
Megamodelling with NGA Multimodels
Vadim Zaytsev

Raincode Labs, Kazernestraat 45, Brussels 1000, Belgium
vadim@grammarware.net

Abstract
One of the contemporary methods of tackling complexity
in information systems is megamodelling: creating explicit
models to express relations among artefacts, languages and
transformations. Such models can encapsulate architectural
knowledge of a system while retaining the ability to “zoom
in” and provide implementation details whenever needed, up
to providing links to concrete assets like files and tools. There
are many approaches to megamodelling yet none as widely
accepted as UML in software modelling or as (E)BNF in the
grammarware technological space. In this paper, we propose
a methodology to model the zooming feature of megamodels
explicitly, without fixing the depth up front, and explain why
a behavioural aspect is required in many circumstances. The
three aspects we propose are Nodes, Graphs and Automata
(NGA for short), representing the abstract view on an ar-
chitectural entity, a more structurally detailed view and a
dynamically behaving executable model, respectively. There
were none prior (mega)modelling approaches to cover all
three such aspects. The NGA approach to megamodelling
allows to add behavioural properties to the specifications of
information systems while keeping all the functionality of
a usual megamodelling methodology (abstraction, naviga-
tion, traceability and resolution). We provide a range of case
studies to justify bearing with the added complexity.

CCS Concepts • Computing methodologies → Model
development and analysis; • Theory of computation
→ Semantics and reasoning;

Keywords Megamodelling, multimodeling, automata

ACM Reference Format:
Vadim Zaytsev. 2017. Megamodelling with NGA Multimodels. In
Proceedings of ACM SIGPLAN International Workshop on Compre-
hension of Complex Systems (CoCos’17). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3141842.3141843

1 Motivation and Background
Modelling as the methodology of creating structural entities
truthfully representing a selection of interesting qualities of

CoCos’17, October 23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of ACM SIGPLAN International Workshop on Comprehension
of Complex Systems (CoCos’17), https://doi.org/10.1145/3141842.3141843.

an information system while abstracting from others, has
existed long enough to be widely accepted as one of the
most productive tools in the software engineering arsenal. A
typical software development project contains some forms
of requirements models, interaction models, performance
models, data formatmodels, communication protocol models,
design models, domain models, user experience models, etc.
To understand the roles these models play in the process of
creating and, even more importantly, maintaining software
systems, people have come up with megamodels as models
of complex modelling systems. An example of the simplest
nontrivial megamodel can be a statement that any model
must conform to a metamodel, or, ∀m ∃M m

χ
−→ M .

To lower the bar for the acceptance of megamodelling,
which is already pretty high, we are usually expected to use
simpler graphic notations instead of mathematical formulae.
The most colourful of them is MegaL by Favre et al. [14]:

Megamodelling languages have reasonably well-defined
meaning assigned to shapes, colours and other visual dimen-
sions of such models and try to reuse standing traditions (so
the existential nature of the conformance relation is drawn
with a dashed line in MegaL). Seidewitz warns us [40] about
distinguishing meaning as interpretation (when we establish
what our models mean, in terms of the knowledge they man-
age to capture about the actual artefacts they model) and
meaning as theory (when the model is viewed as a specifi-
cation that should have some properties that hold on the
thing it models). A good example of interpretation would
be checking that all source artefacts are indeed present in
the deployment package and all intermediate ones actually
exist as files after the generation takes place; an example
of a theory would be calculation of the dependency graph
and deriving which models depend on a given one, based on
it. The struggle of megamodelling languages to cover both
aspects, will be described in further subsections.
Megamodelling as the methodology of modelling what

models model, or, in other words, of expressing how models
relate to one another, is an important part of the overall en-
deavour to let models help developers and other stakeholders
to increase their understanding of the information system.
Such a megamodel usually manipulates classical MDA layers:
M0 as real world entities, M1 as models, M2 as metamodels
and M3 and metametamodels [34], — in a volatile manner,
grabbing them whenever they are needed and sticking them

https://doi.org/10.1145/3141842.3141843
https://doi.org/10.1145/3141842.3141843


CoCos’17, October 23, 2017, Vancouver, Canada Vadim Zaytsev

into the complete picture. A more systematic way of manip-
ulating these levels and having an arbitrary number of them,
is called multilevel modelling.

