Improving a Software Modernisation Process by
Differencing Migration Logs

Céline Deknop!-2, Johan Fabry?, Kim Mens!, and Vadim Zaytsev?>

! Université catholique de Louvain, Louvain-la-Neuve, Belgium
2 Raincode Labs, Brussels, Belgium
3 Universiteit Twente, Enschede, The Netherlands

celine.deknop@uclouvain.be, johan@raincode.com,
kim.mens@uclouvain.be, vadim@grammarware.net

Abstract. Software written in legacy programming languages is notori-
ously ubiquitous and often comprises business-critical portions of code-
bases and portfolios. Some of these languages, like COBOL, mature,
grow, and acquire modern tooling that makes maintenance activities
more bearable. Others, like many fourth generation languages (4GLs),
stagnate and become obsolete and unmaintained, which first urges and
eventually forces migrating to other languages, if the software needs to
be kept in production. In this paper, we dissect a software modernisation
process endorsed by Raincode Labs, utilised in particular to migrate soft-
ware from a 4GL called PACBASE, to pure COBOL. Having migrated
upwards of 500 MLOC of production code to COBOL using this process,
the company has ample experience with this process. Nevertheless, we
identify some improvement points and explain the technical side of a
possible solution, based on migration log differencing, that is currently
being put to the test by Raincode migration engineers.

Keywords: Software modernisation, legacy programming languages, software
migration, software evolution, code differencing, COBOL, PACBASE, 4GL

1 Introduction

When COBOL was first introduced and published in 1960 [6], it enabled writing
software that replaced the manual labour of thousands of people previously per-
forming pen-and-paper bookkeeping or at best manual data entry and manipu-
lation. When 4GLs (fourth generation languages) started emerging, they allowed
developers to write significantly shorter programs, and enabled automated gen-
eration of dozens of pages of COBOL code from a single statement [22,29]. Nowa-
days, in the era of intentionally designed software languages [18] and domain-
specific languages [31], conciseness and brevity is appreciated as much as read-
ability, testability, understandability and ultimately, maintainability [9]. Yet,
legacy software continues to exist due to the sheer volume of it: just COBOL
alone is estimated to have at least 220 billion lines of code worldwide, accord-
ing to various sources. Business-critical legacy systems still make up a massive

2 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

fraction of the software market: in 2017, it was reported that 43% of all banking
systems in USA were built on COBOL, and that 95% of ATM swipes end up
running COBOL code [27]. Migration projects are possible, but extremely chal-
lenging [30] and prone to failure due to overconfidence, misunderstanding, and
other factors [5].

Over the last 25 years, Raincode Labs [25], a large independent compiler
company, has conducted many different legacy modernisation projects. In this
paper, we focus on the modernisation process for one specific kind of such
projects [26]: removing the dependency on the compiler and the infrastructure
of PACBASE [14], a 4GL that will be explained in section 2. The research pre-
sented in this paper is a part of the CodeDiff NG [39] research project, an Applied
PhD grant of the Brussels Capital Region that funds a collaboration between the
UCLouvain university and the Raincode Labs company. The project is aimed at
exploring the opportunities to push code differencing further by investigating ad-
vanced forms thereof, providing engineers with a structural view of the changes
and with an explanation of their intent, especially in the context of realistically
large codebases being used over long periods of time. In that context, this collab-
oration initiative with Raincode engineers aims to identify some of the problems
they are still facing in their different software modernisation processes relating
to the topic of code differencing, and design use cases based around those.

In section 2 we will explain in detail the problem context and software mod-
ernisation process currently adopted by the company to migrate PACBASE-
generated COBOL code to a more maintainable and human-readable equivalent.
In section 3, we will present the concept of code differencing, which we want to
use to improve on the process described in the previous section. We will then
detail where exactly our solution would fit, as well as describe the principles that
we intend to put in place. Then, we will present the current state of our work in
section 4. Finally, in section 5, we provide an overview of other approaches that
we have explored to some extent and might explore in the farther future.

2 The Problem Space: PACBASE migration

PACBASE [14] is a language and a tool created in the 1970s. Its original
name was PAC700, for “programmation automatique Corig” (French for “Corig
automated programming”, where Corig was “conception et réalisation en in-
formatique de gestion”, a structured programming methodology popular in the
1970s). Its selling point was offering a DSL to its users that was at a higher
level than available alternatives such as COBOL. The end users would program
concise PACBASE macros, and COBOL code would be generated for them au-
tomatically. PACBASE was widely used since its creation throughout its life
cycle [2]. The “Compagnie Générale d’Informatique”, which developed it, was
absorbed by IBM in 1999. In 2000, PACBASE itself was modernised and rewrit-
ten in Java [28], but this did not suffice to prolong its life. The first attempt
to suspend its support was made in 2005, and its definitive retirement was an-

Improving a Software Modernisation Process by Differencing Migration Logs 3

nounced in 2015 [11]. Hence in companies that still rely on it, there is a pressing
need to migrate software written in PACBASE to plain COBOL.

