julien Rioux, et al. 2007–2021. SymPy: Python Library for

Symbolic Mathematics. https://github.com/sympy/sympy.
[69] Eric V. Smith. 2015. PEP 498 – Literal String Interpolation. https:

//www.python.org/dev/peps/pep-0498/.
[70] Jie Tan, Daniel Feitosa, Paris Avgeriou, and Mircea Lungu. 2021. Evo-

lution of Technical Debt Remediation in Python: A Case Study on the

Apache Software Ecosystem. Journal of Software: Evolution and Process
33, 4 (2021), e2319. https://doi.org/10.1002/smr.2319

[71] Shu-Hua Tang and Vernon C. Hall. 1995. The overjustification effect:

A meta-analysis. Applied Cognitive Psychology 9, 5 (1995), 365–404.

https://doi.org/10.1002/acp.2350090502
[72] TIOBE. 2021. TIOBE Index: C, Java, and Python compete for the first

position. https://www.tiobe.com/tiobe-index/.
[73] Federico Tomassetti and Vadim Zaytsev. 2020. Reflections on the

Lack of Adoption of Domain Specific Languages. In STAF Workshop
Proceedings (STAF, Vol. 2707). CEUR-WS.org, 85–94. http://ceur-ws.
org/Vol-2707/oopslepaper5.pdf

[74] F. Turbak, D. Gifford, and M. A. Sheldon. 2008. Design Concepts in
Programming Languages. MIT Press.

[75] Nicole Vavrová and Vadim Zaytsev. 2017. Does Python Smell Like

Java? The Art, Science and Engineering of Programming (‹Program-
ming›) 1 (April 2017), 11–1–11–29. Issue 2. https://doi.org/10.22152/
programming-journal.org/2017/1/11

[76] Indika P. Wickramasinghe and Harsha K. Kalutarage. 2021. Naive

Bayes: applications, variations and vulnerabilities: a review of litera-

ture with code snippets for implementation. Soft Comput. 25, 3 (2021),
2277–2293. https://doi.org/10.1007/s00500-020-05297-6

https://doi.org/10.1109/SCAM52516.2021.00017
https://doi.org/10.1109/SCAM52516.2021.00017
https://doi.org/10.1109/ARES.2007.131
https://doi.org/10.1007/978-3-030-38919-2_35
https://doi.org/10.1145/28315.28360
https://www.python.org/dev/peps/
https://github.com/python/peps/blob/master/pep-0020.txt
https://github.com/python/peps/blob/master/pep-0020.txt
https://docs.python.org/3/whatsnew/3.6.html
https://docs.python.org/3/whatsnew/3.6.html
https://docs.python.org/3/whatsnew/3.8.html
https://docs.python.org/3/whatsnew/3.8.html
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/whatsnew/index.html
https://docs.python.org/3/whatsnew/index.html
https://github.com/quantifiedcode/python-anti-patterns
https://github.com/quantifiedcode/python-anti-patterns
https://doi.org/10.1109/TSMCA.2005.853493
https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1145/1597735.1597784
https://doi.org/10.1145/800050.801821
https://doi.org/10.1109/IWESEP49350.2019.00016
https://doi.org/10.1109/IWESEP49350.2019.00016
https://doi.org/10.4135/9781412961288.n169
https://doi.org/10.21105/joss.01445
https://doi.org/10.1145/2414639.2414655
https://bitbucket.org/sealuzh/workspace/projects/LISA
https://bitbucket.org/sealuzh/workspace/projects/LISA
https://doi.org/10.1109/SCC.2014.103
https://doi.org/10.1109/SCC.2014.103
https://doi.org/10.1109/ISESE.2002.1166920
https://doi.org/10.1080/02604020600912772
https://doi.org/10.1109/BigData47090.2019.9006130
https://doi.org/10.1109/BigData47090.2019.9006130
https://github.com/sympy/sympy
https://www.python.org/dev/peps/pep-0498/
https://www.python.org/dev/peps/pep-0498/
https://doi.org/10.1002/smr.2319
https://doi.org/10.1002/acp.2350090502
https://www.tiobe.com/tiobe-index/
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
https://doi.org/10.22152/programming-journal.org/2017/1/11
https://doi.org/10.22152/programming-journal.org/2017/1/11
https://doi.org/10.1007/s00500-020-05297-6

There Is More Than One Way to Zen Your Python SLE ’21, October 17–18, 2021, Chicago, IL, USA

[77] Eliane Stampfer Wiese, Anna N. Rafferty, Daniel M. Kopta, and

Jacqulyn M. Anderson. 2019. Replicating Novices’ Struggles with

Coding Style. In Proceedings of the 27th International Conference on
Program Comprehension (ICPC). IEEE / ACM, 13–18. https://doi.org/
10.1109/ICPC.2019.00015

[78] Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and

Armando Fox. 2017. Teaching Students to Recognize and Implement

Good Coding Style. In Proceedings of the Fourth ACM Conference on
Learning at Scale (L@S). ACM, 41–50. https://doi.org/10.1145/3051457.
3051469

[79] Samim Yaquby. 2019. Syntax, semantics, and pragmatics.

https://samimyaquby.medium.com/syntax-semantics-and-
pragmatics-14939488d1c9.

[80] Moshe Zadka. 2015. Idioms and Anti-Idioms in Python. http://omz-
software.com/-editorial/docs/howto/doanddont.html.

[81] Vadim Zaytsev. 2013. Micropatterns in Grammars. In Proceedings of
the Sixth International Conference on Software Language Engineering
(LNCS, Vol. 8225). Springer, 117–136. https://doi.org/10.1007/978-3-
319-02654-1_7

[82] Zaytsev, V. (Ed.). 2009–2021. Software Language Engineering Body of

Knowledge. http://slebok.github.io.

https://doi.org/10.1109/ICPC.2019.00015
https://doi.org/10.1109/ICPC.2019.00015
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1145/3051457.3051469
https://samimyaquby.medium.com/syntax-semantics-and-pragmatics-14939488d1c9
https://samimyaquby.medium.com/syntax-semantics-and-pragmatics-14939488d1c9
http://omz-software.com/-editorial/docs/howto/doanddont.html
http://omz-software.com/-editorial/docs/howto/doanddont.html
https://doi.org/10.1007/978-3-319-02654-1_7
https://doi.org/10.1007/978-3-319-02654-1_7
http://slebok.github.io

	Abstract
	1 Introduction
	2 Related Work
	3 Literature Review
	3.1 Suitable Sources
	3.2 Identified Idioms
	3.3 The Catalogue of Idioms

	4 External Replication
	5 Beyond Replication
	6 Conclusion
	6.1 Results
	6.2 Threats to Validity
	6.3 Future Work
	6.4 Lessons Learnt

	References

