
Event-Based Parsing
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

Abstract
Event-based parsing is a largely unexplored problem. Despite
several hugely popular event-based parsers like SAX, there
is very little research on the ways grammar engineers can
be given explicit control over handling input tokens, and the
consequences of exposing this control. Tool support is also
underwhelming, with no language workbenches and very
few libraries to help a parser developer to get started quickly
and efficiently. To explore this paradigm, we have designed
a language for event-based parsing and developed a proto-
type that translates specifications written in that language,
to parsers in C#. We also report on the comparative perfor-
mance of one of the parsers we generated, and a previously
used PEG parser extracted from a real compiler.

CCS Concepts • Theory of computation → Parsing; •
Applied computing → Event-driven architectures.

ACM Reference Format:
Vadim Zaytsev. 2019. Event-Based Parsing. In Proceedings of the
6th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems (REBLS ’19), October 21, 2019, Athens,
Greece. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3358503.3361275

1 Introduction
Parsing is considered a solved problem [1]. However, in prac-
tice often it is not. Despite having literally hundreds of dif-
ferent parsing techniques at our disposal [9], produced by
the researchers and practitioners non-stop since 1961 [10],
the compiler experts are commonly faced with challenges
related to inapplicability of existing technologies to the tasks
of software renovation [2], the inappropriateness of existing
frameworks in dealing with legacy languages [29] or simply
the lack of developed theories and tools for crucial activities
like regression parsing [28].

In general, parsing in a broad sense [32] is a task of recog-
nising elements of expected structure in the input stream.

REBLS ’19, October 21, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 6th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems (REBLS ’19), October 21, 2019, Athens,
Greece, https://doi.org/10.1145/3358503.3361275.

There are many flavours of such techniques, forming a spec-
trum from classical text-to-tree parsing techniques [9] to a
family of more approximate and tolerant semiparsing tech-
niques [27] all the way to the simplest tasks of software
analytics [3] and software metrics [5, 19]. On the grand
scheme of things, counting the number of lines in a file
is also some form of “parsing” (more commonly referred to
as “fact extraction”). As an industrial company involved in
writing compilers and migrating legacy software, we rou-
tinely encounter new challenges in parsing. For example,
some notations of legacy languages are position-based [29],
and “parsing” entails counting which position in the line
does a character occur at, and not necessarily paying any
attention to the character per se (and counting the number
of spaces in a line before a non-space symbol has much more
in common with counting lines in a file than with traditional
graph manipulation).
This paper is an attempt to explore a new paradigm in

parsing: the event-based parsing. Instead of writing a gram-
mar for the desired language, typically specifying rules like
“a 'b' c+”, meaning “sequentially apply the rules of the
nonterminal a, then expect an input 'b', and then expect
any number of inputs conforming to the rules of the nonter-
minal c”, we could write a reactive specification in the form
of “whenever 'b' is found in the input, expect a to have been
prepared before it, and collect any number of occurrences of
c until the input is exhausted”.
To quote Tudor Gîrba: “In software ideas do not exist

without a concrete incarnation. The materialization of an
idea is a step that matters and the research is not complete
without it.” [8]. Contemplating novel paradigms is always
easier with a concrete implementation of them, even though,
of course, we are thus inherently limiting ourselves to the
limitations of the actual implementation at hand. Thus, we
will present Engage! [31] as a small framework supporting
writing parsing specifications in an event-based style, and
generating code in C# for execution and inspection.
Motivations for choosing the event-based paradigm can

be versatile. At least two possible advantages come to mind
in the context of parsing. First of all, event-based represen-
tations are equally easy to write when precise parsing is
required, as well as when some form of semiparsing (toler-
ant, error-correcting, permissive, fuzzy, etc [27]) is enough.
The state of the art in traditional state-based parsers is that
most effort goes into tool support for precise parsing, and
each language workbench which can already deliver precise

1

https://doi.org/10.1145/3358503.3361275
https://doi.org/10.1145/3358503.3361275
https://doi.org/10.1145/3358503.3361275


REBLS ’19, October 21, 2019, Athens, Greece Vadim Zaytsev

parsers, introduces some idiosyncratic ways of injecting tol-
erance directly into the grammars (or other forms of parsing
specifications). For example, in the language of the case study
we will use below, a string type is represented as char(n)
where n is a literal number. The simplest event-based speci-
fication for collecting all string types used within a program,
in Engage! would look like this:

'dcl' -> push DclBlock(types)
where types := await* String

'char' -> push String(n)
where n := await number

'enddcl' -> trim String

(The language will be explained in the next section, but
for now the intuitive understanding of this little example
is enough). This specification is tolerant—it does not check
for matching parenthesis, ignores other types, skips over
statements,—so what it produces is a semiparser. However,
it can be extended to make a full parser by lifting and drop-
ping flags to signal changes of state, and adding appropriate
actions to react to opening and closing brackets.

The second possible reason to actively prefer event-based
parsers as opposed to state-based is the ease to produce an
online algorithm (i.e., one that acts on token-per-token or
symbol-per-symbol basis and does not require the entire
input to start parsing). Some traditional parsing techniques
are easier to convert to an online variant—those that follow
the input (the common term is “bottom-up”)—than others
that follow the grammar (“top-down”) while parsing, even
though top-down online algorithms exist, such as OMeta [24].
However, the machinery often needs a buffer to fake the on-
lineness: many parsers rely on a feature called “lookahead”
and make a decision based on the next token/symbol and
several tokens/symbols following it. In an event-based speci-
fication scheduling some expectations comes naturally and
do not break the basic paradigm of decision making based
on one current symbol or token. We acknowledge this need
but do not pursue it in detail further in this document.