Since 2002 Raincode Labs has often undertaken such projects of PACBASE-
generated COBOL to plain COBOL migration, one example being the case of
the insurance broker DVV Verzekeringen reported by Bernardy [4]. Raincode
Labs takes PACBASE-generated COBOL code and refactors it into a shorter,
more readable equivalent that can be maintained manually [26]. PACBASE is
an aged technology that will ultimately disappear, and an extensive discussion
of the way PACBASE itself works is out of scope of this paper. Our main focus
here is on the migration process of PACBASE-generated COBOL to a more
concise, maintainable, and human-readable equivalent, and on how differencing
of migration logs can help to improve that process.

The PACBASE migration process is achieved through a set of 140 trans-
formation rules developed and refined by Raincode Labs over many years. Each
single transformation rule can be seen as a local automated refactoring designed
to be simple enough so that it can be proven not to change the semantics of the
code; yet making it just a bit more concise, readable or maintainable. All rules
are applied iteratively to the code until no further refactorings can be applied.
This entire process and the artefacts involved are summarised in Figure 1. Apart
from summarising the migration process, which is the focus of this section, Fig-
ure 1 also illustrates how, as a side-effect of the migration process, a migration
log is produced. We will see in section 4 how differencing of such migration logs
could help to further improve the migration process.

A concrete example of a COBOL-to-COBOL program transformation is given
in Figure 2. All GO TO statements are removed and the control flow is turned
into a PERFORM, the COBOL equivalent of a for loop. The logic that allows
to iterate 10 times, contained in lines 1 to 9, has been translated into a more
familiar VARYING UNTIL clause. Additionally, the concrete action of the loop, on
lines 10 to 15 and 17 to 22 before, was simplified into a single IF ELSE that
performs the same actions. Undeniably, this new COBOL code is more concise,
more readable and more maintainable than the original (generated) one.

Final

migrated
COBOL

Log 0;

migration
process

Generated
COBOL being
transformed

PACBASE
code

Generated
COBOL

Apply transformation rules
{until none can be applied)

Fig.1: Summary of the migration process, showing the different artefacts in-
volved and their transformations.

4 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

FO5DC.

MOVE 1 TO ICATR.

GO TO FOsDC-B.
FO5DC-1.

ADD 1 TO ICATR.
FO5DC-B.

IF 10 < ICATR THEN

GO TO FO5DC-FN
END-IF.
IF CATX(ICATR) = @' THEN

NEXT SENTENCE
ELSE

60 10 FosDC-C ——)
END-IF.

PERFORM
VARYING ICATR FROM 1
BY 1
UNTIL 10 < ICATR
IF CATX(ICATR) = '@' THEN
MOVE 'X' TO CATM(ICATR)

MOVE "X' TO CATM(ICATR). ELSE
FO5DC-C. MOVE 'Y' TO CATM(ICATR)
IF CATX(ICATR) NOT = '@' THEN ENDTE.
NEXT SENTENCE :
ELSE END-PERFORM.
GO TO FOsDC-D
END-IF.
MOVE "Y' TO CATM(ICATR).
FO50C-D.
GO TO FOSDC-A.
F@5DC-FN.

EXIT.

Fig. 2: Example of a migration from PACBASE-generated COBOL to equivalent
COBOL code that is more concise, readable and maintainable.

Transformation rules are applied iteratively, and it takes 33 intermediary
steps to perform the migration from Figure 2. Let us take a closer look at some
of them. The first transformation rule that is triggered is fairly simple as it
simplifies the code in “one go”, while others may need a few iterations, as we will
see later. This first rule is called NEXT SENTENCE Removal, and is applied
twice. As the name suggests, it removes the two NEXT SENTENCE instructions
on lines 11 and 18, replacing them by the instruction CONTINUE. In COBOL,
NEXT SENTENCE jumps to the instruction after the next full stop (here, it jumps
respectively to lines 15 and 22), whereas the CONTINUE instruction simply does
nothing and is used as a placeholder where code is required but nothing needs
to be done (here, in the body of an if statement). In this particular example, we
can easily see that this transformation preserves behaviour, since the full stop is
right after the end of the if statement, where execution naturally continues.

Some transformation rules remove artefacts that are no longer useful. An
example of such rule would be Remove Useless Dots, that is applied four
times to the code a few steps later. Indeed, since we removed our NEXT SENTENCE
instructions, we do not need the full stops signalling such sentences anymore.
Therefore, the full stops on lines 21 and 14 get removed. At the same time,
the ones on lines 2 and 9 are deleted as well, since they never really served a
purpose. Another example of such a transformation rule would be to Remove
Labels, i.e., delete labels when they are no longer needed (in our example all
labels ultimately get removed).

Some bigger transformations, such as the creation of the PERFORM loop visible
in the resulting code in Figure 2, may require applying quite a few intermediate

MOVE 1 TO ICATR
GO TO F@5DC-B.