Independently of the megamodelling movement, there is
a tendency to move away from individual models that are
perfectly modular to multimodels which represent sets of
interrelated models. Multimodels express not only collec-
tions of atomic models, but also properties that arise from
the very fact of their collaborative use and are not inferable
from the individual items [25]. For example, one can have
global uniqueness constraints that are obviously invisible
when looking at each model fragment individually or in
small groups; or ordering constraints that make it impossible
to claim with certainty whether a communication trace con-
forms to the protocol, just by looking at individual messages
without considering their sequential composition. The main
challenge currently standing in the way of multimodelling
hides behind the fact that the natural definition of them (as
a set of global constraints attached to a collection of models
to be merged) contradicts with the usual implementation of
them, which is different simply because merging all individ-
ual models is impractical for truly complex systems. Still,
there are ways to infer global consistency claims from the
results of locally performed checks.
Obviously, instead of attempting to model several levels

simultaneously, it is possible to define machinery with opera-
tors or other means to addmore elements for a megamodel as
means of refinement [30] and/or renarration [49, 50]. How-
ever, that process is fairly straightforward and is specific
to neither megamodels nor multimodels, so we leave it out
of the scope of this paper. The only significant research
advances happening in that area, concern partiality and un-
certainty [16, 37].
The remainder of the paper is structured as follows. The

rest of this section explains megamodelling in much more
detail and in particularly identify three schools of thought
concerning the use of megamodels: they can be viewed as
models of how smaller models fit together; as models of
the entire domain of modelling; or as means to map smaller
models to resources and other concrete artefacts. Then, § 2
will introduce the main proposed contribution of this paper:
namely, the way to model different artefacts as three-level
multimodels that can be combined and used as N-views,
G-views and A-views. The theoretical introduction was de-
liberately made as brief as possible, as we promptly switch
to case studies of increasing sophistication, that demonstrate
the need for our approach and pinpoint shortcomings of
competing single-level approaches. We cover three such ex-
amples: legacy software migration, compilation and parsing,
and coupled transformation. Finally, § 3 concludes the paper
by summarising its contributions.
Megamodels, occasionally called megamodules or macro-

models, are used at least since 1992 to describe architectures
of complex information systems [44]. Processes associated

with them are megaprogramming [6], when they are encap-
sulated as components and used to build actual systems, and
megamodelling [5] when they are used as stepping stones
in complex system comprehension, allowing to cope with
accidental complexity — the two processes conceptually re-
alise the meaning-as-interpretation and meaning-as-theory
that we mentioned in the introductory section [40], but each
theory always tries to provide at least some means to ad-
dress the need for interpretation. There are three schools of
thought in megamodelling.

1.1 Three Uses of Megamodels
The first school of thought [2–5, 14, 47, et al.] focuses mostly
on the abstract aspect and defines a megamodel as a model
some elements of which represent other models. This is the
most general approach, it enforces very little limitations and
is therefore the most widely applicable, but at the same time
the hardest to demonstrate benefits of. MEGAF is an exam-
ple of a practically geared system implemented within this
paradigm, capable of expressing viewpoints, stakeholders,
models, model kinds, views, rules, concerns, etc, and linking
them with hypergraphs [22]. More limited and focused ap-
proaches exist: for instance, languages can be represented
by nodes and mappings by arcs in a megamodel graph [45].
The second use of megamodelling [13, 15, 17] concen-

trates on building a model of main model-driven concepts,
tying them together in something resembling a sketchy do-
main model (of the domain of modelling) or an ontology
of model-driven engineering. Similar reasoning is followed
while building a megamodel of all possible parsing and un-
parsing technologies [51]. Themain difference between these
megamodels and the ones from the previous paragraph lies
in the fact that megamodel elements here refer to concepts
and not necessarily to artefacts, even abstract ones: some
elements might be concrete (e.g., MOF refers to [35]), but
they are freely mixed with families of artefacts (e.g., BNF,
explained as a product line by [46]) and with artefact roles
(“a model”, “a program”, “a grammar”, etc).

