
Pattern Mining for Systematic Code Changes
Kim Mens, Siegfried Nijssen, Hoang-Son Pham

ICTEAM, UCLouvain
Belgium

{Kim.Mens, Siegfried.Nijssen, Hoang.S.Pham}@uclouvain.be

Johan Fabry
Raincode Labs

Belgium
johan@raincode.com

Vadim Zaytsev
Universiteit Twente

The Netherlands
vadim@grammarware.net

Software developers repeatedly perform similar but non-
identical changes to a system’s source code. Such groups of
similar systematic code changes are performed for various
reasons: adapting code to a changed API, migrating to a dif-
ferent library, refactoring to improve code quality, performing
routine code maintenance tasks, fixing multiple manifestations
of the same bug, implementing or modifying crosscutting
concerns, managing code clones, making similar changes to
multiple branches of a system, etc. While developers may
have some notion of the systematic changes they performed
in their own code, it requires significant effort to manually
locate existing systematic code changes in projects they do
not know. Consequently, an automated approach for locating
such systematic code changes between versions is required.

To automatically discover unknown systematic code
changes between different versions of a system, various ap-
proaches have been proposed, which are often based on data
mining techniques: first creating a database of changes, then
mining for patterns in this database. For instance, Č. Gerlec
et al. [1] apply standard data mining approaches to source
code and source code changes. H. A. Nguyen et al. [2] mine
source code changes at the API usage level, extracting an API
usage graph for two versions of a system, and using frequent
itemset mining to look for migration patterns. T. Molderez et
al. [3] also apply data mining techniques to discover source
code changes, based on a closed itemset mining algorithm to
find patterns in a database of changes.

In our work, to mine for systematic source code changes,
we propose a new approach using a frequent tree mining
algorithm. A significant difference of our approach compared
to the approaches above is that it mines for source code
changes directly from abstract syntax trees (ASTs) instead
of using a database of changes. As a result, the discovered
patterns can include any kind of structural source code changes
and are not limited to the changes occurring in the database of
changes. In addition, our approach is able to mine for patterns
from two versions (or two commits) of a system that could
have hundreds or thousands of commits in between.

To mine for source code changes, we extend our original
FREQTALS pattern mining algorithm, which was specifically
designed for analysing code repositories for frequently occur-
ring code patterns [4]. The main difference is that now we
apply it to mine for significant patterns of code changes be-
tween versions. FREQTALS is a constraint-based tree mining
algorithm that combines two approaches: (i) maximal frequent

subtree mining to ensure that a condensed representation of
only large patterns is found, (ii) constraint-based data mining,
in which additional constraints can be imposed on the patterns
to be found. In the adapted version of our algorithm, the
input data is considered to be supervised, where each class
corresponds to one version of the code. The goal is to discover
code fragments that occur more frequently in one collection
than in the other. To evaluate the difference of occurrences of
the pattern in the two classes, we use a χ2 measure. Intuitively,
the higher the χ2 score of a pattern, the more interesting it is.

We evaluated our algorithm on various systems written in
Java and Python. For Java we selected 4 medium size open
source projects: ANTLR, Checkstyle, JGraphX and JHotDraw.
For each project, we chose two versions having hundreds or
thousands of commits in between them. The algorithm finds
a high proportion of patterns that are interesting, representing
source code fragments which changed over the two versions.
To group similar patterns together, a variety of clustering
algorithms is used.

For mining Python code, we adopted a slightly different
experiment. We compare similar code of different groups of
students, collected from an online exam system. The first
group consists of submissions having obtained a score of
50% or more at the exam; all other submissions are put in
the second group. Our algorithm discovered a large amount
of patterns that occur more frequently in one group than in
the other. Such patterns are representative of good solution
strategies to an exam question, or of misconceptions in the
solutions of students who failed the question.

These experimental results do show that our approach is able
to automatically discover systematic code differences between
two versions of a system. To further evaluate the quality of our
change pattern mining algorithm we need to run the algorithm
on more and larger systems and to compare the results to
alternative mining approaches.

REFERENCES

[1] Č. Gerlec, A. Krajnc, M. Heričko, and J. Božnik, “Mining Source Code
Changes from Software Repositories,” in CEE-SECR, 2011, pp. 1–5.

[2] H. A. Nguyen, T. T. Nguyen, G. Wilson, A. T. Nguyen, M. Kim, and
T. N. Nguyen, “A Graph-Based Approach to API Usage Adaptation,” in
OOPSLA. ACM, 2010, p. 302–321.

[3] T. Molderez, R. Stevens, and C. De Roover, “Mining Change Histories
for Unknown Systematic Edits,” in MSR. IEEE, 2017, pp. 248–256.

[4] H. S. Pham, S. Nijssen, K. Mens, D. D. Nucci, T. Molderez, C. D.
Roover, J. Fabry, and V. Zaytsev, “Mining Patterns in Source Code
Using Tree Mining Algorithms,” in Discovery Science. Springer, 2019,
doi:10.1007/978-3-030-33778-0 35.

mailto:Kim.Mens@uclouvain.be
mailto:Siegfried.Nijssen@uclouvain.be
mailto:Hoang.S.Pham@uclouvain.be
mailto:johan@raincode.com
mailto:vadim@grammarware.net
https://github.com/antlr/antlr4
https://github.com/checkstyle/checkstyle
https://github.com/jgraph/jgraphx
https://sourceforge.net/projects/jhotdraw/
https://doi.org/10.1007/978-3-030-33778-0_35

	References