In the rest of the paper, we present a prototype system for
generating parsers from event-based specifications, called
Engage!: section 2 explains the input language of Engage! and
the reactive commands it accepts, and unveils some details
about their implementation, which might seem insignificant
but turned out to have a measurable impact on the effective-
ness of the system; section 3 describes the case study and the
framework for evaluating the resulting parsers, by compar-
ing a parser generated by Engage! to a previously existing
parser which is a part of one of our industrial compilers;
section 4 presents the data obtained from the experiments,
and draws preliminary conclusions from the lessons learnt
there; section 5 refers to a few literature points with ideas
similar to those proposed here; section 6 concludes the paper.

2 Language
The infrastructure of the parser generated by Engage! is
rather simple. It includes an online tokeniser that slides fur-
ther into the input stream and creates the new typed token
for the parser to consume, the parser, the main stack of al-
ready manufactured objects and a queue of pending actions.
On each iteration, the parser takes the next token, decides
which actions to undertake based on the type and the value
of the token, which include pushing new values onto the
stack, popping elements from the stack, observing the type
of the top of the stack, scheduling new actions, triggering
them, etc.

Each rule has a form of t → a, it contains a left hand side
which is a trigger t and a right hand side with an action a.
The trigger is usually a token or a token type, and possibly
a flag. There are several predefined token types, but the user
can define any number of them if needed:

⋄ skip is a token type that does not trigger an event,
these are characters skipped by the tokeniser which
also uses them to find lexeme boundaries. A typical
declaration would be “' ', '\t', '\r', '\n' ::
skip”, telling the tokeniser to skip spaces, tabs and
newlines.

⋄ mark is a token type given to punctuation marks like
brackets or commas, which always produce their own
tokens even if not separated by a skippable token.

⋄ word is a token type for reserved words, this is usually
the most detailed and populated type in a specifica-
tion, all keywords normally go here. Example: “'if',
'map' :: word”.

As for the tokens themselves, they are usually represented
literally as single-quoted strings. There are also two inferred
token constructors: number which matches any non-empty
sequence of digits, and string which matches a non-empty
sequence of non-skippable characters. Any token that was
defined to belong to the token type word, is not matched by
string.
The following list includes the possible actions as they

are written in the specification (the parser generator goes
through several phases of internal representations before
generating actual code of the parser in C#):

⋄ push is the main action for creating new objects and
putting them on the main stack for further consump-
tion. It is often accompanied with a where clause to
separate actual object creation from collecting its con-
stituents. For example, “push A(x) where x := await
B” will instruct the framework to wait until an object
of type B is put on the stack, and then pass it as a
parameter to a constructor of type A, replacing the B
object at the top of the stack with the newly created A
object. Neither the arguments of the constructor nor
the where clause, are mandatory, if the object can be
created without arguments.

2



Event-Based Parsing REBLS ’19, October 21, 2019, Athens, Greece

⋄ wrap is an action equivalent to a combination of push
with one argument and a corresponding pop, with one
important exception of not being mandatory. If a push
action cannot complete its object creation, it fails the
parsing process with an error; if a wrap action cannot
complete its object creation, it silently terminates and
evaporates from the list of pending actions. The wrap
action can be used to clean up the stack when an end
of a section is encountered.

⋄ tear is the opposite of push: this action takes a previ-
ously created object of an expected type and decom-
poses its constituents into named entities that can be
used within the parent action. We found it useful to
have to “undo” object creation which was made erro-
neously. Obviously, unhealthily enthusiastic reliance
on tear can damage the performance of the parser,
but in some scenarios it is easier to create the object
first and then undo it in one or two special cases, in-
stead of listing near-exhaustively each reason for its
creation. In our evaluation grammar we used it to get
back to trivial types like int or string from boxing
types representing numbers and identifiers.

⋄ drop is a trivial action of taking the top of the stack and
disregarding it. It can be viewed as a more aggressive
form of undoing.

⋄ pop is a useful action of taking the top of the stack
to be used elsewhere. It is not found on the top level
(right after the trigger, like push), but as a part of the
where clause. For example, “';' -> push Decl(v,t)
where t := pop Type, v := pop Var” is the rule we
use to create a variable declaration after witnessing its
terminator symbol. If all constructs of the language in
question, use explicit terminator symbols, the event-
driven parser will be the easiest to write and debug,
since it will basically fall back on exclusively pushing
and popping objects in the right order. The pop action
respects subtyping: i.e., if the type of the object pushed
on the stack, is a subtype of the expected object, the
action completes successfully. If the type of the top of
the stack is of unrelated type, a parse error occurs.

⋄ pop* action represents a sequence of pop actions, fol-
lowed by reversing the order of the result and return-
ing a proper list of objects. For example, in a Pascal-like
language we could have written a rule “':' -> push
Decl(vs,t) where vs := pop* Var, t := next
Type” to use the separator symbol to collect the list
of the already processed variable names and create a
declaration object once the type is processed as well.