The third research direction is about resolvable megamod-
els [14, 21, 26, 27], models where each element not just repre-
sents another model, but refers to an actual existing software
artefact or resource: typically a model, a metamodel, a model
transformation, a tool, a file, a data type. Favre et al. call
them linked megamodels [14] and Salay et al. consider all
megamodels to fall into this category and call unresolved
megamodels “mgraphs” [38]. Vignaga et al. do not insist
on resolving megamodel elements to concrete artefacts and
show how information about their roles and types could
already be leveraged to prevent certain runtime errors [43].
Lämmel uses megamodels to show how software languages
relate to one another within a repository [26] — the notable
difference from the examples above being that all megamodel
elements are linked to concrete files within the repository.
Previous stages of the same line of work, such as MegaL by



Megamodelling with NGA Multimodels CoCos’17, October 23, 2017, Vancouver, Canada

[14], were meant to be used like this as well but were success-
fully applied to model abstract situations without linking to
artefacts (e.g., [48, 49]). In that sense, (meta)syntactic differ-
ences aside, MegaL [14] could be seen as a domain-specific
version of MEGAF [22] for languages and transformations.

Coming back to the very first example at the start of this
paper (“all models must conform to a metamodel”), it can
be interpreted in one of these three ways by the schools
described above:

� For any model found in our system there should be a
metamodel shipped with it which it conforms to.

� All models are universally demanded to have a meta-
model to conform to, and anything else by definition
is not a model at all.

� The complete list of all models and metamodels within
the information system is provided, showing which
files are they stored at, and each of those models is
linked to at least one of those metamodels.

These three ways of thinking of megamodels (as models
of modelling ecosystems, as modelling ontologies and as
mappings between models and resources) are not mutually
exclusive. For instance, renarration is a technique of knowl-
edge representation and dissemination that can instantiate
elements of a megamodel gradually, resolve them to artefacts
or abstract from details [30, 49, 50].

1.2 Megamodel Definition
Hebig et al. [20] propose an appealingly simple formalisation
of what a megamodel is, by redefining that each megamodel
element should be a “model” (which can in turn be defined
and refined further). Essentially, the core metamodel for
megamodels then states nothing more than that a model
contains zero or more models and zero or more relations,
and each relation connects one or more models together.
“Terminal” kinds of models such as the source model, the
target model or the transformations, are defined as subclasses
of a “model”. This is a nicely natural extension of the general
understanding that “everything is a model”.

Salay et al. [38] propose to formalise megamodels as pairs
so that each megamodel has an mgraph of model elements
and an mgraph homomorphism called a dereferencing map-
ping. Nodes of an mgraph are either models linked by rela-
tionships or megamodels linked by megarels (i.e., relations
between megamodels).

In this paper, we extend these views and introduce several
degrees of flexibility by adding ideas from multimodelling.
In our eyes, each megamodelling entity is simultaneously
a node in some mgraph connecting it to others, an mgraph
by itself defining its own internal structure, and a dynamic
system that can be executed to behave in a certain way.

2 Node–Graph–Automaton
Since we would like to concentrate on preserving alignment
between model elements, we will consider linked pairs of
megamodel elements instead of individual elements. The
approach is easy to generalise for more than two elements
(for multiary relations that are not simplifiable to a set of
binary ones) and becomes trivial in contexts where the traces
are not important. This approach is inspired by categorical
thinking [10] but we do not claim any level of correctness
in the naïve category-theoretical interpretation of the defini-
tions provided here. Developing a proper theory is reserved
for future work.
The basic idea behind the NGA approach is to have each

