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Abstract

Any grammar engineer can tell a good grammar from a bad
one, but there is no commonly accepted taxonomy of indi-
cators of required grammar refactorings. One of the conse-
quences of this lack of general smell taxonomy is the scarcity
of tools to assess and improve the quality of grammars. By
combining two lines of research—on smell detection and on
grammar transformation—we have assembled a taxonomy of
smells in grammars. As a pilot case, the detectors for identi-
fied smells were implemented for grammars in a broad sense
and applied to the 641 grammars of the Grammar Zoo.
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1 Introduction

As it has been pointed out over a decade ago [22], the un-
derlying goal behind establishing the engineering discipline
of grammarware is to improve the quality of grammarware:
grammars, compilers, IDEs, APIs—software languages and
their processors. Since then, the goal has been getting closer,
but the progress was more measurable in some domains than
in others. The quality of grammars as such, has always been
and remains, an ephemeral concept: everyone agrees that
it should be high, many experts easily tell a good grammar
from a bad one when they see it, but quantifying the differ-
ence and turning it into an executable tool that detects when
a grammar is in need of refactoring and whether such a refac-
toring indeed improved it, is way out of reach. Researchers
and tool implementers from various domains use proxies for
quality such as size and complexity metrics [4], the number
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of differences to the master grammar [30, 65], the number
and nature of detectable ambiguities [7], the connectedness
and the factual correspondence with executable tooling [29],
the point in the lifecycle between dead text in a manual and
the source artefact for tool generation [63], etc.

Language design smells as a research domain within soft-
ware language engineering, were proposed by Tijs van der
Storm in February 2012, as documented by The Grammar
Hammer [59] at the end of that year. The problems of this do-
main are socio-technical by nature, and range from attempts
to introduce an indentation-sensitive software language for
the domain traditionally filled with C++ programmers (will
fail even if there is nothing technically wrong with it), to hav-
ing a Rascal grammar with a terminal partly defined with a
lexical production rule and partly with a syntax one (tech-
nical and idiosyncratic up to being obscure for non-Rascal
experts). With this paper, we contribute to this domain in an
a priori focused way: by providing a list and a classification
for grammar smells, a subset of software language smells.

By “smells” we mean here symptoms of a possible prob-
lem that indicate that something is not quite right, but not
necessarily point out an error and thus require human touch
for verification [17, 46, 48]. Smells in code are often results
of undisciplined work, hasty development and rushed design
decisions. Similarly, smells in grammars are fuzzily described
symptoms that may indicate imperfections in their engineer-
ing. By “grammars” we will understand extended Boolean
grammars in a broad sense. Thus, they may contain any kind
of repetition [54], disjunction [5], conjunction, negation [38],
as well as other advanced metaconstructs like separator lists;
and these grammars are not necessarily related to parsing
(even in a broad sense [68]), instead representing structural
commitment [22] and binding contracts [13]. By choosing
this viewpoint, we possibly embrace all grammarware tech-
nologies and more, covering syntax specifications along with
document schemata, metamodels and whatnot.

The next section briefly describes prior results related to
our work. Sections 3-5 define smells as such, with examples
when space permits. http://slebok.github.io/grass contains a
more complete and constantly growing counterpart of those
sections. Next, section 6 shows how to apply the taxonomy
by detecting the smells on the Grammar Zoo corpus [64]
with detectors written in GrammarLab [67] and Rascal [23],
of which one example is described with a discussion of its
results. The paper is concluded by section 7.
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2 Related Work

The project related the closest, is the grammar assessment
framework developed by Sellink and Verhoef in 2000 [45].
During their own grammar engineering activities around
several grammars of industrial DSLs, they noticed that cer-
tain patterns were common, harmful and detectable; im-
plemented them in a collection of small tools and defined
semi-formally. The focus of their work was to quantify the
progress of grammar recovery. All the harmful patterns Sell-
ink and Verhoef have identified, are covered by the taxonomy
of this paper (Echo, Dead, Bottom, etc).

Many initiatives around grammar adaptation [29, 32],
grammar programming [11, 14], grammar convergence [30,
31], grammar transformation [34], grammar mutation [62],
grammar recovery [33, 58], grammar deployment [26], etc.,
include grammar manipulation languages that are for the
most part motivated by the changes that are commonly re-
quired in imperfect grammars. We looked at all those for
inspiration, reverse engineering what kind of problems may
be identified so that they can be solved later by transforming
or mutating the smelly grammar.

There are many metrics defined on grammars, counting
rules and symbols, assessing complexity and calculating
properties of inferred structures (tree impurity, grammatical
levels, etc), it was a popular topic of research in the 1970s and
1980s. The main fruits of those research activities are sum-
marised well by Power and Malloy [40, 41]. We will define a
number of metric-based smells in subsection 5.3. One step fur-
ther from metrics are micropatterns that have already been
well-defined for grammars [60]. Grammar micropatterns are
the counterparts of micropatterns [19], nanopatterns [8],
usage patterns [37, 69] and code idioms [2] in software engi-
neering. For example, “Preterminal” (a nonterminal which
definition contains only terminals) is a micropattern for non-
terminals defined by trivially combining terminals.

Grammar engineering case studies are not often being
published, but there are quite a few of them nevertheless:
by van den Brand et al. [50, 51], Sellink and Verhoef [45],
Lammel and Verhoef [28, 29], Tratt [49], Visser [53], Alves
and Visser [4], Zaytsev [55, 56, 58, 64]. All of them talk about
improving the quality of grammars and explain what pat-
terns they find harmful and worth removing or refactoring.
We will refer to these studies from the smell descriptions to
establish their prevalence and acceptance among acknowl-
edged grammar engineers.