⋄ pop# action was not anticipated in the initial design
of the Engage! language but was deemed to be a valu-
able addition later in the project. Basically if works
the same way as pop*, and when present alone, gener-
ates exactly the same parser code. However, if several
pop# actions are used within the same where clause,

they collect their objects together in parallel instead
of doing it sequentially. The pop# actions are useful
in cases where a definition of a class, for example, in
Java-like languages, consists of a mixture of field dec-
larations and method declarations, but in the desired
representation we like to have them collected in two
separate lists. In the case study language we had the
same situation with local declarations and executable
statements: declarations are allowed everywhere but
have global scope, so their positioning only serves
readability purposes. Thus, the compiler is allowed to
bundle all declarations together while bundling all the
statements separately.

⋄ next is the first action we describe that implies sched-
uling an action. It behaves the same way as the pop
action, but delays its execution to the next object that
will be pushed on the stack after the pending action is
scheduled. If the next action cannot be completed (for
example, because of the type incompatibility), then it
fails the parsing process.

⋄ next* acts like a sequence of next actions terminated
by the first object pushed on the stack that does not
match the expected type (if the first object after sched-
uling is incompatible, it is possible for next* to im-
mediately terminate with an empty list). The main
differences with the await* action below are the im-
mediacy of the first reaction, and the consecutiveness
of the elements collected by the next* action.

⋄ await is the classical scheduled nested action that
binds a name to a value that has not been observed yet.
Executing such an action means scheduling a special
lambda function handler that will be called at some
point in the future once an object of the expected type
(or one of its subtypes) is being pushed on the stack.
Multiple await actions can be combined, in which case
the scheduling of the next one is a part of the code that
gets scheduled first. A very useful feature to provide
the right context to the scheduled actions, is a flag that
gets lifted before scheduling and dropped after the
scheduling action is successfully triggered. The syntax
is: “x := await T with F” where T is the type to trig-
ger the scheduled action and F is a flag. The user can
specify additional flags that are to be expected by the
waiting action, such as: “await (Lit upon BRACKET)
with CHAR”. This would specify to raise the CHAR flag
and schedule an action that will only react to pushed
objects of type Lit if the flag BRACKET is set, and will
take down the CHAR flag once finally fired. In general,
flags model state.

⋄ await* is an asynchronous counterpart of next*which
schedules some code that keeps reacting to any object
of a compatible type that is attempted to be pushed
on the stack. There are three very important points in
implementing this action:

3



REBLS ’19, October 21, 2019, Athens, Greece Vadim Zaytsev

– Quite often such pending actions that tend to “re-
schedule” themselves, so to speak, are implemented
verbatim, with scheduling code being included as
the part of the handler. However, according to our
experiments, not only did it prove to be an awkward
way of writing code in C# (since the lambda func-
tion can be defined and scheduled simultaneously
but a self-rescheduling function must be declared
first as a null, and then redefined with an actual
definition—it is a well-known pattern in C# [14] but
that does not legitimise it as graceful), but also it
is very bad performance-wise. Instead, we changed
the framework such that the handler can have a re-
turn code to express its intention, and the machinery
around it takes this return code and either removes
the handler from the pending actions list or does not.
As a side effect, this allows to combine the wishes
of the handler with the wishes of the framework.
For example, when the parsing is finished and all
remaining handlers are triggered forcefully, none of
them are rescheduled even if they wish to continue
parsing.

– By the very nature of this action, which reacts to
objects of a particular type and ignores other objects
being pushed, it can operate forever. This is a drastic
conceptual difference between await* and next*,
due to the latter expecting consecutive objects and
thus having a natural terminating condition. Thus,
a special trim action (discussed below) is often used
in combination with await*.

– The “dangling else” problem [11] is solved here auto-
matically by the right order of scheduling and trim-
ming actions. In languages using terminator symbols
instead of statement block delimiters (most 4GLs get
that from COBOL), it is common to have a pair of
terminals like 'if' and 'endif' between which all
the statements are collected into the branch. Thus,
if we have several levels of nested conditional state-
ments, it could be that we will have several coexist-
ing pending handlers for the same type (“statement”),
of which only the latest must be fired until it is some-
how terminated: either explicitly with a trim action,
or forcefully at the end of the input together with
all other pending actions.

⋄ trim is the action to stop any other ongoing actions.
Its most common use is to terminate await*, but it
can also be used to cancel a simple await action or
even some variations of the next/next* actions. For
example, in a language with C-like declarations (i.e.,
“byte x,y,z;”) we can react on the type and collect
the variables by a next* action but terminating it at a
semicolon.

⋄ lift is the action to activate a flag. The flags were
mentioned before when introducing await, and here

is an action to deal with them directly. The Engage!
framework does not differentiate between auto-lifted
flags by a with clause of await or await* actions, and
“manually” handled flags with lift and drop, so the
users can decide for themselves whether to reuse flags.

⋄ drop is the opposite of lift, it is an action to take
down a given flag. Implementation-wise each flag is
just a Boolean variable inside the parser that indicates
a particular context and gets assigned true or false
depending on the course of the parsing process. All
the upon-based guards help to structure the parsing
process by using those flags.

Engage! has one additional feature that is unrelated to the
event-based paradigm but still useful: it generates all the
data structures that its generated parser populates. There is
enough information in the constructors used by the input
specification to infer all the used data types, and the rest
can be added manually since the generated data classes are
deliberately made partial.