of the megamodel elements being able to masquerade as one
of the three elements: Node (N), Graph (G) and Automaton
(A) — hence, the NGA name. The Node view represents the
most abstract view of the element as possible: quite often it
is just a node in a megamodel/mgraph, even if it represents
an entire language. Alternatively, the Node view can contain
two nodes linked by a mapping relation if that is where the
modelling focus lies. The Graph view shows more details:
it refines the single node to a number of somehow interre-
lated ones or refines a relationship from one arc to some
static representation of the process and/or transformation
sequence. The Automaton view is all about the behaviour,
it models what happens if the system is “run”. Typical au-
tomata used in software engineering are activity diagrams,
statecharts, Moore machines, Mealy machines, Petri nets,
Büchi automata, Kripke structures as well as variations of
finite state machines. In some practical implementations of
the NGA paradigm we were also using functions as first
class citizens to model automata: in this case a functional
language is certainly required, but it helps even more to have
a homoiconic language capable of freely manipulating code
as data, decomposing and composing function definitions
on the fly, such as Clojure, Rebol, Scheme or Racket.

2.1 Software Migration Example
Software systems evolve, grow and rot. Solutions that have
been introduced decades ago for performance reasons or
for the sake of compatibility with other systems which got
replaced in the meantime, are not relevant any more and
weigh heavy on maintenance activities performed by mod-
ern engineers. Choices made in architectural design due to
the lack of expertise and evidence, become apparent in their
suboptimality after being re-evaluated after the hype has lost
its power. Languages that were once thought to replace older
counterparts, become legacy themselves and turn into busi-
ness liabilities when it gets impossible to hire new developers
with any knowledge of them.

The domain of softwaremigration is well-researched. There
are many contradicting definitions of “legacy systems” and
“legacy code” among practitioners, all assigning different



CoCos’17, October 23, 2017, Vancouver, Canada Vadim Zaytsev

technical meanings to the intuitive concept of a software as-
set that is not sufficiently understood and currently in need
of adjustment [23]. There are even more different families of
approaches, such as model transformations applied in partic-
ular to architectural modelling, program transformation and
direct source code manipulation, concept analysis, require-
ments recovery and analysis, especially various knowledge
elicitation approaches. Verification of software migration
processes is usually out of reach, but there is considerable
effort dedicated to consistency claims through testing.In gen-
eral, completed software migration endeavours are quite
successful, there exist several companies whose business is
solely dedicated to performing such projects (the author of
the paper works at such a company), and empirical research
shows that in practice, software migration of legacy systems
into modern environments is not only capable of reaching
the initially set goals, but also tends to cause unforeseen
additional benefits [24]
The N-view of a software migration megamodel is con-

veniently simple: it states that there is a system which gets
translated to another system: S1

τ−→ S2.
We can combine this NGA element with others to specify

more transformations or express that these systems are ele-
ments of (ε) or representations of (µ) other elements — all
of which would also be mere nodes in the mgraph. On the
G-view, we refine each node to a graph and each arrow to a
relation, which in our case could look like this:

A₁

A₂

A₄

A₃

L₁

L₂

L₃

Conceptually, Ai and Lj represent architectural layers of
S1 and S2 respectively, and relations within the model show
which ones are allowed to interact. Each of these elements
can be seen as an N-view, which can in turn be “zoomed into”
and unfolded into a G-view, and so on. In this example, we
can expand, say, A2

calls−→ A1, into subsystems of A1 and A2
and how they call one another; and then further one to pack-
ages, assemblies, namespaces, programs, classes, methods,
statements, expressions, instructions.

The relation represented by dashed lines, is a refinement of
the application of τ , not of τ itself ([14] elaborate well on the
distinction between a function and a function application in
the context of modelling). In the literature it is called model
alignment [11], or horizontal sameness or correspondence
relations [12] or “correspondsTo” [14]. This refined relation
shows how τ propagates model elements from one side to
the other. Depending on the modelling scenario, this relation
can be purely structural or contain homomorphic mappings,
and not necessarily show how the actual mapping take place

(i.e., if there is a data dependency between two components
during migration). So in this particular case the G-view does
not show what should happen with A3: will it be removed,
subsumed by L2 or merged into L3.