Fowler et al. [17] wrote a book on smells in code devel-
oped in object-oriented languages. Their work has become
such a classic that most smell catalogues are literal map-
pings (“technological space travel” [27]) thereof or at least
grow from such a mapping [3, 18, 21, and over 9000 others].
OOP code is as far from grammars in a broad sense as one
could be, but we do borrow Fowler et al’s definitions and atti-
tude towards smells as open-ended (not necessarily precise),
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expert-recognisable (not always automatically detectable),
resolvable (useless to detect clones in a DSL without reuse)
patterns, somehow representative of bad practices and an-
tipatterns. The online version of sections 3-5 refers back to
the classic and near-classic smells in code from definitions
of our smells in grammars, by using one of the most recent
and up to date sources: the Refactoring for Software Design
Smells [48] book and the online resource derived from it and
an accompanying literature survey, called A Taxonomy of
Software Smells [46], regularly updated throughout 2017.

3 Organisation Smells

Let us start by considering the most global smells, related
to the metalanguage, conventions of its use, as well as other
problems with the entire way that the grammar was created.

3.1 Convention Smells

Convention smells are about violations of policies that a
grammar engineer reading through the grammar, is supposed
to know or can get to know if the reading goes on long
enough. Once the convention is suspected, it will be expected
to be followed, so when it is suddenly not followed, we claim
a smell to be found.

3.1.1 Misformat

There are many formatting mistakes one can make when
creating a grammar without proper tool support [31, 58].
Mostly they revolve around mistypings, misspellings, mis-
alignments, etc, and result in actual incorrect constructs in
extracted grammars. However, there can be other, more sub-
tle smells within formatting of a grammar, that do not change
the way the machine processes it, but do change the way a
tired grammarware engineer may understand it. The most
canonic example of misleading formatting would be (mind
the colon, not a semicolon, following ghi):

abc :
def;
ghi:
jkL;
mno :
par;

3.1.2 Misnomer

There are a lot of potential problems with names used within
a grammar, mostly concerning nonterminal names and labels.
Many grammar notations do not support labels (decorative
names for production rules or right hand side subexpres-
sions) [57], but realistic metalanguages tend to have them
in some form. Nonterminal names, on the other hand, are
essential—they are optional only in notations for regular
expressions, and present in all grammar notations of the
context-free kind and beyond.

One can blame names to be uncommunicative, like the
names from the last example: abc or pgr are much worse
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for the readability and maintainability of the grammar than
if_statement,CompilationUnit or DIGIT, similarly to how
this is a problem in programming in general [9]. One can
also investigate whether naming policies are present and
how they are respected. For instance, if all nonterminals are
camelcased, but one is lowercase with an underscore sep-
arator, it was probably a misspelling—cases like this were
reported in a MediaWiki grammar which was created by
several unrelated grammar engineers [56]. It can also be the
case that the naming policy carries semantic meaning: typi-
cally lexical nonterminals and/or preterminals are named in
uppercase, to distinguish them visually when they are used
next to others like this:

if_stmt :
Sometimes naming policies represent namescoping, which
is considered a bad smell in OOP but is much less so in

grammars because all names are global (at least up to a
module level, if we have modules). An example:

:= IF condition THEN expression ENDIF;

ConstDef ::= ConstName DefKeyword ConstType;

Finally, names can be misleading and contain words that
contradict the definition of the named entity. For example:

WhileStatement ::= "while" Condition Block
| "repeat" Block "until" Condition ;

3.1.3 SayMyName

The information is conveyed both by the structure specified
in the grammar notation and by natural language used for
naming nonterminals and modules. In small grammars mis-
spellings and misnamings are easy to overlook since humans
are naturally capable of that. When the grammar size in-
creases, primitive automation techniques are used like plain
text search, and such a search query looking for all state-
ments will not find the one labelled with “staetment”.

3.1.4 ZigZag

ZigZag was a previously identified micropattern of a non-
terminal defined in a style that mixes horizontal production
rules (the ones with a top-level choice) with vertical produc-
tion rules (with several rules per nonterminal) [60]. In this
fragment h is horizontal, v is vertical and z is zigzag:

h ::=a | b; z ::=e | f;

V i:= C; v ::=d; z ::= g;

When it comes to smells, we have at least two ways to
define and detect ZigZags: the local one within a nonterminal
(equal to the micropattern) and the global within a grammar.
The latter would mean that some nonterminals are defined
horizontally while others are defined vertically, which may
not be technically detrimental, but is still sloppy.

3.1.5 Splat

Since definitions of vertical nonterminals (see ZigZag) con-
sist of several production rules, these rules can be distributed
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over the grammar and not focused in one place. This may
be bad, especially if most of the rules are collected together,
and only one or two are elsewhere.

3.2 Notation Smells

The second group of organisation smells directly concerns
the notation (the metalanguage) used to write the grammar.
Common properties of notations for syntactic definitions has
been investigated and modelled before [57], but in reality
their infinite diversity comes in infinite combinations.

3.2.1 Underuse

The original BNF used for early ALGOL, did not yet bor-
row Kleene star (x* for zero or more xs) and Kleene cross
(x+ for one or more) from regular expressions, and early
parser specification notations were just as limited. Gram-
mars written with those notations in mind (not necessarily
for using them!), suffer from “yaccification” [12, 32], when
all repetitions are written out explicitly as additional left-
recursive nonterminals. This pattern is well-known to be
harmful since it reduces grammar’s both readability (being
basically an encoding move, not a modelling one) and porta-
bility (a left-recursive grammar is often useless or suboptimal
for top-down parsing). There can be other similar patterns
falling under the same smell description: for instance, sep-
arator lists are concisely and efficiently handled by many
grammar notations, and if one of those is used, should not
be written out with group repetition or recursion.