FasDC-A.
ADD 1 TO ICATR.

FasDC-B.
IF 1@ < ICATR
GO TO F@5DC-FN
END-IF

IF CATX(ICATR) NOT = '@"

GO TO Fe@5DC-C
END-IF

MOVE X' TO CATM(ICATR).

FesDC-C.
IF CATX(ICATR) = '@
GO TO FesDC-D
END-IF

MOVE "Y' TO CATM(ICATR).

F@sDC-D.

Improving a Software Modernisation Process by Differencing Migration Logs

MOVE 1 TO ICATR
GO TO F@5DC-B.

F@SDC-A.
ADD 1 TO ICATR.

FO5DC-B.

IF 10 < ICATR

GO TO F@SDC-FN

ELSE

IF CATX(ICATR) = '@°

MOVE "X’ TO CATM(ICATR)
END-IF
END-IF

IF CATX(ICATR) NOT = '@°
MOVE "Y' TO CATM(ICATR)
END-IF

GO TO F@5DC-A.

GO TO F@SDC-A.

FOSDC-FN.
FOSDC-FN. EXIT.
EXIT.

(a) Flipped conditions without CONTINUE (b) Start of the if/else GO TO loop structure

MOVE 1 TO TCATR MOVE 1 TO ICATR
FOSDC-B. FOSDC-B.
IF 10 < ICATR PERFORM UNTIL FALSE
GO TO F@SDC-FN IF 10 < ICATR
ELSE 60 TO FOSDC-F
ELSE
IF CATX(ICATR) = "0° oL
MOVE "X’ TO CATM(ICATR) IF CATX(ICATR) = '@
ELSE MOVE "X’ TO CATM(ICATR)
MOVE 'Y* TO CATM(ICATR) ELSE
END-IF MOVE 'Y' TO CATM(ICATR)
END-IF END-IF
END-IF
ADD 1 TO ICATR.
GO TO FO5DC-B. ADD 1 TO ICATR
END-PERFORM.
FOSDC-FH.
EXIT. FOSDC-FN.
EXIT.
(c) Simplified if/else clause doing the (d) Creation of the PERFORM

MOVEs

Fig. 3: Snapshots of the loop-creation process

transformation rules. To remain relatively concise, we will highlight only a few
of them in Figure 3. First, a transformation rule Remove Idle Instructions is
triggered, allowing to flip the condition of the if statements and the correspond-
ing line of code, so that we then can get rid of the else condition now containing
the CONTINUE (Figure 3a). Then, a transformation rule Recognise Loop-like
Patterns is triggered twice in a row, and after some clean-up steps, we can
start to see an if-else structure containing GO TOs that starts to resemble a loop
on lines 9, 10 and 21 (Figure 3b). Quite a few more steps are needed however
to bring all the conditions into the simple if-else clause that we get in the end
(Figure 3c); before the Replace GO TO by Loop Exit transformation rule
can finally create the PERFORM loop that we can see in Figure 3d. The final steps
create the VARYING and performs some cleanups, resulting in the code on the
right-hand side of Figure 2.

Need for redelivery. The process of migrating an entire codebase takes on av-
erage around two weeks, which includes tweaking the configuration, enabling/dis-
abling/applying the transformation rules, testing the produced result, etc. (Al-

6 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

Raincode migratien process

PACBASE
code
Vx

PACBASE

> code
Client keeps working on codebase Vx+1

Generated

Fig.4: Migration process, affected by the customer still working on the
PACBASE code.

though all transformations were designed to be behaviour preserving, this testing
phase can help convince the customer that the program indeed behaves the same
way before and after the transformation.) During those two weeks, the customer’s
programmers typically continue with active development on the original system,
making it diverge from the snapshot Raincode’s migration team is working on,
as depicted in Figure 4. The process to integrate these changes to the original
code into the already migrated code is called a redelivery, and will be explained
shortly. The larger the migration project, the more redelivery phases can be re-
quired to ensure the customer’s complete satisfaction at the end of Raincode’s
migration process.

The PACBASE migration process is largely automated, yet some manual
steps remain. In what follows, we will explain how we believe they could be
improved through advanced code differencing. One of our goals is to produce
tools that are both academically relevant and concretely useful for the company.
In the paragraphs below, we dive deeper into the process that Raincode engineers
go through when migrating PACBASE projects, in order to identify manual work
that possibly can be facilitated.

Raincode Labs’ migration service is as tailored to the customer as possible.
Raincode engineers experienced in PACBASE migration collaborate closely with
the customer’s engineers familiar with customer-specific coding standards. In
the first phase, the customer selects from the 140 available transformation rules,
the ones they want to apply to their codebase. The available transformation
rules include universally appreciated GO TO elimination and rearranging control
flow for code readability. Other transformations are more cosmetic and concern
data alignment, code formatting or layout — they can be switched off when
incompatible with the customer’s coding standards. Raincode Labs’ migration
engineers coach the customer in choosing which rules to include, showing the
transformation effect and providing suggestions about what would work best.