3 Evaluation
Since event-based parsing is largely an unexplored area,
we need to set up some experiments to evaluate how it be-
haves under different circumstances. In order to do that, we
have implemented an event-based specification for a fourth-
generation language used onmainframes, namedAppBuilder.
Before that we have recently implemented a full-fledged com-
piler for that language, named TIALAA, for “There is a Life
After AppBuilder” [17], facing quite a number of challenges
in the process [28], including writing a dedicated parser gen-
erator for one of the notations [29] and building a substantial
testing framework [30]. For this paper, we chose a different
notation—the AppBuilder ecosystem consists of many dif-
ferent parts, but there are five main notations used for rules,
sets, panels, HPS bind files with views and HIS bind files with
stored procedures, and for the rest of the paper we focus
on “the rule language” of AppBuilder. In order to align the
sometimes peculiar and uncomfortable legacy software ter-
minology [17, 30] with presumably modern-minded readers,
we will from now on call AppBuilder rules “programs”.

This way, we can operate on a real life example: the com-
piler we wrote, is currently in the last phases of the quality
assurance process at the customer side, and is about to go in
production soon. We will also be able to make direct com-
parisons with the existing and well-tested parser. Our “old”
parser was written in the style of Parsing Expression Gram-
mars (PEG) [7], and was produced by our own in-house
developed parser generator, which closely follows the Pack-
rat! algorithm [6] with left recursion [23], memoisation and
backtracking, and some extra features not found in alterna-
tive generators but unrelated to the event-based story. The
original documentation of AppBuilder exists, but could not
be consulted by us for legal reasons, the same goes for the

4



Event-Based Parsing REBLS ’19, October 21, 2019, Athens, Greece

baseline implementation of it. Thus, we deliberately limit
ourselves to the language of TIALAA as a reasonable proxy
(the only claim we can make with certainty is that it is a
superset of the language used by our customer in their code-
base containing almost 4 MLOC).

The syntax of the chosen language is a perfect example to
try out this new parsing framework, because it was designed
without following any principles of systematic software lan-
guage design. For example, it contains declaration blocks
and statement blocks, yet declaration blocks have start and
end delimiters and statement blocks do not; each declara-
tion is terminated with a semicolon, yet statements are not
separated by anything; conditions and case branches do not
separate the condition from the body, yet case branches
allow for multiple values to be present per branch, leading to
constructs like case a b c where a and b might be values
or calls to procedures that return such values, and c may be
a procedure call inside the branch; two consecutive string
literals are concatenated as if linked by a + operator, unless
they occur in the begin of the case statement, where two
adjacent string literals are treated as two separate matching
expressions for the branching statement; there are two print-
ing statements with almost equivalent semantics differing on
two seemingly innocent built-in data types out of 15; there is
signature-based polymorphism in procedures, yet the rest of
the language does not have name uniqueness, and there can
be peaceful coexistence of a rule, a view, a set, a set value and
a panel with exactly the same name; complex data structures
can be defined inline inside a program in a declaration block
or encoded in a separate HPS bind file, yet each style allows
to define structures that cannot be expressed in the other;
most statements do not expect brackets around their argu-
ments, yet for one of them they are mandatory. The list can
be extended, but even this humble collection of AppBuilder
trivia should be convincingly showing that implementing
such language is way beyond repetitive application of the
same simple pattern, and thus stresses the design of Engage!
itself, which was a part of our motivation.
We decided to not align the data structures generated by

both parsers, which would have been an extremely labour-
intensive process. Thus, we cannot guarantee that the actual
parse trees coming from them, are equivalent (we know for
a fact that they are not identical). However, we can perform
certain sanity checks like the number of statements in a
parse tree and their approximate types, and have performed
them when testing Engage!

The original PEG [7] parser was never intended to be the
epitome of performance, but it was reasonably optimised
whenever possible. Concretely, in October 2017 we have
reported that the recompilation of the entire codebase of
our customer was taking 48 hours [28, §2.1], while now in
September 2019 it only takes 6 hours (8× speedup).

To test and stress test our parsers and see how they per-
form against each other, we have designed and generated the
following types of test programs (in each of them N is a size
parameter which usually went from 0 to 1000, these results
will be reported on and visualised on the next pages; and ad-
ditionally for true stress testing we produced test programs
with N = 10k , for k from 0 to 8):

⋄ Long tests are the most straightforward and gentle
form of stress testing: each simply contains a flat se-
quence of N statements. For compound statements
such as loops or conditional statements, we generate
the simplest possible statement (return) as contents
of each expected block. Such test programs are barely
harder to parse than to generate. We do not expect
to find any problems due to the size of these tests,
because compilers usually scale easily this way (i.e.,
once individual statements and sequences are imple-
mented and tested, sequences of arbitrary statements
work fine in any quantities), but we wanted to have a
first baseline comparison of some test data that both
parsers should have had no trouble with.

⋄ Deep tests are designed to stress test parsers’ capabil-
ity to handle deeply nested constructs in code. Each
such program consists of a single conditional state-
ment with a trivial condition and the body consisting
of a single similar conditional statement, for a total of
N nesting levels.

⋄ Stacked tests were extremely useful to both fish out
the bugs in the parser generator, and in stress-testing
the result. They all have this format:
N single random statements
if C1

N single random statements
if C2

N single random statements
endif
N single random statements

endif
N single random statements
Since the conditional statement was implemented with
an await* and trim combo, it was crucial to test that
in case of nesting the right actions get scheduled and
trimmed at the right moments, producing a correct
tree.