3.2.2 Overspec

In many notations, there are various ways to achieve the
same effect, and information in those should not be dupli-
cated or contradictory, since it only confuses grammar en-
gineers and leads to grammars with very subtle bugs. The
simplest example of Overspec is something like ! "a" & ("b"
| "c"), where the choice between terminals "b" and "c" is
preceded by a negative conjunctive clause saying that they
at the same must not be "a". Naturally, this cannot happen
in either case, so the clause is either disposable or erroneous.

3.2.3 Priorities

A typical layered grammar [30] treats highly recursive lan-
guage constructs with sophisticated priorities by explicitly
encoding them in a long streak of nonterminals':

expression ::= assignment-expr
expression "," assignment-expr
assignment-expr ::= conditional-expr
logical-or-expr assignment-operator assignment-expr
throw-expr
conditional-expr
logical-or-expr "?" expression
logical-or-expr ::= logical-and-expr

:= logical-or-expr

assignment-expr

HSO/IEC 14882:1998(E), Programming languages — C++, extracted [64], for
spacial considerations some nonterminal names have been shortened and
some alternatives removed or factored.


http://slebok.github.io/zoo/#cpp_cpp98_iso-14882-1998_extracted
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logical-or-expr "||" logical-and-expr
logical-and-expr ::= inclusive-or-expr

logical-and-expr "&&" inclusive-or-expr
inclusive-or-expr ::= exclusive-or-expr

inclusive-or-expr "|" exclusive-or-expr
exclusive-or-expr ::= and-expr

exclusive-or-expr "*" and-expr
and-expr ::= equality-expr

and-expr "&" equality-expr
equality-expr ::= relational-expr

equality-expr ("==" | "!=") relational-expr
relational-expr ::= shift-expr

relational-expr ("<" | ">") shift-expr
shift-expr ::= additive-expr

shift-expr ("<<" | ">>") additive-expr
additive-expr ::= multiplicative-expr

additive-expr ("+" | "-") multiplicative-expr
multiplicative-expr ::= pm-expr

multiplicative-expr ("*" | "/" | "%") pm-expr
pm-expr ::= cast-expr

pm-expr (".x" | "->*") cast-expr
cast-expr ::= unary-expr

"(" type-id ")" cast-expr
unary-expr ::= postfix-expr

unary-operator cast-expr

"sizeof" unary-expr

new-expr

delete-expr
postfix-expr ::= primary-expr

postfix-expr "[" expression "]"

postfix-expr "(" expression-list? ")

postfix-expr ("++" | "-=")
primary-expr ::= literal

"this"

"(" expression ")"

id-expr

This example is from an obviously complicated program-
ming language (C++), and many extra nonterminals increases
this complexity. A cleaner way would have been to merge
all definitions into one nonterminal (or a few conceptually
grouped ones) and to define priorities between them. Pri-
orities can be specified in a separate notation or by using
ordered choices, depending on the notation. Once these pri-
orities are defined, there can be other variations of this smell
in them: circular dependencies, missing elements, etc.

3.2.4 Singleton

The designers of grammar notations, as all DSL designers,
try to make them fit the domain, but never achieve absolute
perfection. In particular, multiary symbols with arity of 2
and up, are commonly expressed in such a way that allows
their use on an empty or trivial list of arguments, such as
disjunction expressed by a prefix “one of” [57]: e.g., a := one
of b c. Single-element sequences, disjunctions and conjunc-
tions like this are easy to detect and remove by rewriting:
e.g., for any x, arule a := one of x is the same asa := x.
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3.2.5 Combo

Grammar combinators (metasymbols of arity 1 and up) such
as the Kleene star and cross, or an optional, can be com-
bined in an improper way. For example, a grammar engineer
who defines A ::= B?; and B ::= C?;, may mean well,
but creates a confusing contract if A is used to bind a tex-
tual structure with a tree structure: it is ambiguous what an
empty string corresponds to—an empty node A or a node A
containing an empty node B. Some of these issues may be
harder to detect due to indirection, but they are all automati-
cally fixable.

3.2.6 Chant

During grammar recovery projects in the past we were occa-
sionally stumbling across nonterminals that were “defined”
in natural language instead of the actual grammar notation:
“defined similarly to..”, “all Unicode characters of class..”,
“any of the following”, etc. These are drastic examples of
this smell, since they make the grammar completely useless
for automatic machine consumption, and require a human
expert to either fix the grammar or devise a semiparsing [61]
workaround, and possibly an extra person to translate the de-
scription to a natural language understandable by the expert.
However, having improper constructions in one’s grammar
that are covered up by an extensive comment explaining
why it is not that bad, is still an instance of this smell.

3.2.7 Deprecated

Similarly to deprecated statements and methods in program-
ming, grammar notations may have some functionality that
is no longer considered viable and proper in the new version.
This does not happen all that often, but it may.

3.2.8 Exotic

This smell is in contradiction with Underuse, and states that
using notational features that are uncommon, obscure or
overly exotic, should be limited. Excessive use of features
idiosyncratic for one particular notation, will result in a
vendor lock-in. For example, if a notation allows context
handling (pushing the grammar outside the comfort zone of
CFGs), using it is only fully justified when the result is too
cumbersome otherwise.

