
42 18491 – Multidirectional Transformations and Synchronisations

4.2 Multidirectionality in Compiler Testing
Vadim Zaytsev (Raincode Labs, BE)

License Creative Commons BY 3.0 Unported license
© Vadim Zaytsev

A classical software language processor can be viewed as a chain of transformations, most of
them even unidirectional, going through most of the following intermediate artefacts [1]:

Program text
Preprocessed program text
Parse tree as a structural model of a program
Abstract syntax graph as a conceptual model
Annotated graph with types and other information
Code model suitable for optimisations
Executable code
Computation result

Each of these artefacts/models conforms to a di�erent metamodel. Examples of bidirec-
tional transformations in this chain, are:

Error correction facilities [2], where a “later” and more rich artefact can be used to point
out errors in an “earlier” and more primitive artefact, such as misplaced punctuation or
parenthesis in the text of the program.
Semantic-driven disambiguation [3], where the structure or a model of a program can
only be decisively determined after semantic analysis. The need and necessity for such
techniques is caused by having constructs like “x * y” in C (which can either mean
declaring a variable y typed as a pointer to a value of type x, or a multiplication of two
variables named x and y), dangling clauses in COBOL (a language where it is not always
straightforward to determine where one statement ends and the next one begins), o�side
rule in languages like SASL, Python or Haskell (where statement a�liation with a block
depends on the indentation of a piece of code), as well as various ambiguities in 4GLs
caused by bad language design [4].
Incremental techniques where the change that needs to be propagated in either direction,
is several orders of magnitude smaller than the entire model. For example, many legacy
systems have flat hierarchies of interlinked and intercommunicating entities spanning over
millions of lines of code, but the evolution they undergo on a daily basis, covers small
scale bug fixes, rarely even multiline. Implementations of incremental synchronisation
techniques usually involve some sort of bx.

At Raincode Labs, which is commonly employed as a team of compiler mercenaries, we
are being asked to implement some of these features regularly, so having some bx is a norm
rather than something exotic.

A typical compiler test is a tuple, which elements correspond to some of the artefacts
listed in the beginning of this section. In the simplest case, it is a tuple with a program text
and its expected execution results. However, such simplistic test cases are only useful with
mature projects [5]. Compilers under active development require a much more elaborate
framework for testing, capable of forming hypotheses, crystallising them as specifications
and testing them di�erentially on available oracles (such as working legacy implementations
or remaining living domain experts). It is not uncommon for such a test spec to include all
or almost all of the artefacts, allowing for testing whether the parser could recognise the



Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev 43

input as correct, whether it succeeded building a proper parse tree, whether in its turn a
corresponding syntax graph was constructed correctly, etc, all the way to the execution of
the compiled code and comparing the result with the baseline [4, 5]. In practice it helps
enormously to have the capability to locate the exact point of failure.

So, since a test case is an n-tuple, a collection of them (known as a test suite) can be
seen as a specification of an n-ary relationship. When it gets broken (by a change in a
compiler, or, even more commonly during development, by the customer providing additional
information that conflicts with the contemporary understanding of the intended language
semantics), it needs to be restored, and that can/should be done by a multx. In general, all
connected artefacts are needed as inputs to make a consistency restoration decision, and all
of them have a chance to be changed as its result.

Unfortunately, the state of the art is to accomplish this with a combination of manual
programming and bespoke proprietary tools. The main intention behind exposing this
case study during the seminar as well as in this report, is to provide a somewhat detailed
description of an open problem that seems suitable to be solved with multx.

References
1 Vadim Zaytsev, Anya Helene Bagge. Parsing in a Broad Sense, Proceedings of the 17th

International Conference on Model Driven Engineering Languages and Systems (MoDELS),
LNCS 8767, pp. 50–67, https://doi.org/10.1007/978-3-319-11653-2_4, Springer, 2014.

2 Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, Emma Söderberg. Natural and Flexible
Error Recovery for Generated Modular Language Environments. ACM Transactions on
Programming Languages and Systems, 34(4): 15:1-15:50, https://doi.org/10.1145/2400676.
2400678 2012.

3 Mark van den Brand, Steven Klusener, Leon Moonen, Jurgen J. Vinju. Generalized Pars-
ing and Term Rewriting: Semantics Driven Disambiguation. Proceedings of the Third
Workshop on Language Descriptions, Tools and Applications (LDTA), ENTCS 82(3),
https://doi.org/10.1016/S1571-0661(05)82629-5, 2003.

4 Vadim Zaytsev. Open Challenges in Incremental Coverage of Legacy Software Languages.
Proceedings of the Third Edition of the Programming Experience Workshop (PX/17.2),
pp. 1–6, https://dl.acm.org/citation.cfm?id=3167105, 2017.

5 Vadim Zaytsev. An Industrial Case Study in Compiler Testing. Proceedings of the 11th
International Conference on Software Language Engineering (SLE), pp. 97–102, https://
doi.org/10.1145/3276604.3276619, ACM, 2018.

18491


	Table of Contents
	Executive Summary Perdita Stevens, Ekkart Kindler

	Working Groups Perdita Stevens, Ekkart Kindler
	... Perdita Stevens, Ekkart Kindler
	WG1: Whether Networks of Bidirectional Transformations Suffice for Multidirectional Transformations Michael Johnson
	WG2: Partial Consistency Notions Anthony Anjorin, Anthony Cleve, Sebastian Copei, Zinovy Diskin, Jeremy Gibbons, Hsiang-Shang Ko, Nuno Macedo, James McKinna, Andy Schürr, Bran V. Selic, Perdita Stevens, Jens Holger Weber, and Nils Weidmann
	WG4: Multiple Interacting Bidirectional Transformations Holger Giese, Gabor Karsai, and Vadim Zaytsev
	WG5: Mathematical Backgrounds for Multidirectional Transformations Hsiang-Shang Ko
	WG6: Synchronisation Policy Jeremy Gibbons and James McKinna
	WG7: Use Cases and the Definition of Multidirectional Transformations Fiona A. C. Polack, Anthony Cleve, Davide Di Ruscio, and Martin Gogolla
	WG8: Human Factors: Interests of Transformation Developers and Users Matthias Tichy and Heiko Klare
	WG9: Provenance in Multidirectional Transformations Nils Weidmann
	WG10: Living in the Feet of the Span Jeremy Gibbons and Michael Johnson
	WG11: Programming Languages for Multidirectional Transformations Kazutaka Matsuda, James Cheney, and Soichiro Hidaka
	WG12: Verification and Validation of Multidirectional Transformations Perdita Stevens

	Case Studies Perdita Stevens
	Multidirectional Transformations for Microservices Sebastian Copei, Marco Sälzer and Albert Zündorf
	Multidirectionality in Compiler Testing Vadim Zaytsev
	Bringing Harmony to the Web James Cheney
	A Health Informatics Scenario Harald König