Improving a Software Modernisation Process by Differencing Migration Logs 7

Once the chosen set of rules is validated, the customer wants to be sure that
the original behaviour of their programs is maintained after migration. Since
the PACBASE migration service has been used for over fifteen years and has
seen millions of processed lines of code successfully go in production, it is quite
exceptional that bugs are introduced by the PACBASE migration. Nonetheless,
the customer typically wishes to be convinced that the migrated code (that is
often business-critical) will work as intended.

To facilitate this, Raincode engineers perform a test run of the migration,
and in collaboration with the customer partition their codebase in three parts:

— 10-30 critical programs to be tested exhaustively;
— 80-100 programs to be tested thoroughly with unit and integration tests;
— the rest of the programs, to be tested for integration or not tested at all.

It is verified that all transformation rules that were triggered in the migration
process are applied at least once in the first partition, assuring that all rules get
manually tested at least once by the customer. When all lights are green, the
customer’s entire PACBASE-generated COBOL codebase is sent to Raincode
engineers, who perform a cursory analysis of the codebase. Due to the scale of
the codebase (typically 10-200 MLOC), the delivery may contain uncompilable
code or non-code artefacts. Only when both parties agree on what exactly needs
to be migrated, the actual process starts and after a few quality checks, the
result is delivered to the customer.

As previously mentioned, it is frequent that in the meantime modifications
have been introduced to the PACBASE code on the customer’s side, in parallel
with the migration process. In that case, a redelivery is needed. The customer
sends all PACBASE-generated COBOL code that has changed, triggering an-
other phase of manual analysis for Raincode engineers. This time, not only do
they have to make sure that all the code is compilable, but also need to de-
termine for each program if it has been migrated previously, or is something
completely new. If it is new, they have to reevaluate whether it should indeed be
migrated. If it is an update, they need to know if it has actually changed, since
come minor readability tweaks on the PACBASE level might not propagate at
all to the COBOL code or yield functionally equivalent code.

After this manual verification, the automated migration process is performed
again. Before sending the results to the customer, Raincode’s engineers now need
to do not only some quality-checks, but also make an analysis of what changed
since the delivery. This is done mostly manually and is a very subjective process:
the engineer that we interviewed described it as “we send the new migrated files
to the customer when they look good enough”. More concretely, they check if new
rules got triggered in the migration process, then look at the output of a diff
between the migrations of the previously sent version and the new one. If the
difference is small enough to be manageable, they analyse it; if it is not and they
feel like they can’t confidently assure that the behaviour is identical, they ask
the customer to perform a new test phase on those files.

8 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

Challenges of migration engineers were identified in two key places where
nontrivial manual work tends to occur in this migration process: analysis of
the initial codebase and redelivery. The codebase analysis is almost completely
manual, but fairly quick and painless. There have also been successful attempts
to automate it with language identification powered by machine learning [15].
Thus, we have chosen not to focus on this part at the moment.

The remainder of the paper will focus on addressing codebase redelivery
instead. Raincode engineers could benefit from a tool that would allow them to
say precisely and confidently, what (parts of a) program(s) need(s) to be tested
again by the customer after a redelivery. Such a tool would allow the engineers
to present the changes in the migrated codebase (that were triggered by changes
to the PACBASE-generated COBOL) to the customer in an easy-to-understand
way, instead of expecting them to trust their instincts. It would help negotiations
if such a tool could provide insights on the reasons of why and how the migrated
code was changed. Indeed, sometimes even very small changes to the original
PACBASE code can have consequences on the COBOL output so significant
that the new migrated version will also drastically change. This effect is not
anticipated by most customers.

3 The Solution Space: Code Differencing

Code differencing aims at comparing two pieces of data, typically textual source
code. One piece of data is considered as source and one as target. Code differenc-
ing produces difference data that specifies what changes or edits are necessary to
go from the source to the target. This technique can be used directly, in version
control systems such as git or the Unix command diff. It is also used indirectly,
in the context of code merging [23], compression [12], convergence [38] and clone
detection [24].

Even today, many differencing tools still rely on the basic algorithm created
by Hunt and MclIlroy [13] in 1976, or variants thereof. These tools treat their
input as simple lines of text or binary data. However, code is more than just a
random stream of characters. It conforms to quite specific and strict syntacti-
cal structure, ready to be exploited, and it implies a logical flow of control and
dependencies among its components. A same code fragment can also reoccur in
multiple places within a file or across multiple files. Such subtleties are lost when
using the Hunt-Mcllroy algorithm. Flat textual comparison does not reflect de-
veloper goals and obscures the intent of the changes due to the excess of low level
information displayed, which can lead to frustrating and tedious experiences.