⋄ Declaration tests are structured analogously to Long
tests, but they start with a declaration block of N ran-
dom declarations, which is then followed byN random
single statements. Just as with Long tests, we expected
no challenges here, but we were about to get surprised
(see section 4).

⋄ Mixed tests have two parameters, N and K , and con-
sist of a mixture of declaration blocks and statement
blocks, of the following form:

5



REBLS ’19, October 21, 2019, Athens, Greece Vadim Zaytsev

K times


dcl

N random declarations
enddcl
N single random statements

We varied both N and K from 0 to 100.

4 Results
In an attempt to minimise the impact of the C# compiler,
.NET Core runtime and other factors, each measured point
was obtained as follows. After parsing ten random files and
discarding the results as warmup, we read the file once, parse
its contents 100 times, recording the execution time (with
.NET Core’s Stopwatch) for each run. Then, 10 fastest and
10 slowest results are discarded, and an average is computed
of the remaining 80 measurements. This average forms one
data point to be recorded and plotted.

⋄ Long tests (Figure 1) exhibit a very unpredictable be-
haviour of the PEG parser—switching to a different
statistic (mean, median, normalised mean, etc) did not
help us to smoothen the results. The only hypothesis
to explain these measurements is the garbage collec-
tor of .NET Core which interfered more with the PEG
parser because it was more complex and thus created
more disposable objects. Besides the wild spikes, both
parsers behave linearly which was to be expected—
PEG parsers are known to have near-linear perfor-
mance in many cases [13, 18]. Yet, the event-based
parser was consistently faster, if by a small margin.

⋄ Deep tests (Figure 2) were definitely non-linear, but
drastically worse for the PEG parser, which exploded
with a stack overflow exception at depth 132. Even
at the depth 1000, the Engage! parser was as fast as
the PEG parser at around depth 60. This is attributed
entirely to the implementation strategy: the Engage!
parser being at depth 1000 only means it keeps a flat
list of 1000 pending handlers that are ready to be trig-
gered at the next completed statement: neither the
handlers nor the parser is toxically recursive on any of
this; being at depth 130 for the PEG parser means being
at extreme depth of its own recursion, as well as oper-
ating normally with other things like memoisation of
all the symbols consumed so far.

⋄ Stacked tests (Figure 3) were harder for both parsers
than the Long tests, but that only raised the execution
time lines for both of them slightly upwards. The jitter
of the lines (still attributed to garbage collection and
other internal processes of the runtime of .NET Core)
is slightly milder for the PEG parser and slightly wilder
for the Engage! parser.

⋄ Declaration tests (Figure 4) show the same familiar
linear behaviour for the Engage! parser, with slightly
less jittery data from the PEG parser, but this time

clearly tending towards its upper end—which is around
12 times slower.

⋄ Mixed tests (Figure 5) produce a line for each fixed
N and for each fixed K , but to visualise all the results
without the sawtooth effect we sort the measurements
by the execution time of the Engage! parser. The re-
sults are not much faster mostly because the Engage!
specification is pop#-based, not await*-based. We are
contemplating rewriting it, which would require intro-
ducing a new kind of event for the initialisation.

5 Related Work
SAX, or Simple API for XML [15], could arguably be the
first practical application of event-based parsing. Its develop-
ment started in 1997 as an alternative to various state-based
parsers for XML that existed at that time. The initiative in-
volved many people, mostly participants of the XML-DEV
mailing list, and the first release happened in 1998, only sev-
eral months after its conception [22]. The latest release of
SAX at the moment is 2.0.2, released in 2004. Various con-
ceptual descendants of SAX are in reasonably wide use, such
as HTMLParser [16] commonly used to “parse” HTML by
converting it to a list of events for starting a tag, ending
a tag and having raw data between tags. It is almost func-
tionally equivalent to SAX, with a notable exception of not
handing processing instructions. Both SAX and HTMLParser
are hand-written event-based parsing libraries, they do not
allow their users to create new parsers in the same style
the way Engage! does, but their success shows that there is
interest in online parsing methods. They serve as tangible
anecdotal evidence of the relevance of event-based parsing
as a technology.
RxParse [4] is a framework for event-based SAX-style

parsing for Java. There seem to be no academic publica-
tions about it, and the documentation consists exclusively
of code examples with errors in them (such as “subscirbe”),
but it looks like a library or an internal DSL. While we as a
company are in general much less interested in JVM-based
solutions as opposed to .NET-based solutions, it would be
nice to make a detailed feature-wise comparison of RxParse
with Engage!There seems to be some interest and some activ-
ity in making a similar event-based library for event-based
LINQ-style parsing for .NET [21], but at the moment there
is no library with responsible maintainers behind it.
The data structures produced by any Engage! parser are

closer to what would have been defined by a dependency
grammar, since each of the statements may have its own
behaviour and its own way of arranging its constituents.
Recently Steimann was advocating that perhaps that is in-
deed a better way to define software languages [20]. On the
concrete level, he proposed the use of “langrams” which
define syntactic categories and contain a lexicon of entries.
Each lexicon entry is a triple ⟨lexeme, dependents, semantic

6



Event-Based Parsing REBLS ’19, October 21, 2019, Athens, Greece

0

10000

20000

30000

40000

50000

60000

1 101 201 301 401 501 601 701 801 901 1001

Figure 1. Performance of the Engage! parser (lower line) and
the PEG parser for the same language on Long tests. The
input data is generated test programs with a sequence of N
oneliner statements, for N from 0 to 1000, horizontally. The
vertical axis is in CPU ticks. This experiment took around 4
minutes on the developer’s laptop. We have no solid expla-
nation for the erratic behaviour of the PEG parser here, but
traditionally blame the garbage collection.

