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A classical software language processor can be viewed as a chain of transformations, most of
them even unidirectional, going through most of the following intermediate artefacts [1]:

Program text
Preprocessed program text
Parse tree as a structural model of a program
Abstract syntax graph as a conceptual model
Annotated graph with types and other information
Code model suitable for optimisations
Executable code
Computation result

Each of these artefacts/models conforms to a di�erent metamodel. Examples of bidirec-
tional transformations in this chain, are:

Error correction facilities [2], where a “later” and more rich artefact can be used to point
out errors in an “earlier” and more primitive artefact, such as misplaced punctuation or
parenthesis in the text of the program.
Semantic-driven disambiguation [3], where the structure or a model of a program can
only be decisively determined after semantic analysis. The need and necessity for such
techniques is caused by having constructs like “x * y” in C (which can either mean
declaring a variable y typed as a pointer to a value of type x, or a multiplication of two
variables named x and y), dangling clauses in COBOL (a language where it is not always
straightforward to determine where one statement ends and the next one begins), o�side
rule in languages like SASL, Python or Haskell (where statement a�liation with a block
depends on the indentation of a piece of code), as well as various ambiguities in 4GLs
caused by bad language design [4].
Incremental techniques where the change that needs to be propagated in either direction,
is several orders of magnitude smaller than the entire model. For example, many legacy
systems have flat hierarchies of interlinked and intercommunicating entities spanning over
millions of lines of code, but the evolution they undergo on a daily basis, covers small
scale bug fixes, rarely even multiline. Implementations of incremental synchronisation
techniques usually involve some sort of bx.

At Raincode Labs, which is commonly employed as a team of compiler mercenaries, we
are being asked to implement some of these features regularly, so having some bx is a norm
rather than something exotic.

A typical compiler test is a tuple, which elements correspond to some of the artefacts
listed in the beginning of this section. In the simplest case, it is a tuple with a program text
and its expected execution results. However, such simplistic test cases are only useful with
mature projects [5]. Compilers under active development require a much more elaborate
framework for testing, capable of forming hypotheses, crystallising them as specifications
and testing them di�erentially on available oracles (such as working legacy implementations
or remaining living domain experts). It is not uncommon for such a test spec to include all
or almost all of the artefacts, allowing for testing whether the parser could recognise the
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input as correct, whether it succeeded building a proper parse tree, whether in its turn a
corresponding syntax graph was constructed correctly, etc, all the way to the execution of
the compiled code and comparing the result with the baseline [4, 5]. In practice it helps
enormously to have the capability to locate the exact point of failure.

So, since a test case is an n-tuple, a collection of them (known as a test suite) can be
seen as a specification of an n-ary relationship. When it gets broken (by a change in a
compiler, or, even more commonly during development, by the customer providing additional
information that conflicts with the contemporary understanding of the intended language
semantics), it needs to be restored, and that can/should be done by a multx. In general, all
connected artefacts are needed as inputs to make a consistency restoration decision, and all
of them have a chance to be changed as its result.

Unfortunately, the state of the art is to accomplish this with a combination of manual
programming and bespoke proprietary tools. The main intention behind exposing this
case study during the seminar as well as in this report, is to provide a somewhat detailed
description of an open problem that seems suitable to be solved with multx.
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