Language Design with Intent

Vadim Zaytsev (http://grammarware.net), Raincode Labs, Brussels, Belgium

Abstract—Software languages have always been an essential
component of model-driven engineering. Their importance and
popularity has been on the rise thanks to language workbenches,
language-oriented development and other methodologies that
enable us to quickly and easily create new languages specific for
each domain. Unfortunately, language design is largely a form of
art and has resisted most attempts to turn it into a form of science
or engineering. In this paper we borrow concepts, techniques and
principles from the domain of persuasive technology, or wider yet,
design with intent — which was developed as a way to influence
users behaviour for social and environmental benefit. Similarly,
we claim, software language designers can make conscious
choices in order to influence the behaviour of language users. The
paper describes a process of extracting design components from
24 books of eight categories (dragon books, parsing techniques,
compiler construction, compiler design, language implementa-
tion, language documentation, programming languages, software
languages), as well as from the original set of Design with Intent
cards and papers on DSL design. The resulting language design
card toolkit can be used by DSL designers to cover important
design decisions and make them with more confidence.

1. MOTIVATION

First software languages were used in late 1940s' as an
intermediate step in algorithm design. They allowed pro-
grammers of digital computers to bridge the gap between
mathematical computations and machine codes. (The codes
as such are much older, they were used on punched cards
and rolls since 1725 in weaving looms® and at least since
1842 in pianolas®.) A decade later* people started developing
automated compilers, delegating the task of translating texts
written in these languages, to the machine code, to system
software components. Another decade passed, and new lan-
guages started being developed with specific design aims,
targeting a particular problem domain® or a particular target
audience®. By 1969 there were at least 120 widespread soft-
ware languages [15], [35]. The next two or three decades, the
language landscape was becoming more and more populated
and — some claim — cluttered with numerous languages
designed and implemented for all kinds of goals and purposes.
Eventually we all have arrived at the point where creating a
new language suitable for the problem at hand, ceased being
challenging for engineers. Having, reusing or designing a DSL
has been elevated to just a regular MDE problem solving
recipe. Now we are focused on making software language
creation methods reliable and repeatable [36].

I'Since von Neumann and the Goldstines’ Flow Diagrams.
2Since Basile Bouchon’s silk centre in Lyon.

3Since Claude Félix Seytre’s French patent no. 8691.

4Since Hopper’s MATH-MATIC.

5Since Iverson’s APL.

6Since Papert’s LOGO, strengthened later by Perlman’s TORTIS.

In this paper we assume the standpoint of software language
engineering and, whenever possible, make no explicit dis-
tinction between modelling languages and programming ones,
between domain-specific and general-purpose ones, among
generations, paradigms, etc. Thus, whenever possible, we
say “user” or “language user” instead of “programmer” or
“modeller”, and use other kinds of neutral terminology. We
use the word “model” instead of “language instance” to mean
a model, a program, a query, a stylesheet, a spreadsheet, etc.
Other principles behind this project are explained in section II.

Languages are designed for following purposes, a.o.:

o to raise the abstraction level (almost universal);

e to improve user experience for languages with known
problems but infeasible evolution (C++ for C, Dart for
JavaScript, Go for C++, Swift for ObjectiveC, Scala for
Java, Hack for PHP, .NET Core for .NET Framework);

¢ to give domain experts control over executable systems
(the goal behind most domain-specific languages);

o to let non-coders structurally communicate with comput-
ers (emojis and smileys in most social networks, web
forum markup like bbcode, wiki markup, etc);

o to open the usage of tools and services for third party
usage (APIs);

o to abstract from irrelevant boilerplate (combinator li-
braries, languages with built-in constructs for concur-
rency, error handling, design patterns, etc);

o to explore different ways of human-computer interaction
(numerous spreadsheet applications, most languages de-
veloped in workbenches like MPS or MetaEdit+);

o to make expressive and robust interchange and storage
formats (even JSON and XML work with schemata);

« to build efficient tools by choosing suitable data structures
(intermediate representations);

« to redesign legacy languages (VB.NET aligned with C#,
XHTML as HTML in XML);

« to evolve existing languages into new versions (coevolu-
tion of Java and C# since the initial release of the latter);

o to create attractive language dialects (several industrially
applicable extensions of originally educational Pascal,
many vendor-specific COBOL compilers incompatible
among themselves to prevent users from migrating);

 to experiment with new paradigms and get to know lim-
its of their expressiveness (bidirectional transformation,
reversible computation and others).