3.3 Parsing Smells

Even though we have stated that the subject of our investi-
gation is Boolean grammars in a broad sense, we should not
close our eyes at cases when grammars are used as parser
specifications. There are at least three smells that we can
identify here. The interesting aspect is that the state of the art
in SLE is to try to avoid excessive impact of parsing technolo-
gies on grammar engineering [51], and, as a consequence,
language workbenches tend to apply transformations that
remove the smells automatically [15].
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3.3.1 Factoring

In classic by-the-book [20] non-memoising parsing, if al-
ternative production rules from the same nonterminal start
from the same symbols, these would have to be reparsed in
each of the branches. As a real example”:

open_if_statement
IF boolean_expression THEN statement
| IF boolean_expression THEN closed_statement
ELSE open_statement;

Interestingly, this example is a false positive: factoring the
first three symbols into a separate nonterminal will clutter
the grammar without bringing any noticeable benefits (and
will introduce the Weak smell). In other cases, this smell has
been avoided/removed’:

ifStatement ::= "if" "(" expression ")" statement

("else" statement)?

3.3.2 1SidedRecursion

It is well-known that left-recursive definitions are deadly
for by-the-book top-down parsing technologies [20], since
they create an infinite loop and cause the parser to crash
from stack overflow. There are many approaches to solve
the problem by grammar refactoring or parser tweaking,
available from late 1960s, but most of them, if not all, increase
the size and complexity of the grammar significantly. Hence,
we can imagine some scenarios when left recursion should be
recognised as a smell to be reported to the grammar engineer
who will fix the issue manually. This is an example®:

expression ::= expression op expression
| id expression+

It must be noted here that indirect recursion (when A’s
right hand side starts with B whose right hand side starts with
A) is just as deadly for top-down parsing as direct recursion.

Right recursion in general is less harmful, but it does lead
to bottom-up parsers being slower than otherwise [20], so it
should still be avoided whenever possible.

3.3.3 Superset

Some grammars represent a superset of the intended lan-
guage. This may become a problem if the parser based on
the grammar is to be used as a correctness oracle, since in
this role it is inadequate. Overly relaxed grammars are rou-
tinely used in other scenarios such as software analytics and
inter-language translation, and can be very useful there.

3.3.4 Shotgun

Shotgun parsing is a term used in cybersecurity to represent
an architecture where a proper parser is substituted with
lightweight treatment (by regular expression matches and

2Doug Cooper, Scott Moore, Pascal grammar in Yacc format, fetched [64].
3The Dart Team, Dart Programming Language Specification, extracted [64].
4Vadim Zaytsev, FL.Txl, extracted [64].
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direct string manipulation) [10]. The name comes from the
fact that in a pipeline of tools built with such defects, the
problems quickly multiply with each step when the receiver
is applying Postel’s Law in trying to be relaxed with its
input [44], and is known to cause all kinds of subtle bugs in
software language processing [66]. We define the Shotgun
smell as a situation when the grammatical bind is too loose
on one of its ends. For example, imagine function arguments
in a C-like language to be parsed as a parenthesis-enclosing
string which is expected to be split into a proper list by the
code that uses the resulting tree. This smell was not seen
within grammars of the Grammar Zoo, but was observed
in the industrial setting when time pressure got the best of
grammar engineers.

3.3.5 NoDefault

Parser generators are great for everything, except for one
aspect: error handling. There are many methods that use
heuristics in an attempt to improve the situation, but error
detection, localisation and reporting in manually written
parsers is always incomparably better than in generated
ones. However, there are certain tricks experienced gram-
mar engineers use to improve the situation. For example,
consider a DSL where each statement starts with a keyword
and ends with a period. An obvious improvement to the
naive approach would be to, for instance, once a keyword
MAP is recognised, have a panic mode setup or some other
semiparsing [61] machinery to fail locally and report on an
“error in a map statement” rather than pointlessly try to back-
track and fail at the general statement level. To do this, one
has to have a special default case among the rules for each
particular statement kind. This recipe is more often observed
in grammars written for frameworks where ordered choice
is more natural (TXL, PEGs, etc), and could take the form of
Stmt := "MAP" MapStmt "." / "IF" IfStmt "." /---

/ Id (!".")* ".".The lack of the last alternative in this
example would be an indication of a NoDefault smell.

3.3.6 Action

Many realistic language workbenches draw the line to pre-
vent endless growing of their notations, and introduce a
concept of a “semantic action”, which is written like an
annotation in the grammar and acts as a doorway to the
mainstream language typical for the target platform [15].
Obviously, since this action consists of code, the code can
suffer from one of the numerous code smells.

3.4 Duplication Smells
3.4.1 Echo

A nonterminal definition is echoed if it is included in the
grammar several times, each of which is identical to any
other. Echoes were found in the Java Language Specification
as a result of manual (not tool supported) creation of both the


http://slebok.github.io/zoo/#pascal_pascal_cooper-moore_fetched
http://slebok.github.io/zoo/#dart_latex_v01.0_extracted
http://slebok.github.io/zoo/#toy_fl_concrete_txl_extracted
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grammar and language documentation. They were merged
in the grammar extractor—that is, during the phase of con-
verting the original HTML document to the first version of
the grammar [31, p.348]. A similar error was observed earlier
in the C# standard [55] and later in other languages [64].

3.4.2 Clone

Nonterminals that have exactly the same definitions, are only
cluttering the grammar, and can be painlessly united. In clone
management research, these are called “type 1 clones”, we
will revisit this classification later when defining Lookalike.

3.4.3 Foldable

This smell occurs when the clone is formed not between full
definitions of two nonterminals, but when the right hand
side of one nonterminal occurs as a subexpression in the
right hand side of another nonterminal. Conceptually they
are still clones and suffer from all known consequences of
coupled evolution, but the solution is different: instead of
merging the nonterminals, the subexpression needs to be
folded into a nonterminal that defines it.