The A-view is capable of modelling that detail and much
more. For example, one can complete the NGA multimodel
with a system dependence graph expressing which parts of
the system have data-based or call-based dependences on
other parts. This will complement G-level constructs like
Ai

calls−→ Aj which essentially express the policy of having
dependences, with an actual model of system behaviour so
that one can check one against the other, and do so both in
the original system to ensure that the convention is indeed
in place, as well as in the migrated system to verify that the
migration did not violate it.

If we keep “zooming in” into all levels, then in the context
of software migration the ultimate point of the A-level view
would express the system under interest in terms of hardware
architecture, and the ultimate point of the G-view would the
syntax graph of the code of the system.

2.2 Parsing and Compilation Example
In the next scenario the A-view will only be needed on one
side of the transformation. Many approaches tend to abstract
from that fact and pretend to assign what they call semantics
to the entire model while in fact assigning it to one side of
the model.

There aremanymodels of parsing such as parsing schemata
by [41], that has the indisputable advantage over the alterna-
tives by being independent from the actual algorithm used
for the parsing process. The megamodel of parsing [51] is
way too complex for us to reproduce here fully, but as admit-
ted previously [50], it is possible to apply it partly to model
simpler scenarios and possibly position them with respect
to alternatives.
Let parsing be defined as an automated process of recog-

nising structure in textual inputs and expressing it explicitly.
So, on the left hand we have an input stream consisting of
symbols of the chosen alphabet, and on the right we have an
output graph which terminal elements (leaves) correspond to
the relevant fragments of the input. The N-view and G-view
are trivial for us after the previous section: the N-view shows
that there is a parsing function transforming a string into a
tree: S

parse
−→ T ; and the G-view shows a concrete example of

such a string and a corresponding example of a tree:

2+3 *4 2 3 4

*

+



Megamodelling with NGA Multimodels CoCos’17, October 23, 2017, Vancouver, Canada

However, what is the A-view of them? How do we know
what does it mean for these artefacts (a string and a tree)
to be executed, to behave? There are several approaches to
context handling and code generation and optimisation [19],
that all more or less revolve around the classic concept of
syntax-driven translation [1], which means that each ele-
ment of the model that we have on the right, is mapped to
a well-known and unit-testable executable pattern. This by
definition means that the model on the left cannot possibly
have semantics assigned to it, because its internal structure
has not been recognised yet.

Hence, in these circumstances, the entity on the right is a
full proper NGA multimodel which is simultaneously valid
as a node, a graph and an automaton, but the entity on the
left lacks the A-part. Depending on the purpose of modelling,
one can assume that the A-level part of the left part of the
megamodel is by definition the same as the A-level part on
the right, but this agreement is only valid for valid mappings.
There is currently a very promising movement towards

fully verified compilers: not just parsing, but also code gen-
eration, optimisation, memory allocation, internal represen-
tation soundness and completeness — everything can be for-
mally specified in a language consumable by an automated
theorem prover and verified mechanically. Great examples
of such endeavours are CompCert [32], Vellvm [52], van-
Helsing [33], RESOLVE [8], VerifiCard [42], Verisoft [31],
Verifix [18]. For older projects (1967–2003), [9] kept a fairly
comprehensive bibliography.

2.3 Cotransformation Example
The megamodels seen so far, were distilled to the simplest
possible form, which on the N-level is obviously two nodes
linked with a relation. Before we wrap up, let us consider a
slightly more sophisticated scenario. This time it is borrowed
from the domain of so-called cotransformations, or coupled
transformations [7, 26]. In general, cotransformations are
transformations that restore consistency to a model after
some other transformations bring in changes that break it.
Cotransformations happen when changes in a data schema
need to be propagated to the data and to the query programs;
or when the codebase needs to be updated to stay in sync
when the language it is written in, evolves; or when files
saved in an old format, need to be resaved in a the new one.