Using this algorithm thus often results in outputs that are hard to use or
understand by developers, because they are too detailed or miss important rela-
tionships between the components involved in the change. They neither commu-
nicate nor reflect the intent, and ignore the semantics of the changes — the very
thing one tends to seek when looking at a diff. When interacting directly with
the output of a diff tool, it is often hard to get a good understanding of what
functionalities — if any — changed since the last version, simply because there

Improving a Software Modernisation Process by Differencing Migration Logs 9

is just too much information to process at once. For example, if refactorings were
applied, the behaviour of the program was expected to remain unchanged. Yet,
the actions taken may result in changes that span over multiple files, and a devel-
oper would need to put a lot of effort in analysing these changes to understand
or verify whether they indeed still respect the original program semantics.

Even interacting with diffs indirectly, like using a version control system
with a good visualisation frontend (gitk, gitx, Git Kraken, Git Extensions,
etc), can still be frustrating to users. This is because it occasionally forces them
to be confronted with the differences at a fine-grained level and makes them
perform the merge manually. Examples of this are when just a few edits and
moves caused a file to be flagged as completely different, or when there were
simultaneous changes to the same set of lines.

3.1 Improvement Opportunities

As was illustrated in Figure 1, the migration process takes the initial generated
COBOL files and produces new migrated versions of this code, as well as some
logs of the process. There is one log file per migrated program, and it contains
the order and nature of the transformation rules that were triggered during the
migration. This log file describes the exact process to go from the initial to the
final version of each program, splitting it in multiple subversions. A snippet of
such a log is shown in Figure 5. Each line represents either a triggered rule along
with the number of times (patches) it got triggered, or an intermediary version.
Those intermediary versions are stored to disk, to enable analysis of the exact
effect of the rule that got applied. Two different types of intermediary versions
exist: the main phases denoted with a letter (rea, reb, ...) and the subversions
marked with numbers (here, 0030). Other lines containing warnings or debug
information have been removed from the snippet as they will not be studied —
we just assume that Raincode engineers will only diff successfully migrated files.

We could apply differencing to any of the above artefacts: we have both
versions of the PACBASE-generated COBOL programs, the migrated COBOL

1:tmp/filename.COB.rea

Rename Level 49 (0 patches done)
Done (0 patches done)
1:tmp/filename.COB.reb

1:tmp/filename.COB.rec

Next-Sentence removal (28 patches done)
1:tmp/filename.COB.0030

Remove Useless Dots (51 patches done)

Done (0 patches done)
1:Result/filename.COB

Fig.5: A simplified migration log

10 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

INITIAL

;1->1

[5,20]->[9, 20];
10->0; 0.5->0
—_— = i
C omon =
Sy
5->0; 1->0

Fig. 6: The result of log differencing for a simple shopping cart example [19].

programs and migration logs for each migrated program. The idea of using the
initial generated COBOL files was quickly discarded: they are known to be hard
to understand, can change drastically when regenerated from a slightly adjusted
PACBASE source, and can already be diff’ed.

Both remaining artefacts (the log files and the migrated programs) are capa-
ble of providing valuable information, each addressing some of the challenges of
migration engineers. One would give an explanation as to why and how things
changed, the other giving a clearer answer as to where things changed in the
output code. Thus, we think it would be beneficial to use a combination of dif-
ferencing both these artefacts to construct a full picture. First, we will look at
the log produced by the migration process.

3.2 Log differencing

In prior work, Goldstein et al. [10] presented a way to use log messages to create
Finite State Automata representing the behaviour of a service when it is known
to be in a normal and working state. They create a second model from updated
logs and compare it to the first model. With that, they manage to identify
outliers or behaviour that is different and therefore considered abnormal. This
work was used in the context of mobile networks where an abnormal behaviour
can translate to network congestion.

An example of the results obtained by them [10] is shown in Figure 6. Nodes
considered different (added or removed) have a specific border, in our exam-
ple these are the nodes PwdReset (added) and Checkout (removed). Edges are
adorned with two values separated by a semicolon. The first value is the time in
seconds that the transition took in the underlying log, which we will not consider
in our work since we are not interested in the performance of the migration pro-
cess. The second value is the transition probability evolution. The probability

Improving a Software Modernisation Process by Differencing Migration Logs 11

program P1: program P2: read(a) o read(a)
var a, b: real; var a, b real;

o if (a=0) o b =abs(a)
1 read(a); 1 read(a);
2 if(a<0) 2 b:=abs(a) bi=a ° o bi=a ° et
3 thenb:=-a 3 write(a,b)]

write(a,b) ° end

4 else b:=a; 4 end
5 write(a,b) G2

@ end
6 end

G1
Fig. 7: Two reduced CFGs representing successive program versions [19]

° read(a)
(2) woo
o write{a,b)

or

GDiff

begin begin

Fig. 8: Getting an isomorphic graph for the program P1 from Figure 7 [19]

to go from the first INITIAL node to the Credentials node remains unchanged
while the probability to go to the new node PwdReset evolves from 0 to 0.33.

As we will see shortly in section 4, translating this example to our specific
context is fairly simple. Nodes will correspond to log lines (representing either an
intermediary version or a rule), and the edges and their probabilities will model
the iterative process of the migration.