0

100000

200000

300000

400000

500000

600000

1 101 201 301 401 501 601 701 801 901 1001

Figure 2. Performance of the Engage! parser (lower black
line) and the PEG parser for the same language on Deep
tests. The input data is generated test programs with a single
conditional statement containing a single conditional state-
ment, and so forth, for a total of N levels, for N from 0 to
1000, horizontally (the line for the PEG parser stops at 131,
larger programs were causing stack overflow). The vertical
axis is in CPU ticks. This experiment took around 13 minutes
on the developer’s laptop.

0

20000

40000

60000

80000

100000

120000

140000

1 101 201 301 401 501 601 701 801 901 1001

Figure 3. Performance of the Engage! parser (lower line)
and the PEG parser for the same language on Stacked tests.
The input data is generated test programs with N random
single statements, then a conditional statement containing
N random single statements, a nested conditional statement
with N random single statements of its own, and N more
random single statements, the last conditional statement
followed by the last N random single statements, for N from
0 to 1000, horizontally. The vertical axis is in CPU ticks.
This experiment took around 19 minutes on the developer’s
laptop.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 101 201 301 401 501 601 701 801 901 1001

Figure 4. Performance of the Engage! parser (lower black
line) and the PEG parser for the same language on Declara-
tion tests. The input data is generated test programs with
N random declarations followed by N random statements,
for N from 0 to 1000, horizontally. The vertical axis is in
CPU ticks. This experiment took around 34 minutes on the
developer’s laptop.

7



REBLS ’19, October 21, 2019, Athens, Greece Vadim Zaytsev

0

50000

100000

150000

200000

250000

300000

Figure 5. Performance of the Engage! parser (lower line) and the PEG parser for the same language. The input data is generated
test programs with K pairs of a declaration block with N random declarations and a statement block with N random statements,
for N from 0 to 100, for K from 0 to 100, sorted horizontally by the execution time of the Engage! parser to avoid sawtooth
shapes. The vertical axis is in CPU ticks. This experiment took around 50 minutes on the developer’s laptop.

namespace AB
types

ABProgram;
Integer, String, Decimal <: Type;
Decl;
Var, Lit <: Expr;

tokens
' ', '\r', '\n' :: skip
';', '(', ')' :: mark
'dcl', 'enddcl', 'integer', 'dec' :: word
number :: Num
string :: Id

handlers
EOF -> push ABProgram(data,code)

where code := pop# Stmt,
data := pop# Decl

Num -> push Lit(this)
'dcl' -> lift DCL
'enddcl' -> drop DCL
';' upon DCL -> push Decl(v,t)

where t := pop Type,
v := pop Var

'integer' upon DCL -> push Integer
'dec' upon DCL -> push Decimal(n)

where x := await (Lit upon BRACKET) with DEC,
n := tear x

'(' upon DEC -> lift BRACKET
')' -> drop BRACKET

Figure 6. An excerpt from appbuilder.eng [31], an Engage! specification for the rule language of AppBuilder (the language
as it is used in the Raincode TIALAA compiler). One can see four main top-level directives, defining the namespace for the
generated data classes as well as the parser class; the data types to be generated and populated, including their subtyping
relations which would otherwise not be visible from the constructors used in the handlers; then the tokens filling three
predefined types and defining two user-defined types with predefined matchers; and finally some of the handlers parsing some
of the local field declarations of AppBuilder.

8



Event-Based Parsing REBLS ’19, October 21, 2019, Athens, Greece

definition⟩. Since his lexemes are typed, they are technically
not lexemes but tokens (his prototype transforms them to
Prolog where they become untyped again), corresponding
to our triggers, and our actions are executable strategies of
obtaining dependents and populating the resulting structure.
The reactive paradigm has been explored before in the

context of compiler development, as a “pending evolution”
of grammars [26]. Within that framework, one could sched-
ule handlers for changes in a grammar, including persistent
handlers that would reset after each triggering, perform-
ing actions like “if anyone introduces a new nonterminal,
transform its name to uppercase”.

6 Concluding Remarks
In this paper, we set out on a journey to explore the para-
digm of event-based parsing. Traditional parser generators
that allow the end user to specify a grammar stating which
nonterminal and terminal combinations constitute which
other nonterminals, and inferring the parsing actions from
it behind the scenes. Contrary to them, we wanted to let
the end user write a reactive specification, explicitly stat-
ing which actions need to be performed when witnessing
a particular token in the input stream. An example of such
specification is given on Figure 6. To explore this paradigm,
we have developed a parser generator of our own, which
takes {t → a}, a collection of trigger-action pairs, and some
metadata, and produces all the necessary data classes, the
tokeniser and the parser. The generator is called Engage! and
partly is made publicly available through GitHub [31]. With
anyone willing to use Engage! to explore this further, we
are willing to collaborate and provide all the missing compo-
nents that could not be made open source (they only concern
the parser of the Engage! itself, so at some point could even
be made self-sufficient by bootstrapping).
Engage! is not perfect and could have been optimised in

manyways (one of themost obvious paths could have been to
emit IL code directly instead of generating C#, but we found
it quite useful to inspect the generated code. Yet, it clearly
shows promising results in both expressing constructs of
weird non-orthogonal legacy languages, as well as in outper-
forming a traditional industrial strength parser by a small
margin on simple programs and by a non-linearly growing
margin for deeply nested programs. Instead of investing in
these possibly premature [12] optimisations, we would like
to continue the exploration by adding new action types to
the ones introduced in section 2, up to the point where we
can think of writing a grammar extraction [25] algorithm
converting context-free grammars to event-based parsing
specifications and assessing the readability and maintainabil-
ity of the result. Feedback from the workshop participants
could be an immense help to push in that direction.