G
ι ✲ τ

ω ✲ G ′

P

χ

✻

ι
✲ τ ′

σ

❄

ω
✲ P ′

χ

✻

The diagram below prents an N-view of a nontrivial cotrans-
formation setup. Let us renarrate it: a program P conforms
to a grammar G, which is being transformed into a new

grammar G ′. The transformation τ from G to G ′, is being
used by a higher order function σ that infers a deeply related
cotransformation τ ′ which transforms P to P ′ in such a way
that P ′ conforms to the new G ′.
One may have already noticed two peculiarities of this

megamodel with respect to previously shown ones. First, we
“promote” τ from an annotation on an edge, to a proper vertex
in the mgraph. This is done to explicitly emphasize that τ
and τ ′ are different artefacts, as well to enable a non-cringy
way to draw more edges incident to and from τ . This also
means that the megamodel above can be seen as a G-level
refinement of an N-level square with P , P ′,G andG ′, and the
shown relations “input of” (ι) and “has output” (ω) contribute
to the refinement of a τ from such a square. Second, each
element of this megamodel, be it a node or an edge, is possible
to refine deeper following the NGA paradigm. The main
focus is on the actual cotransformation σ , but it is almost
impossible to understand what it represents, without the
other elements.
There are languages developed specifically to express

transformations of grammars [28, 29, 47], so a G-view of
τ could include its conformance to that language’s defini-
tion and its element-of relation to the language itself. This
is also a new way to refine transformations that we have
not observed before: instead of writing out the correspon-
dence relation, we make a proper high level model of it, and
assign semantics to elements of that model — in the case
of [28, 29] it can sentially language embedding, which is a
perfect scenario for mega- and multimodelling.

The instance-level artefacts (P and P ′) are modelled simi-
larly to Si from § 2.1, and transformational artefacts (τ ′ and
σ ) are handled in a way similar to τ . The A-view of χ in prac-
tice is usually represented as a validator/checker tool that
ensures conformance, but in theory it can reuse semantics
(meaning-as-theory [40]) of the language in which P was
written — it is a well-known fact in constructive mathemat-
ics that the choice of such a language determines the set of
provable statements expressed in it.

3 Conclusion
In this paper, we have considered research crossroads be-
tween multimodelling [25] and megamodelling [5] and fo-
cused on tasks of constructing, using and maintaining mod-
els of complex information systems. For such models it is
not uncommon to be represented hierarchically, denoting
complex structural entities as mere dots in a bird’s-eye view
of a system. Our proposal is to explicitly acknowledge that
elements of such megamodels are simultaneously nodes and
graphs, and to add the third level representing behaviour. As
extra motivation, we have provided proof of concept mod-
els of three concise case studies: legacy software migration,
parsing in a compiler, and coupled transformations.



CoCos’17, October 23, 2017, Vancouver, Canada Vadim Zaytsev

There are many directions to be investigated in the future:
the faith of N-G models (such as the left one in § 2.2) and N-A
models (executable artefacts with nontrivial semantics and
unknown syntax); refinement of A-views (automata theory
is insufficient: e.g., Mealy machines are obvious conceptual
refinement of Moore machines since they can express inputs
and outputs while Moore machines deal only with input,
but they are equally expressive for automata theory since
technically both are just edge annotations of finite automata);
formalising N → G refinement with air grammars [36] or
triple grammars [39]; and so forth.

References
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers:

Principles, Techniques and Tools. Addison-Wesley.
[2] F. Allilaire, J. Bézivin, H. Brunelière, and F. Jouault. 2006. Global Model

Management in Eclipse GMT/AM3. In eTX at ECOOP’06.
[3] M. Barbero, Frédéric Jouault, and J. Bézivin. 2008. Model Driven

Management of Complex Systems: Implementing the Macroscope’s
Vision. In ECBS. 277–286.

[4] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. 2004. Modeling in
the Large and Modeling in the Small. In MDAFA’03/’04. 33–46.

[5] J. Bézivin, F. Jouault, and P. Valduriez. 2004. On the Need for Meg-
amodels. MDSD at OOPSLA & GPCE (2004).

[6] B. Boehm and B. Scherlis. 1992. Megaprogramming. In Proceedings of
the DARPA Software Technology Conference. Meridien Corp.