However, “language design is largely an art, not a sci-
ence” [11, p.67]. There is no clear separation of where the
language design starts and where it ends. In practice the work
of a software language designer often gets mixed with the

http://grammarware.net

work of a requirements engineer or a tool implementer. In
theory, books with “compiler design” in the title (such as the
new series by Springer) are filled with minute implementation
details and contain almost no information on design decisions
and problem/solution modelling. To clarify the issue, we turn
to professional designers and their theories.

Interaction designers are people for whom “the purpose of
the profession [is] to change the way people behave” [37].
Essentially, designers of software languages (languages for
programming, modelling, specification, configuration, markup,
etc) are the same: they create environments and ecosystems
for their end users (modellers, programmers, etc) to express
themselves in a particular way. One of the current trends there
is to stimulate and enforce sustainable changes in people’s
behaviour [28]-[31]. We follow them by treating “sustainable”
in a broad sense: we want to acknowledge that introducing
languages in practice not only forces people into writing or
drawing their models in a particular way, but also teaches them
how to reach their goals better and gradually turn language
usage principles into patterns of the trade. To do this, we
particularly investigate the interaction design method called
Design with Intent [25]-[27], along with its applications [28],
[29] and reports on its development [30]-[34].

For some designers and sustainability researchers it is un-
clear where the border lies between systems that are designed
to gently guide users’ behaviour and automatic systems that
bypass users’ decision making altogether [25], [38]. Others
introduce a spectrum for distribution of control that goes from
Informing to Feedback to Enabling to Encouraging to Guiding
to Seducing to Steering to Forcing to Automating [39] or
provide two-dimensional models of influence with a separate
axis for force (weak to strong) and for salience (hidden to
apparent) [40]. The state of the art in language design is
to stick to the extremes and either employ fully automated
methods of grammar inference [41], grammar recovery [42],
language identification [43], etc, or go for the “art, not science”
mode. Interestingly, IDE development is one step ahead, and
there are many plugins that support development in chosen
languages by (using the terminology of [39]) providing feed-
back or enabling users to perform some actions automatically
only if they explicitly decide so.

With respect to time pressure, industrial DSL designers (this
paper’s author included) are somewhere between interaction
designers and chess players, which (together with nurses,
firefighters, military personnel and nuclear plant operators)
were observed to profit greatly from the recognition-primed
decision model [44]. Stimulating it deliberately is known as
naturalistic decision making. Drawing from the chess domain
further, we have the term gambits to describe the repertoire
of principles and mental models that experienced designers
and architects bring with them to be quickly pattern matched
to propose concrete solutions to the problems at hand [45],
[46]. However, it has been known for a long time that one
particular inventor or designer usually works within a trend
and is naturally limited by his or her memory for inspira-
tion [47]. Hence, we have an abundance of books, approaches

and methods pushing toward lateral thinking, which are too
numerous to cite. One exception is useful to note here: the
power of brainstorms has been apparently largely exaggerated,
since scientific attempts to investigate it have shown that
group interactions and phenomena like social loafing (the more
people, the less accountable each person feels) [48], evaluation
apprehension (the more people, the greater the worry that
ideas will be received poorly) [49] and production blocking
(the more people, the lower the chances of each contributing
well) [49] lead to brainstorming groups collectively producing
fewer, less valuable and less diverse ideas than the individ-
uals would have produced on their own [50]. In contrast,
stimulating lateral thinking and divergent production by using
design toolkits is a widely used and acknowledged method —
Lockton [25] provides a great overview of them.

The problem we will be solving in this paper is fo provide
software language engineers with a set of concrete actionable
guidelines in the form of a design toolkit. Each element of such
a toolkit may or may not be relevant to a particular design
endeavour, but if it is, it should provide a short description
of the impact of the element on the future language users, as
well as on the rest of the design of this language. The main
motivation behind our solution is a psychological theory of
intelligence as a set of teachable strategies [S1]-[53].