3.3 Code differencing

The second approach we consider is to use the migrated COBOL programs di-
rectly, and compare them in a way useful for our use case. Laski and Szermer [19]
propose a way to make structural diffs using reduced flow graphs (see Figure 7)
in the context of code revalidation, which may suit our purpose quite well.
They create reduced flow graphs for both versions (before and after the trans-
formation) and apply classical modifications (relabelling, collapsing and removal)
to their nodes in order to find an isomorphic graph (see Figure 8). In the resulting
graph, all nodes having their initial labels represent code that did not change,
whereas all the differences abstracted by MOD are nodes that were transformed.
This representation is way more concise than the hundreds of lines given by a
diff output, and has better chances of being more legible for both the customer’s
developers and the migration engineers. Places where modifications occurred are
clearly identified and can easily be found in the code under consideration for re-
test, giving a clear answer as to where things changed in the migrated code.

12 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

It is important to note that the algorithm aims at giving the most coarse
result possible without losing precision. Whenever possible, it would give an
output such as the one in Figure 8 with parts left unchanged that do not need
to be tested. However, if the difference in the code is too big, it would output
a graph that just consists of a MOD node, which is still useful: it gives the
migration engineers footing when they tell their customer that the entire code
needs to be retested.

4 Differencing log files

Of the two approaches we presented, we needed to start with one. We chose to
focus on log differencing for now because it was more recent, but we fully intend
to explore diffs of the code later on.

In our efforts to improve Raincode Lab’s software modernisation process, we
started adapting the log differencing method presented by Goldstein et al. [10]
to their use case. First, we analysed the data provided by Raincode for the pilot
study of a specific migration project. The entire migration process concerned
about 3000 artefacts in total, and two redeliveries were performed. The first
concerned 47 files, the second only 8.

The log files generated by the migration process were quite substantial with
an average of around 1200 lines before cleaning up all unneeded information and
around 900 useful log lines. Even if we hope that this amount can be reduced
further by translating to graphs, we made some design choices early on to ensure
having something small enough that we could analyse.

First, we decided to divide the logs into the main phases that can be ob-
served in Figure 5: rea, reb, rec, red and ref. These correspond to naturally
independent phases (preprocessing, clean up, etc) which have always been anal-
ysed separately by Raincode engineers. For the main migration phase, which still
contains upwards of 400 lines, we are abstracting from all intermediate subver-
sions by removing their identification number. Those numbers are too specific
to a particular instance of migration, and would prevent the resulting graphs
to be anything but linear and a simple offset in the identifying numbers would
result in the two graphs being flagged as entirely different, even if the rules were
applied in the same order.

With those decisions, we implemented the first prototype of a log file dif-
ferencing tool. As the main algorithm has already been implemented, but no
visualisation support is available yet, the images visible in Figure 9 were pro-
duced manually from our data. The upcoming versions of our prototype will
generate these images automatically. Our preliminary conclusions drawn from
analysing the three sets of files from both pilot study redeliveries are as follows:

First, we observed that less work-intensive phases (like rea, reb, red and
ref) produced no differences between the two sets of files. Although we cannot
guarantee that this finding would remain valid when analysing more than just
a small sample of files, one might find it somewhat intuitive that phases of
preprocessing or cleanup are likely not to change when the changes made to the

Improving a Software Modernisation Process by Differencing Migration Logs 13

files are not substantial. We will see whether this hypothesis can be verified for
most of our other files.

The second observation on both examples is that the resulting graphs tend to
be quite linear. Most often, we find long successions of nodes having a transition
probability of 1 to the next one. Then, we find some clusters where something
changed between the two versions, creating a less linear path. This can probably
be explained by the fact that the migration process is iterative, and could also
provide an interesting way to improve our future visualisation. By collapsing
such linear parts of the graphs, we could emphasise the parts that are different,
enabling a more easy analysis of the differences “at a glance”.

The result in Figure 9a is representative of what we see most: a long, linear
graph with changes that are quite localised (for this specific example, the entire
rest of the graph is identical between the two logs). The changes are either
variations in transition probabilities, indicating that the rules were applied more
or less times, or the creation of new path, such as between the nodes consecutive
IFs into IF THEN ELSIF and Intermediate version, meaning that the
changes resulted in a new order in which rules got triggered.

The result presented in Figure 9b is the only occurrence we found so far of
a node being added (no removal of node has been found yet). The added node
is only an intermediary step and not a new rule, so it does not raise a major
red flag. It should nonetheless be analysed in more detail by an engineer since
it creates an entirely new path moving through a big part of the graph.

1=
Intermediate version
=1
Loop initialisation

e

Removing labels

025->033

[0--025

Fig.9: A shortened mock-up of the log differencing of one of Raincode’s redeliv-
ered file.