[7] A. Cleve, J. Henrard, and J.-L. Hainaut. 2005. Co-transformations in
Information System Reengineering. ENTCS 137, 3 (2005), 5–15.

[8] C. T. Cook, H. K. Harton, H. Smith, and M. Sitaraman. 2012. Specifi-
cation Engineering and Modular Verification using a Web-integrated
Verifying Compiler. In ICSE. IEEE, 1379–1382.

[9] M. A. Dave. 2003. Compiler Verification: A Bibliography. ACM SIGSOFT
SE Notes 28, 6 (2003), 2.

[10] Z. Diskin, R. Salay, B. Schätz, and V. Zaytsev. 2015. MMMDE:Workshop
on Mathematical Models for MDE. MoDELS (2015).

[11] Z. Diskin, Y. Xiong, and K. Czarnecki. 2011. From State- to Delta-Based
Bidirectional Model Transformations: The Asymmetric Case. JOT 10
(2011), 137–161.

[12] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas.
2011. From State- to Delta-Based Bidirectional Model Transformations:
The Symmetric Case. InMoDELS (LNCS), Vol. 6981. Springer, 304–318.

[13] J.-M. Favre. 2004. Towards a Basic Theory to Model Model Driven En-
gineering. In Third Workshop in Software Model Engineering (WiSME).

[14] J.-M. Favre, R. Lämmel, and A. Varanovich. 2012. Modeling the Linguis-
tic Architecture of Software Products. In MoDELS (LNCS), Vol. 7590.

[15] J.-M. Favre and T. NGuyen. 2004. Towards a Megamodel to Model
Software Evolution through Transformations. ENTCS 127, 3 (2004).

[16] D. Fischbein, N. D’Ippolito, G. Brunet, M. Chechik, and S. Uchitel. 2012.
Weak Alphabet Merging of Partial Behavior Models. ACM ToSEM 21,
2 (2012), 9:1–9:47.

[17] D. Gašević, N. Kaviani, and M. Hatala. 2007. On Metamodeling in
Megamodels. In MoDELS (LNCS), Vol. 4735. Springer, 91–105.

[18] G. Goos and W. Zimmermann. 1999. Verification of Compilers. In
Correct System Design (LNCS), Vol. 1710. Springer, 201–230.

[19] D. Grune, K. van Reeuwijk, H. E. Bal, C. J. H. Jacobs, and K. G. Lan-
gendoen. 2012. Modern Compiler Design. Springer.

[20] R. Hebig, A. Seibel, and H. Giese. 2011. On the Unification of Meg-
amodels. EC-EASST 42 (2011).

[21] M. Heinz, R. Lämmel, and A. Varanovich. 2017. Axioms of Linguistic
Architecture. In MODELSWARD’17. SciTePress, 478–486.

[22] R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. 2010. Realizing
Architecture Frameworks through Megamodeling Techniques. In ASE.

[23] R. Khadka, B. V. Batlajery, A. Saeidi, S. Jansen, and J. Hage. 2014. How
Do Professionals Perceive Legacy Systems and Software Moderniza-
tion?. In ICSE. ACM, 36–47.

[24] R. Khadka, P. Shrestha, B. Klein, A. Saeidi, J. Hage, S. Jansen, E. van
Dis, and M. Bruntink. 2015. Does Software Modernization Deliver
What it Aimed for?. In ICSME. IEEE, 477–486.

[25] H. König and Z. Diskin. 2016. Advanced Local Checking of Global
Consistency in Heterogeneous Multimodeling. In ECMFA (LNCS 9764).

[26] R. Lämmel. 2016. Coupled Software Transformations—Revisited. In
SLE. ACM, 239–252.

[27] R. Lämmel and A. Varanovich. 2014. Interpretation of Linguistic Ar-
chitecture. In ECMFA’14 (LNCS), Vol. 8569. Springer, 67–82.

[28] R. Lämmel and V. Zaytsev. 2009. An Introduction to Grammar Con-
vergence. In iFM (LNCS), Vol. 5423. Springer, 246–260.