Designers outside software make choices that are solidified
in the resulting products in a way that makes it often obvious
to trace back to them: if a button is big and red, it was deliber-
ately made so prominent to emphasize how important and dan-
gerous it is; if there are spikes on the place that otherwise looks
suitable for sitting, they have been put there deliberately to
avoid you sitting down; etc. In language design, these are two
different worlds which are often disjoint: most programmers
do not know why their languages have semicolon-terminated
statements, they do not think about reasons that led to the
appearance of a garbage collector in their language, and they
do not have to know whether the compiler for their code has
a top-down or a bottom-up parser inside it, or whether the
language semantics is specified denotationally or operationally.
This internal design also has some principles like separation of
concerns or parsing techniques, which have entire books and
thousands of articles behind them, but in this particular project
we focus our efforts on those aspects of language design
that impact the language users. Since we want to change or
influence the behaviour of language users, we should a priori
filter out aspects that are invisible to them.

This approach allows us not only to conceptually reuse
results from sustainable behaviour research [28]—[31], [38], but
also to formally separate language design from both language
construction and compiler design, which have been mixed and
intertwined in all previously existing literature. We classify any
aspect of a software language as a design aspect, if and only
if the choices around it will directly affect the behaviour of the
language users, and classify it otherwise if they will not. In
that sense, for instance, bootstrapping (implementing parts of
the compiler of a language in that language) is irrelevant for
design, even though it is an interesting construction problem.

II. RESEARCH PRINCIPLES

The final result of this project—a software language de-
sign toolkit—is available at http://slebok.github.io/dyol and is
highly recommended for closer inspection, since the paper
space constraints do not allow to do justice to all the cards. The
following three sections will describe the process of creating it.
It will be constructed based on the following three principles:

No discrimination: we will cover sources about DSLs,
GPLs, DSMLs, UML, API, and anything that looks like it
could be related to computer languages and their design.

No prejudice: we will avoid any bias as far as possible,
not lean towards any particular paradigm and not label any
design choices as problematic or harmful, as often done in
prior research.

No metadata: we will collect as many design elements
as possible, from as many sources as remains feasible, but
will not inherit any classification schemes (such as Lockton’s
lenses [25], [27]-[29], [34] or Wile’s design concerns [54] or
Mernik et al.’s DSL development phases [55]) from them.

III. RESEARCH PROCESS

To form an initial language design deck, we have gone
through all the 101 cards of Design with Intent [26] and tried to
map each of them into the software linguistics technological
space. This is a well-known modelling/borrowing technique
that has become classic in some areas: for example, defin-
ing smells in a new domain is almost exclusively done by
going through the program smells in the book that proposed
them [56], filtering out irrelevant ones and adapting the rest to
fit the domain. However, in our case we decided to mind the
gap between the domains of interaction design and language
design, and refine the result with the corpus of books from
these eight categories (later their names are abbreviated):

e Dragon Books — the classic, traditional studybooks;
while getting inevitably outdated, they are strongly as-
sociated with the domain of language processing.

e FParsing Techniques in a narrow, text-to-model sense.
Unlike parsing in a broad sense [57] which is closer
related to SLE and MDE, these books are expected to
contribute little to the toolkit.

o Compiler Construction — mostly course books for stu-
dents learning how to make language translators.

e Compiler Design — books claiming to explain external
and internal design details around language translators.

o Language Implementation — similar to the previous two,
but with more focus on practical aspects and implemen-
tation efficiency.

o Language Documentation — documents explaining one
particular language to its potential users.

e Programming Languages — collections of concepts
found in existing languages.

o Software Languages — books with general applicability,
not limited to DSLs or programming.

Practically, the books (shown in Table I and summarised in
section IV) were chosen from the private library of Raincode

Labs, an industrial company specialised in compiler services;
most of them are used more or less regularly in everyday
compiler writing. Several extra books were purchased follow-
ing advice by the colleagues of the paper author, all compiler
experts. In the interest of time, since (re)reading one such book
was taking up to a week, when faced with choices, we were
preferring books within the same category that were versatile
with respect to style or publication date.