3.4.4 Common

One step further, we may observe clones between two or
more subexpressions found in different places in the gram-
mar. The detection pattern is almost the same as with Fold-
able, but the solution must involve creating a new nontermi-
nal and then folding it (extract in the terminology of [30, 31]).
Since creating a new nonterminal implies inventing a new
name for it, and only suboptimal heuristics are available, the
removal of this smell cannot be properly fully automated.
It may also not be that desirable to refactor all common
subexpressions, since doing this may introduce Weak non-
terminals. Appropriate thresholds need to be investigated.

3.4.5 Permuted

Clones modulo permutations (e.g., A | BvsB | A)are
confusing: if the choice used in the notation is commutative,
they are just Clones, otherwise if the choice is ordered, hav-
ing bothA / BandB / A within the same grammar is even
more confusing for everyone.

3.4.6 Lookalike

In mainstream clone detection research, people distinguish
between clones of different types: exact clones (“type 17)
with identical literal duplicates; parametrised clones (“type
2”) with variations in identifier names, literals, even variable
types; near miss clones (“type 3”) where statements are al-
lowed to be changed, added or removed up to some extent;
semantic clones (“type 4”) as the same computation with a
different syntax and possibly even different algorithms; struc-
tural clones—higher level similarities, conceptually bottom-
up-detected implementation patterns; and artefact clones—
function clones and file clones [43]. For grammars, there is
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no developed theory of clone management, so the questions
are open on what constitutes a proper clone, what classes of
clones are there, which ones are useful to detect and which to
refactor, etc. It makes sense to assume that clone detection in
grammars will bear some similarity to contextual clones [35]
that worked for another DSL with relatively few constructs,
where clones were detected based on the context of clone
candidate fragments, and not on their structure per se.

4 Navigation Smells

Navigation smells relate to problems that grammar engineers
experience in locating entities within the grammar.

4.1 Spaghetti Smells

The most straightforward family of navigation smells is those
that make grammar engineers move around too much when
working with a grammar.

4.1.1 Uncluster

Nonterminals that refer to one another, should be located
close to one another. The longer the distance between the
use of a nonterminal from its definition, the more the reader
of the grammar will have to switch context. A lot of scrolling
always means there is something smelly about how the gram-
mar is set up. Moving the production rules that cause the
scrolling closer to each other to form a cluster, will result in
an easier grammar with more coherent structure.

Automated removal of this smell is problematic, since
the grammar engineer should decide which nonterminals to
move where, but there are a lot of heuristics one can develop
and test their effectiveness empirically.

4.1.2 Unsequence

The order of the production rules in the grammar should
be set up in a consistent manner, such that referred nonter-
minals in production rules refer either up or down in the
grammar. If Uncluster and Splat are concerned with general
placement of production rules, this smell is about how they
need to be structured to keep the reading experience optimal.

In the past we have been using a grammar mutation called
SubGrammar to improve the readability of grammars ex-
tracted from language manuals [62]. It would reorder the
rules in the following way: grab the starting symbol (usually
the root of the grammar) and list all its production rules, and
then go through all nonterminals used in their right hand
sides one by one in the same sequence that they occur, add
their production rules to the target grammar and add the
newly used nonterminals to the backlog. Once the backlog
was empty, the mutation stopped. This was one of the possi-
ble strategies to get rid of both Splat and Unsequence, and
to some extent of Uncluster, but not the only one.



Towards a Taxonomy of Grammar Smells

4.1.3 StartInTheMiddle

To improve the readability and navigability of the grammar,
its starting symbol should be on top or the bottom of the
grammar, not lost somewhere in the middle.

4.2 Shortage Smells

This subcategory of navigational smells covers complaints
about missing pieces of the grammar. Depending on the
notation and the particular language workbench, some of
these are undeniable defects and not just smells.

4.2.1 AlmostAlphabet

The completeness of some character classes and terminal
choices can be predicted, and compared to the actual value
given by the grammar. For example, if a character class in-
cludes all Latin letters except one or all whitespace characters
except \r, it may be an error. Similarly, if a preterminal is
defined as a choice of all other alphanumeric terminals in
the grammar (common for keyword definitions), then not a
single one of them should be skipped.

4.2.2 ConfusingEntry

With StartInTheMiddle we have already addressed position-
ing of the starting symbol of the grammar, but there can be
three more problems with it. (1) Some grammars do not have
any start specified at all, having it to be inferred by heuristics
(e.g., the only top nonterminal). (2) There can be multiple
starts, especially for notations that exceed classic CFGs. This
can indicate several independent grammars that got merged
into one, or just several entry points into the grammar (which
would allow, for example, to parse statements or expressions
out of context—it is a not quite challenging exercise in theory,
but extremely useful in practical grammarware engineering
when integrating software languages with an IDE and a de-
bugger). (3) The root symbol is properly marked as such, but
is also referenced from other nonterminals in the grammar
(so the starting symbol is not a top nonterminal).

The exact harmfulness of this smell heavily depends on
the grammar handling framework.

4.2.3 Dead

All top (unused) nonterminals identified as not being the
starting symbol(s) of the grammar, represent unreachable
fragments. The programming counterpart of this smell is
dead code and its variants. Both dead nonterminals and dead
code are occasionally useful for testing and mock-ups.

4.2.4 Bottom

The lack of definition for nonterminals that are used within
the grammar, is an obvious mistake that must be reported
one way or another, and also possibly as a smell. There are
three main reasons for undefined nonterminals: (1) they were
forgotten by the grammar engineer; (2) they are defined

SLE’17, October 23-24, 2017, Vancouver, Canada

in a different module; (3) they are defined on a separate
conceptual layer. For scenario (1), we cannot do anything to
fix the problem automatically (beyond attempting heuristics).