14 Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev
5 Related Work

We have presented two approaches directly related to the pilot experiments we
are conducting at the time of writing this paper, in the hope of improving Rain-
code Labs’ software modernisation process. Many other options were explored
as well, that may or may not prove useful for our future endeavours. We detail
some of those here.

Papers presenting ideas or tools that perform differencing in specialised or
advanced ways, though a rare find, still exist. The one closest to our current
interest is be Kim and Notkin’s LSdiff [16] (Logical Structural DIFFerencing),
an approach aiming at representing structural changes in a very concise manner,
focusing on allowing the developer to understand the semantics of the changes.
However, this approach seems to be more suited for object-oriented code, which
does not correspond to our COBOL use case. There are other papers focusing
on the object-oriented paradigm, among them the tools cal-cDiff [3] and Diff-
CatchUp [35].

The modelling community could teach us a few things in this regard as well,
so we studied tools that are made to perform clear and efficient differencing on a
specific kind of model. Many of those exist for the widely-used models like UML
(e.g., UMLDIff [34)), activity diagrams (e.g., ADDiff [21]) or feature models (e.g.,
in FAMILIAR [1]). Witnessing the abundance of many different tools for each
kind of model, an approach to allow for a more generic way to difference models
was also proposed by Zhenchang Xing [33].

We also took note of different techniques used when performing data differ-
encing. From the starting point of the Hunt-Mcllroy algorithm treating said data
as simple text, to the extension to binary [32] when the need of differencing more
heterogeneous artefacts. Afterwards, many different and modern techniques were
developed, including those based on control flow graphs, as described in our sec-
ond approach to the PACBASE use case and other tools making use of ASTs
or at least parse trees as with GumTree [8] or cdiff [37]. We are also exploring
the idea of enriching the initial data format with infrastructures as srcML, and
how it can be applied to differencing [20] as well as about its corresponding tool
sreDiff [7].

Finally, we are also looking at what ideas could be leveraged from other
software engineering disciplines, like software mining or code clone detection.
For instance, in the work of Kim and al. [17], logical rules are mined from the
code to help represent the structural changes. Tools using those practices were
also developed, for example ROSE [40], that mines the code to be able to suggest
which changes should happen together, or CloneDiff [36], that uses differencing
in the context of clone detection.

6 Conclusion

In this paper, we have presented a real industrial case study of a process of
software modernisation and language/technology retirement by way of iterative

Improving a Software Modernisation Process by Differencing Migration Logs 15

code transformation. We identified some of the weakest links of this process,
stemming from limitations of contemporary code differencing techniques, and
showed how those restrictions can impact industrial processes like our PACBASE
migration use case. Finally, we described some of the state of the art in code
differencing and presented early results of how our work could build on them to
improve the current migration practices within Raincode Labs.

To reiterate, the main limitation of the way code differencing is used today
is its disregard for the nature of what is being analysed. Some research has been
done to try and overcome this, but the way differencing is still taught in classes
or used in the industry more or less corresponds to the initial Hunt-Mcllroy
algorithm in most cases. Moving forward, we should keep those limitations in
mind, and try to surpass them, when designing new solutions and tools.

Acknowledgements

We thank the Raincode migration engineers Boris Pereira and Yannick Barthol for
their collaboration, as well as the participants of the seminar SATToSE 2020, where
an early version of this work was presented in June, for their feedback.

References

1. M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle. Feature
Model Differences. In CAiSE, LNCS 7328, pages 629-645. Springer, 2012.

2. A. Alper. Users say Pacbase worth effort. Computerworld, Aug. 1987.

3. T. Apiwattanapong, A. Orso, and M. J. Harrold. A Differencing Algorithm for
Object-Oriented Programs. In ASE, page 2-13. IEEE, 2004.

4. J.-P. Bernardy. Reviving Pacbase COBOL-generated code. In Proceedings of the
26th Annual International Computer Software and Applications. IEEE, 2002.

5. D. Blasband. The Rise and Fall of Software Recipes. Reality Bites, 2016.

6. CODASYL. Initial Specifications for a Common Business Oriented Language
(COBOL) for Programming Electronic Digital Computers. Technical report, De-
partment of Defence, Apr. 1960.

7. M. Decker, M. Collard, L. Volkert, and J. Maletic. srcDiff: A Syntactic Differenc-
ing Approach to Improve the Understandability of Deltas. Journal of Software:
Evolution and Process, 32, 10 2019.

8. J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-
Grained and Accurate Source Code Differencing. In ASE. ACM, 2014.

9. M. Feathers. Working Effectively with Legacy Code. Prentice-Hall, 2004.

10. M. Goldstein, D. Raz, and I. Segall. Experience Report: Log-Based Behavioral
Differencing. In ISSRE, pages 282-293, 2017. DOI: 10.1109/ISSRE.2017.14.

11. Hewlett-Packard. Survival guide to PACBASE™ end-of-life. https://www8.hp.
com/uk/en/pdf/Survival_guide_tcm_183_1316432.pdf, Oct. 2012.