[29] R. Lämmel and V. Zaytsev. 2011. Recovering Grammar Relationships
for the Java Language Specification. Software Quality Journal 19, 2
(March 2011), 333–378.

[30] R. Lämmel and V. Zaytsev. 2013. Language Support for Megamodel
Renarration. In XM (CEUR), Vol. 1089. 36–45.

[31] D. Leinenbach and E. Petrova. 2008. Pervasive Compiler Verification —
From Verified Programs to Verified Systems. ENTCS 217 (2008), 23–40.

[32] X. Leroy. 2009. Formal Verification of a Realistic Compiler. CACM 52,
7 (2009), 107–115.

[33] R. Lezuo, I. Dragan, G. Barany, and A. Krall. 2015. vanHelsing: A Fast
Proof Checker for Debuggable Compiler Verification. In SYNASC.

[34] S. J. Mellor, K. Scott, A. Uhl, D. Weise, and R. M. Soley. 2004. MDA
Distilled: Principles of Model-Driven Architecture. Addison-Wesley.

[35] OMG. 2006. Meta-Object Facility (MOFTM) Core Specification (2.0 ed.).
Object Management Group.

[36] T. W. Pratt. 1971. Pair Grammars, Graph Languages and String-to-
graph Translations. J. Comput. System Sci. 5, 6 (1971), 560–595.

[37] R. Salay, M. Chechik, M. Famelis, and J. Gorzny. 2015. A Methodology
for Verifying Refinements of Partial Models. 14, 3 (Aug. 2015), 3:1–31.

[38] R. Salay, S. Kokaly, A. DiSandro, and M. Chechik. 2015. Enriching Meg-
amodel Management with Collection-based Operators. In MoDELS.

[39] A. Schürr. 1995. Specification of Graph Translators with Triple Graph
Grammars. In IWGT. Springer, 151–163.

[40] E. Seidewitz. 2003. What Models Mean. Software 20, 5 (2003), 26–32.
[41] K. Sikkel. 1997. Parsing Schemata — a Framework for Specification and

Analysis of Parsing Algorithms. Springer. I–XVI, 1–365 pages.
[42] M. Strecker. 2002. Formal Verification of a Java Compiler in Isabelle.

In CADE (LNCS), Vol. 2392. Springer, 63–77.
[43] A. Vignaga, F. Jouault, M. Bastarrica, and H. Brunelière. 2011. Typing

Artifacts in Megamodeling. SoSyM (2011), 1–15.
[44] G. Wiederhold, P. Wegner, and S. Ceri. 1992. Toward Megaprogram-

ming. Commun. ACM 35, 11 (Nov. 1992), 89–99.
[45] V. Zaytsev. 2011. Language Convergence Infrastructure. In GTTSE’09

(LNCS), Vol. 6491. Springer, 481–497.
[46] V. Zaytsev. 2012. BNF WAS HERE: What Have We Done About the

Unnecessary Diversity of Notation for Syntactic Definitions. In SAC.
ACM, 1910–1915.

[47] V. Zaytsev. 2012. Language Evolution, Metasyntactically. EC-EASST
BX 49 (2012).

[48] V. Zaytsev. 2012. Negotiated Grammar Transformation. In XM. ACM.
[49] V. Zaytsev. 2012. Renarrating Linguistic Architecture: A Case Study.

In MPM. ACM, 61–66.
[50] V. Zaytsev. 2014. Understanding Metalanguage Integration by Renar-

rating a Technical Space Megamodel. In GEMOC (CEUR), Vol. 1236.
[51] V. Zaytsev and A. H. Bagge. 2014. Parsing in a Broad Sense. InMoDELS

(LNCS), Vol. 8767. Springer, 50–67.
[52] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. 2012. For-

malizing the LLVM Intermediate Representation for Verified Program
Transformations. In POPL. ACM, 427–440.


	Abstract
	1 Motivation and Background
	1.1 Three Uses of Megamodels
	1.2 Megamodel Definition

	2 Node–Graph–Automaton
	2.1 Software Migration Example
	2.2 Parsing and Compilation Example
	2.3 Cotransformation Example

	3 Conclusion
	References