4.2.5 Debt

Similarly to Chant that covers up imperfect fragments with
comments in natural language, there could be pieces missing
entirely from the grammar and replaced with comments. If
the comments admit clearly what is missing, use searchable
tags like “TODO” or “FIXME” and are intended to use as
a backlog, the current practice is to refer to them as “self-
admitted technical debt” [39].

4.3 Mixture Smells

The last category of navigational smells is about mixing the
grammar with foreign fragments that look like a grammar
but have a special relationship to the rest of it.

4.3.1 BadLayout

Dealing with layout and whitespace can be very tricky, and,
as any tricky process, there may be issues with it. Some
language workbenches offer default layout, which, again,
may be smelly to use it or not to use it—we cannot provide
any general guidelines. Not specifying any layout may be
harmful in some cases as well.

One particular issue with layout can be explained in a bit of
more detail. Usually there are two naturally different things
covered by layout: whitespace (in software languages that
ignore it) and comments (that do not influence behaviour
of the system but can have an impact on its understand-
ing). Mixing those two indiscriminately in the grammar may
eventually lead to the point where it is required but impos-
sible or overly complex to get one but not the other (e.g.,
for handling structured comments or preserving it through
transformations).

4.3.2 Preprocessor

A preprocessor [16] is a curious thing: it is essentially, for
all intents and purposes, a compiler that processes the input
text, expands macros, connects additional textual sources,
performs variant compilation and other similar activities. On
the other hand, it is so common to use it before the “actual”
compiler, that some studybooks regard it as a separate phase
of compilation. Some language manuals contain production
rules belonging to the preprocessor, and, since the prepro-
cessor is a separate compiler with its own grammar, those
should not be mixed with the rest of the main grammar.

5 Structure Smells

Harmful relationships among grammar components.

5.1 Proxy Smells

Smells about excessive abstraction with too many entities.
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5.1.1 Chain

Chain rules are a well-known smell in grammar engineer-
ing [30, 31]: it happens when a nonterminal is defined with
only one production rule which has exactly one nonterminal
as its right hand side. The “inner” nonterminal acts like a
middle man and does not play a significant rule in structural
commitments of the grammar. In Fowler’s words, “after a
while it’s time to cut out the middle man and talk to the
object that really knows what’s going on” [17].

5.1.2 Throwaway

A nonterminal that is used only once, may be useful to
shorten production rules (see TooWide), and may occasion-
ally convey a useful abstraction with its name. Beyond those
circumstances it is a smell and a candidate for refactoring.

5.1.3 Weak

When the right hand side of a nonterminal is formed from
several symbols that happen to occur one after another,
without forming a proper abstraction, this can hinder gram-
mar’s understanding. The terminology is borrowed from [36]
which distinguished strong nonterminals (used during pars-
ing and present in the resulting tree) from weak ones (used
during parsing but flattened into single nodes in the tree).

5.1.4 Ghost

If an expression, especially a Common subexpression, could
have formed a proper abstraction, but is not made into a
separate nonterminal, we speak of it as a Ghost. An example
of a Ghost could be an omnipresent qualified identifier that
is always used as Id ("." Id)=*.

5.1.5 Multitool

This takes place when a nonterminal violates the single re-
sponsibility principle, and represents several (hopefully re-
lated) abstractions, such as a type name and a variable name.

5.2 Dependency Smells
5.2.1 Diamond

A well-known pattern in dependency and inclusion is when
a class A inherits from class X and class B also inherits from
class X, but class C inherits from both A and B and thus
gets to see double of each of X’s elements. The problem is
solved differently in different programming and modelling
languages—in grammars, it causes an ambiguity”:

reference-type ::= class-type | interface-type
| delegate-type | ... ;

class-type ::= type-name | "object" | "string";

interface-type ::= type-name ;

delegate-type ::= type-name ;

SISO/IEC 23270:2003(E), Information technology — Programming languages
— C Sharp, extracted [64].
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Parsing something recognisable as type-name will cause
at least a triple ambiguity since it will be an acceptable
class-type, interface-type as well as delegate-type [55].

5.2.2 Rivalry

Traditionally grammar notations advertised to have a se-
quence combinator and a choice combinator as the ways to
compose complex expressions from atomic symbols (termi-
nals and nonterminals) [5]. Modern frameworks are more ad-
vanced and versatile, they feature several kinds of negation,
conjunction, ordered choices, precede and follow restric-
tions, etc. However, there is none that explicitly provides
an exclusive disjunction combinator [57], even though it
was the original intent behind the choice: thus, a statement
may be a conditional statement or a print statement, but not
both at the same time. There is an entire research domain
dedicated to disambiguation of grammars—that is, detecting
when something intended as an exclusive choice, leads to
several successful parses, only one of which must remain
in the final tree [1]. This smell is about such situations: it
occurs whenever languages of alternative siblings overlap
and create an ambiguity. Ambiguity detection and removal
techniques can be powerful but not perfect, and the gen-
eral case is undecidable because it requires decidability of
language equivalence.

5.2.3 Ouroboros

If nonterminals are mutually, say, left recursive, and have
no non-recursive alternatives, they are useless and cannot
express a proper syntactic commitment. However, a similar
issue may be encountered on the level of modules, and it is
harder to detect for a human because modular grammars are
already stretching comprehension capabilities of a grammar
engineer. Such circular dependencies are fairly easy to detect
automatically with a tool.

5.2.4 Soulmates

If enough information is available about the evolution of the
grammar (e.g., in a form of a versioned repository or a piece
of documentation describing all changes), one can notice
two nonterminals having a so-called co-change relationship
when each revision that changes one, also changes the other.
The smell occurs when this co-change relationship in the
revision log does not correspond to explicit dependencies
between modules and nonterminals.