References
[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Gros,

A. Kamsky, S. McPeak, and D. R. Engler. A Few Billion Lines of Code
Later: Using Static Analysis to Find Bugs in the Real World. Communi-
cations of the ACM, 53(2):66–75, 2010. doi:10.1145/1646353.1646374.

[2] M. v. d. Brand, M. P. A. Sellink, and C. Verhoef. Current Parsing Tech-
niques in Software Renovation Considered Harmful. In Proceedings of
the Sixth InternationalWorkshop on ProgramComprehension, pages 108–
117. IEEE Computer Society, 1998. doi:10.1109/WPC.1998.693325.

[3] R. P. L. Buse and T. Zimmermann. Analytics for Software Development.
In G.-C. Roman and K. J. Sullivan, editors, Proceedings of the Workshop
on Future of Software Engineering Research (FoSER 2010), pages 77–80.
ACM, 2010. doi:10.1145/1882362.1882379.

[4] A. Chen. RxParse: Reactive Parse. GitHub, https://github.com/
yongjhih/RxParse, 2015.

[5] N. E. Fenton and M. Neil. Software Metrics: Roadmap. In
A. Finkelstein, editor, Proceedings of the 22nd International Confer-
ence on Software Engineering (ICSE), pages 357–370. ACM, 2000.
doi:10.1145/336512.336588.

[6] B. Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time, Func-
tional Pearl. In M. Wand and S. L. P. Jones, editors, Proceedings of the
Seventh International Conference on Functional Programming, pages
36–47. ACM, 2002. doi:10.1145/581478.581483.

[7] B. Ford. Parsing Expression Grammars: A Recognition-based Syntactic
Foundation. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st
Symposium on Principles of Programming Languages, pages 111–122.
ACM, 2004. doi:10.1145/964001.964011.

[8] T. Gîrba. I very much subscribe to this! in software ideas do not exist
without a concrete incarnation. the materialization of an idea is a step
that matters and the research is not complete without it. Twitter,
https://twitter.com/girba/status/1162588504154693632, Aug. 2019.

[9] D. Grune and C. J. H. Jacobs. Parsing Techniques — A Practical Guide.
Addison-Wesley, second edition, 2008.

[10] E. T. Irons. A Syntax Directed Compiler for ALGOL 60. Communica-
tions of the ACM, 4(1):51–55, Jan. 1961. doi:10.1145/366062.366083.

[11] A. F. Kaupe. A Note on the Dangling else ALGOL 60. Communications
of the ACM, 6(8):460–462, Aug. 1963. doi:10.1145/366707.367585.

[12] D. E. Knuth. Structured Programming with go to State-
ments. ACM Computing Surveys (CSUR), 6(4):261–301, Dec. 1974.
doi:10.1145/356635.356640.

[13] N. Laurent and K. Mens. Parsing Expression Grammars Made
Practical. In Proceedings of the Eighth International Conference
on Software Language Engineering, pages 167–172. ACM, 2015.
doi:10.1145/2814251.2814265.

[14] Matt. Can an anonymous method in C# call itself? StackOverflow,
https://stackoverflow.com/questions/1208703/can-an-anonymous-
method-in-c-sharp-call-itself, 2009.

[15] D. Megginson. Simple API for XML. Megginson Technologies, http:
//www.megginson.com/downloads/SAX/, 1998.

[16] Python Software Foundation. HTMLParser — Simple HTML and
XHTML parser. https://docs.python.org/2/library/htmlparser.html,
2019.

[17] Raincode. The Raincode TIALAA Compiler. https://www.raincode.
com/technical-landscape/tialaa/, 2018.

[18] R. R. Redziejowski. Parsing Expression Grammar as a Primitive
Recursive-Descent Parser with Backtracking. Fundamenta Informati-
cae, Special Issue on Concurrency Specification and Programming, 79(3–
4):513–524, Feb. 2008.

[19] J. Saraiva. A Roadmap for Software Maintainability Measurement. In
D. Notkin, B. H. C. Cheng, and K. Pohl, editors, Proceedings of the 35th
International Conference on Software Engineering (ICSE), pages 1453–
1455. IEEE / ACM, 2013. https://dl.acm.org/citation.cfm?id=2487035.