12. J. J. Hunt, K.-P. Vo, and W. F. Tichy. An Empirical Study of Delta Algorithms.
In SCM, page 49-66. Springer, 1996.

13. J. W. Hunt and M. D. Mcllroy. An Algorithm for Differential File Comparison.
CSTR #41, Bell Telephone Laboratories, 1976.

https://doi.org/10.1109/ISSRE.2017.14
https://www8.hp.com/uk/en/pdf/Survival_guide_tcm_183_1316432.pdf
https://www8.hp.com/uk/en/pdf/Survival_guide_tcm_183_1316432.pdf

16

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.
26.

27.

28.

29.
30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

IBM. PACBASE documentation page. Online: https://www.ibm.com/support/
pages/documentation-visualage-pacbase, 2020.

J. Kennedy van Dam and V. Zaytsev. Software Language Identification with Nat-
ural Language Classifiers. In SANER ERA, pages 624—628. IEEE, 2016.

M. Kim and D. Notkin. Discovering and Representing Systematic Code Changes.
In ICSE, page 309-319. IEEE, 2009.

M. Kim, D. Notkin, and D. Grossman. Automatic Inference of Structural Changes
for Matching across Program Versions. In ICSE, pages 333-343. IEEE, 2007.

R. Lammel. Software Languages: Syntax, Semantics, and Metaprogramming.
Springer, 2018.

J. W. Laski and W. Szermer. Identification of Program Modifications and Its
Applications in Software Maintenance. In ICSM, pages 282-290. IEEE, 1992.

J. I. Maletic and M. L. Collard. Supporting Source Code Difference Analysis. In
1CSM, pages 210-219. IEEE, 2004.

S. Maoz, J. O. Ringert, and B. Rumpe. ADDiff: Semantic Differencing for Activity
Diagrams. In FSE, pages 179-189. ACM, 2011.

J. Martin. Applications Development Without Programmers. Prentice-Hall, 1981.
T. Mens. A State-of-the-art Survey on Software Merging. IFEE Transactions on
Software Engineering, 28(5):449-462, 2002.

H. Min and Z. Li Ping. Survey on Software Clone Detection Research. In ICMSS,
page 9-16. ACM, 2019.

Raincode Labs. https://www.raincodelabs.com.

Raincode Labs. PACBASE Migration: More than 200 Million Lines Migrated.
https://www.raincodelabs.com/pacbase, 2018.

Reuters Graphics. COBOL blues. http://fingfx.thomsonreuters.com/gfx/
rngs/USA-BANKS-COBOL/010040KH18J/, Apr. 2017.

C. Rémy. Un nouveau PacBase, entierement Java. Olnet, https://www.0Olnet.com/
actualites/un-nouveau-pacbase-entierement-java-114108.html, July 2000.
L. Schlueter. User-Designed Computing: The Next Generation. Lexington, 1988.
A. A. Terekhov and C. Verhoef. The Realities of Language Conversions. IEEE
Software, 17(6):111-124, Nov./Dec. 2000.

M. Voélter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats,
E. Visser, and G. Wachsmuth. DSL Engineering: Designing, Implementing and
Using Domain-Specific Languages. dslbook.org, 2013.

Z. Wang, K. Pierce, and S. Mcfarling. BMAT — A Binary Matching Tool for Stale
Profile Propagation. Journal of Instruction-Level Parallelism, 2:1-20, 06 2000.

Z. Xing. Model Comparison with GenericDiff. In ASE, pages 135-138. ACM, 2010.
Z. Xing and E. Stroulia. UMLDIff: An Algorithm for Object-Oriented Design
Differencing. In ASE, pages 54-65. ACM, 2005.

Z. Xing and E. Stroulia. API-Evolution Support with Diff-CatchUp. IEEE Trans-
actions on Software Engineering, 33(12):818-836, 2007.

Y. Xue, Z. Xing, and S. Jarzabek. Clonediff: semantic differencing of clones. In
IWSC, pages 83-84. ACM, 2011.

W. Yang. Identifying Syntactic Differences between Two Programs. Software
Practice & Experience, 21(7):739-755, June 1991.

V. Zaytsev. Language Convergence Infrastructure. In GTTSE, volume 6491 of
LNCS, pages 481-497. Springer, Jan. 2011.

V. Zaytsev et al. CodeDiffNG: Advanced Source Code Diffing. Online: https:
//grammarware.github.io/codediffng, 2020.

T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining Version Histories
to Guide Software Changes. In ICSFE, page 563-572. IEEE, 2004.

https://www.ibm.com/support/pages/documentation-visualage-pacbase
https://www.ibm.com/support/pages/documentation-visualage-pacbase
https://www.raincodelabs.com
https://www.raincodelabs.com/pacbase
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/
https://www.01net.com/actualites/un-nouveau-pacbase-entierement-java-114108.html
https://www.01net.com/actualites/un-nouveau-pacbase-entierement-java-114108.html
https://grammarware.github.io/codediffng
https://grammarware.github.io/codediffng