In the absence of change history, a thought experiment
may serve the same purpose: if a nonterminal X is to change
in a particular way, what other nonterminals will have to
be inevitably co-updated to preserve the consistency of the
grammar? All of those, if any, are its Soulmates. It deserves
mentioning that the programming counterpart of this smell,
called “Feature Envy”, is detectable automatically through
static code analysis. The Soulmates smell, however, is only
detectable with revision mining or conceptual analysis.
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5.2.5 Spillover

Spillover happens when some symbols that should have been
a part of the nonterminal definition, are not included in its
right hand side, and appended every time to its use. This
creates a co-change relationship between the nonterminal
and the context of its use. With Spillover, every time a defi-
nition of a nonterminal is changed in a particular way, all
occurrences of the same nonterminal needs to be updated.

5.2.6 Mythic

Formal language theory defines a language extensionally, as
a set of all possible programs written in it. A grammar is
an intensional definition, which is nicer because it is a finite
specification of an infinitely large entity, but it also makes it
harder to see some relations between that and the instances
of the language. In particular, the actual codebase of the
software language, if available and comprehensive enough,
can serve as a good approximation of the language features
used by programmers. If a grammar contains a feature that
is never exercised by any program in the actual codebase, it
is a Mythic feature that, does not have to be supported for
an analysis or migration tool to be useful and applicable.

5.3 Complexity Smells

This subcategory collects issues that make a grammar seem
big and complex. There are two state of the art approaches to
declaring something “too big”: either by setting a threshold
(e.g., “big” is above 20), or by searching for statistical outliers
(e.g., “big” is bigger than 90% others).

5.3.1 TooWide

This smell is designed to recognise production rules which
are too wide—that is, their right hand side is too long. There
could be at least three ways to define what is “too long”™:

e The number of consequent terminals is too high, which
is harmful because long streaks of consequent termi-
nals obscure the syntactic structure.

e The number of nonterminals is too high, which is
harmful because it requires knowledge about refer-
enced nonterminals to debug a grammar (so we should
not count preterminals).

e The number of metasymbols (stars, optionals, crosses,
separator lists and other combinators) is too high,
which is harmful because the importance of know-
ing the notation is stressed when a grammar engineer
needs to understand such a production rule.

The last option also correlates to the omnipresent notion
of cyclomatic complexity (covered by the TooRamose smell),
because many metasymbols imply branching that is done
during parsing or analysing an instance.
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5.3.2 TooRamose

McCabe’s cyclomatic complexity has received a lot of cri-
tique over the years, but nevertheless is present in many
code analysis tools either directly or conceptually through
improvements like cognitive complexity [42] or control flow
patterns [52]. In grammars cyclomatic complexity is easy
to estimate if we think of the parsing semantics, and it will
be rather close for any other concrete application of the
grammar. Alternatives and all kinds of disjunction obviously
contribute to its increase, as well as repetition metasymbols.
Conjunction, if present, also contributes to the branching
since a construct like A & B means that both the parser and
the grammar engineer will have to explore both branches
related to A as well as to B.

It is interesting to consider how this smell can be elim-
inated: a similar “Wide Hierarchy” code smell suggests to
introduce intermediate hubs for groups of nonterminals, but
others blame such a solution from other points of view be-
cause there is a chance of those nonterminals to be Weak.

5.3.3 TooRecursive

If recursion and mutual recursion are too prevalent in a gram-
mar, it can be confusing even if it is not 1SidedRecursion.

5.3.4 TooNested

Subsequences (often called groups) may be used to avoid Mis-
format, but really hamper the understanding of the system if
used excessively. This smell often correlates with production
rules being TooRamose.

5.3.5 TooTall

For each nonterminal we can calculate its minimal distance
from the starting symbol, as the minimal number of produc-
tions in a full derivation that contains it. The maximum of all
these distances for all nonterminals, is what is referred to as
the height of the grammar. Out of two grammars of compa-
rable size with respect to number of terminals, nonterminals
and production rules, a taller grammar will be more complex
to understand—thus, it is advisable to refactor a grammar
that has grown too tall.

5.3.6 Lonely

A variant of the well-known Insufficient Modularisation
smell, ported to grammars: if the size of a grammar is much
larger than expected, the time has come to split it up in
modules. Old-fashioned notations did not have any explicit
modularisation capabilities and treated a collection of pro-
duction rules as a set, but modern language workbenches
have advanced frameworks with namespaces, dependence
management, etc [6, 15].
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5.3.7 TooModular

On the other side of the spectrum from TooLonely, a gram-
mar can be too modular and split into so many modules that
each of them is meaninglessly tiny, yet their combination is
unbearably unintelligible.

5.3.8 Greedy

Similarly to TooLonely but not quite identical to it, there is
a scenario when a grammar is modularised, but still insuf-
ficiently: in particular, if there is one module that is much
greedier than the rest and does too much compared to any
other module. In realistic grammars this smell is quite com-
mon, and the culture of proper modularisation with close to
uniform distribution of responsibilities among modules, has
not yet developed. The harmfulness of this smell has also
never been shown, and also not been investigated properly
(to the best of our knowledge).

5.3.9 Lazy

The opposite of Greedy, a Lazy module is the one that does
not do much: it is empty or contains just one nonterminal.

5.3.10 TooCoupled

Modularity can not only be broken or insufficient, it can also
be weakened. A grammar split into several modules that
have high coupling among them and low cohesion inside
each of them, had better stayed as Lonely.