9

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1109/WPC.1998.693325
https://doi.org/10.1145/1882362.1882379
https://github.com/yongjhih/RxParse
https://github.com/yongjhih/RxParse
https://doi.org/10.1145/336512.336588
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://twitter.com/girba/status/1162588504154693632
https://doi.org/10.1145/366062.366083
https://doi.org/10.1145/366707.367585
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/2814251.2814265
https://stackoverflow.com/questions/1208703/can-an-anonymous-method-in-c-sharp-call-itself
https://stackoverflow.com/questions/1208703/can-an-anonymous-method-in-c-sharp-call-itself
http://www.megginson.com/downloads/SAX/
http://www.megginson.com/downloads/SAX/
https://docs.python.org/2/library/htmlparser.html
https://www.raincode.com/technical-landscape/tialaa/
https://www.raincode.com/technical-landscape/tialaa/
https://dl.acm.org/citation.cfm?id=2487035


REBLS ’19, October 21, 2019, Athens, Greece Vadim Zaytsev

[20] F. Steimann. Replacing Phrase Structure Grammar with Dependency
Grammar in the Design and Implementation of Programming Lan-
guages. In E. Torlak, T. van der Storm, and R. Biddle, editors, Pro-
ceedings of the International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!), pages 30–43.
ACM, 2017. doi:10.1145/3133850.3133859.

[21] S. C. Taylor. Reactive Parser Combinators. Microsoft Developer
Network Forums, https://social.msdn.microsoft.com/Forums/en-
US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-
combinators, 2010.

[22] J. Tigue, P. Murray-Rust, T. Bray, D. Megginson, and D. Brownell. SAX
Genesis. Megginson Technologies, http://www.saxproject.org/sax1-
history.html, 1998.

[23] A. Warth, J. R. Douglass, and T. D. Millstein. Packrat Parsers Can
Support Left Recursion. In Proceedings of the 13th Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, pages
103–110. ACM, 2008. doi:10.1145/1328408.1328424.

[24] A. Warth and I. Piumarta. OMeta: An Object-oriented Language for
PatternMatching. In P. Costanza and R. Hirschfeld, editors, Proceedings
of the Symposium on Dynamic Languages (DLS), pages 11–19. ACM,
2007. doi:10.1145/1297081.1297086.

[25] V. Zaytsev. Notation-Parametric Grammar Recovery. In A. Sloane and
S. Andova, editors, Post-proceedings of the 12th International Workshop
on Language Descriptions, Tools, and Applications (LDTA 2012). ACM
Digital Library, June 2012. doi:10.1145/2427048.2427057.

[26] V. Zaytsev. Pending Evolution of Grammars. In J. De Lara, D. Di Ruscio,
and A. Pierantonio, editors, Post-proceedings of the Second Workshop on
Extreme Modeling (XM 2013), volume 1089 of CEUR Workshop Proceed-
ings, pages 28–35. CEUR-WS.org, Oct. 2013. http://ceur-ws.org/Vol-

1089/4.pdf.
[27] V. Zaytsev. Formal Foundations for Semi-parsing. In S. De-

meyer, D. Binkley, and F. Ricca, editors, Proceedings of the IEEE Con-
ference on Software Maintenance, Reengineering and Reverse Engi-
neering (CSMR-WCRE 2014 ERA), pages 313–317. IEEE, Feb. 2014.
doi:10.1109/CSMR-WCRE.2014.6747184.

[28] V. Zaytsev. Open Challenges in Incremental Coverage of Legacy
Software Languages. In L. Church, R. P. Gabriel, R. Hirschfeld,
and H. Masuhara, editors, Post-proceedings of the Third Edition of
the Programming Experience Workshop (PX/17.2), pages 1–6, 2017.
https://dl.acm.org/citation.cfm?id=3167105.

[29] V. Zaytsev. Parser Generation by Example for Legacy Pat-
tern Languages. In M. Flatt and S. Erdweg, editors, Proceed-
ings of the 16th International Conference on Generative Program-
ming: Concepts and Experience (GPCE), pages 212–218. ACM, 2017.
doi:10.1145/3136040.3136058.

[30] V. Zaytsev. An Industrial Case Study in Compiler Testing. In D. J.
Pearce, T. Mayerhofer, and F. Steimann, editors, Proceedings of the
11th International Conference on Software Language Engineering (SLE),
pages 97–102. ACM, 2018. doi:10.1145/3276604.3276619.

[31] V. Zaytsev. Engage! GitHub, https://github.com/grammarware/engage,
2019.

[32] V. Zaytsev and A. H. Bagge. Parsing in a Broad Sense. In J. Dingel,
W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, editors, Proceedings
of the 17th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2014), volume 8767 of LNCS, pages 50–67.
Springer, Oct. 2014. doi:10.1007/978-3-319-11653-2_4.

10

https://doi.org/10.1145/3133850.3133859
https://social.msdn.microsoft.com/Forums/en-US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-combinators
https://social.msdn.microsoft.com/Forums/en-US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-combinators
https://social.msdn.microsoft.com/Forums/en-US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-combinators
http://www.saxproject.org/sax1-history.html
http://www.saxproject.org/sax1-history.html
https://doi.org/10.1145/1328408.1328424
https://doi.org/10.1145/1297081.1297086
https://doi.org/10.1145/2427048.2427057
http://ceur-ws.org/Vol-1089/4.pdf
http://ceur-ws.org/Vol-1089/4.pdf
https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://dl.acm.org/citation.cfm?id=3167105
https://doi.org/10.1145/3136040.3136058
https://doi.org/10.1145/3276604.3276619
https://github.com/grammarware/engage
https://doi.org/10.1007/978-3-319-11653-2_4

	Abstract
	1 Introduction
	2 Language
	3 Evaluation
	4 Results
	5 Related Work
	6 Concluding Remarks
	References