6 Application

So far we have attempted to evaluate our results by relating
to the existing smells, their classification and taxonomies,
on one side, and to parts of previous grammar engineering
projects which were directly linked to quality complaints
or quality improvements, on the other’. However, none of
this points to possible usefulness of the result. In this section
we present a snapshot of the ongoing project (nearing its
completion, after which it will be fully merged into GraSs)
on specifying instances of the grammar smells we described
above as executable metaprograms. We say “instances” be-
cause of the realisation that detecting, say, Soulmates in an
API through mining the versioned repository of its definition,
will look drastically different and produce vastly different re-
sults that detecting the same smell on XML Schema schemata
with genetic methods and the number of co-changed non-
terminals being a fitness function.

6.1 Pilot Case Setup

We choose GrammarLab [67] as the grammar handling frame-
work because it fits our requirements and supports Boolean
grammars in a broad sense of the box. The framework itself is
written in Rascal [23] which is also quite one of the best tool

The former is occasional in the paper due to space constraints but system-
atic on the GraSs project page at http://slebok.github.io/grass.
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Figure 1. Fraction of Unsequenced nonterminals (Ox) vs
referencing ratio (Oy) in extracted grammars in the corpus.

choices to express software analysis algorithms [24, 25]. As
the corpus, we take the extracted grammars of the Grammar
Zoo [64], which are the result of extraction-by-abstraction
grammar recovery. It means that all grammars are in the
same format, and every detail in the original extraction
source that does not “fit” into this format and cannot be
expressed in its notation, is removed (abstracted from): or-
dered and unordered choices are not distinguished, semantic
actions are not modelled, etc. There are 641 of such gram-
mars in total, that have the following distribution by the
number of nonterminals (the VAR metric):

VAR | 1-10 11-25 26-50 51-100 101-200 201-500 501+
# 158 125 76 46 44 39 11
Since Rascal visualisation library is not as mature as its
metaprogramming core, we generated JSON files with col-
lected data, and processed them further with JavaScript and
node.js scripts. Performance of such a setup is adequate:
the running time for detecting all smells in all grammars, is

under 10 minutes on a good developer’s laptop.

6.2 Detecting Unsequence

To detect the Unsequence smell, we define the downward
reference count d to be equal to the number of nonterminal-
to-nonterminal relations where at least one production rule
defining a nonterminal, is located after the production rule
using this nonterminal. Similarly, u is the upward reference
count. If d > u, we call a grammar downward referencing;
if d < u, upward referencing; and if d = u, even referenc-
ing. (Alternatively, a margin of proximity could have been
used instead of equality). The core metric for this detection

will be the referencing ratio, defined as %. Ideally, the
referencing ratio should be close to 1, and is equal to 0 for
even referencing grammars. However, it may be impossible
to reach 1 due to mutually recursive nonterminals. To filter

them out, we fine-tune the detector by allowing referencing
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against the flow within grammatical levels (which is gram-
mar engineering term for a clique, a complete subgraph in
the nonterminal use graph).

A significant number of even referencing grammars are
only found in the group of smallest grammars (1-10 non-
terminals), where they make up 15%. In all groups, down
referencing grammars are the most prevalent (67%-91%). The
entire picture looks like further clustering techniques would
not be effective (Figure 1).

Manual inspection of a selected subset of grammars guilty
of Unsequence, shows at least the following categories of
them (examples are referenced in the footnotes):

e Perfect’: no violations modulo grammatical levels;
no permutation of production rules that could have
increased the referencing ratio.

e Fixable®: a few violations with a very concrete so-
lution (for the PNML example, the solution to the
only violation is moving NumberConstant between
BuiltInConstant and Number).

e Broken by a fix’: since the transition from fetched
to extracted was often done by a fairly sophisticated
heuristic-based recovery tool [58], the fixes it applied
could cause smells (for the C# example, the original
problem was the Echo of array-type: the extractor re-
moved the first occurrence but it should have removed
the second one).

e Disarray'’: a grammar needs a complete overhaul to
become consistently referencing (in the Dart example,
the statement grammatical level did not correspond
well technically to the documentation structure).

7 Conclusion and Future Work

With the information on smells collected from Sharma’s tax-
onomy [46], plus with the available corpus of grammar engi-
neering papers published by the SLE community [4, 6, 7, 10—
12, 15, 22, 24-26, 28, 29, 32-34, 40, 41, 44, 45, 49-51], and
occasionally with the use of general papers on software qual-
ity [2, 3, 8, 9, 17-19, 21, 35, 37, 39, 42, 43, 48, 69], we have
assembled a taxonomy of grammar smells. They are defined
for grammars in a broad sense in an attempt to cover the
most ground and to make the results partially applicable to a
wide range of domains. We see this is in a broader context as
a contribution to the SLE Body of Knowledge (SLEBoK) ini-
tiative, so an important part is that the taxonomy is released
in a form of a website as well: http://slebok.github.io/grass.
The website will keep growing, we plan to enhance it with

7Hugo Bruneliére, C# 1.0, a simplified metamodel, extracted [64].

8Lom Hillah, RELAX NG implementation of Integers grammar, extracted [64].
ISO/IEC 23270:2003(E), Information technology — Programming languages
— C# 1.0, extracted [64].

19The Dart Team, Dart Programming Language Specification, Draft Version
0.61, extracted [64].
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comfortable editing functionality, a discipline in linking ex-
amples of smells, metaprogram samples of possible detectors,
etc. Besides all these obvious improvements:

e We need a structured literature review on code smells
and coding convention violations. For this project we
used Sharma’s taxonomy [46] as a proxy, but that does
not guarantee complete coverage of the field and does
not link related smells together.

e We need feasibility studies of applying this taxonomy
to popular language workbenches to create notation-
specific smell detection toolkits.

e We need to extend the notion of a grammar smell to a
language definition smell, and extend the taxonomy to
cover bad type systems, database schemata, metamod-
els and other artefacts defining software languages.

We hope to get to all this in the future, but would be
grateful if someone in the SLE community gets there faster.
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