Per book, the following steps were taken:

o Go through the book contents, try to identify already

known cards as well as new ones, mark page numbers.

e Go through the marked elements (cards), identify dupli-

cates among those that are too similar.

o Go through the elements remained unmarked in this book,

check if they map to anything newly observed.

Every now and then we filter out design aspects that are too
universal. For instance, version control systems are definitely
important for the process of software engineering, but they are
way beyond the control of a language designer. Certain aspects
of their use can form a natural part of the language ecosystem
— those are decomposed and included individually for related
parts. For example, Go’s standard format convention is a
combination of using commit hooks (a candidate card but not a
card in the final version) and Pretty-printing (a proper language
design card; from now on they will be presented in this font
and colour).

It should be noted here that the original idea was using the
index of terms at the end of each book. It worked extremely
poorly. These indices are of very varying quality and degree of
granularity, the terminology is contextual and oscillates over
the years. In the end all the markings were made manually,
also to ensure fair treatment of synonyms and near-synonyms:
e.g., “identifiers” in PT books were mostly related to Variables,
“interpreting automata” are a way of looking at Runtime,
by “substitution” some books mean substitution of arguments
into procedure parameters (i.e., Parameter Passing) and use
“coersion” for Substitution (of entities of one type by entities
of another type), parsing concurrently does not mean coverage
of Concurrency within the language, and the definition of
a formal grammar of string languages must be marked as
Concrete Syntax even if the words “concrete syntax” do not
appear anywhere in the book.

After the cycle was completed for all books, we had to go
through it once again in a quicker mode to mark cards that
were identified later to books that were processed before that.

Finally, we processed three sources that we consider con-
ceptual ancestors of this project. Wile published a paper on
the DSL spectrum [54], which contains a lot of motivation,
but also (in section 4) several flexibly organised language
design concerns, issues and problems. For each of them we
considered whether they have any impact on language users
— in which case the name of the issue was noted as well.
Spinellis made an attempt to start collecting design patterns for
DSLs [58], which succeeded in staying relatively technology-
agnostic, unlike later publications on language implementation
patterns [59]. Four of them were added to our toolkit’s

http://slebok.github.io/dyol
http://www.raincodelabs.com/
http://www.raincodelabs.com/

Dragon Books DB-GD Principles of Compiler Design

1977 [1]

DB-RD Compilers: Principles, Techniques, and Tools 1986 (1 ed) [2]

DB-PD Compilers: Principles, Techniques, & Tools* 2006 (2 ed) [3]

Parsing Techniques PT-AO Definition of Programming Languages by Interpreting Automata* 1974 [4]
PT-HU Introduction to Automata Theory, Languages, and Computation 1979 [5]

PT-GJ Parsing Techniques: A Practical Guide 2008 (2 ed) [6]

Compiler Construction CC-DG Compiler Construction for Digital Computers 1971 [71
CC-WG Compiler Construction 1984 [8]

CC-NW Compiler Construction 2005 [9]

Compiler Design CD-AH Compiler Design in C 1990 [10]
CD-SM Advanced Compiler Design and Implementation 1997 [11]

CD-GR Modern Compiler Design 2012 (2 ed) [12]

Language Implementation LI-BH Brinch Hansen on Pascal Compilers 1985 [13]
LI-RM Writing Compilers and Interpreters: An Applied Approach 1996 [14]

LI-PZ Programming Languages: Design and Implementation® 2001 (4 ed) [15]

Language Documentation LD-ED A Primer of ALGOL 60 Programming 1962 [16]
LD-JW Pascal User Manual and Report 1985 (3 ed) [17]

LD-WH Programming in the .NET Environment 2003 [18]

Programming Languages PL-BM Principles of Programming Languages: Design, Evaluation and Implementation — 1983 [19]
PL-WC Comparative Programming Languages 1993 (3 ed) [20]

PL-RS Concepts of Programming Languages* 2001 (5 ed) [21]

Software Languages SL-AS Structure and Interpretation of Computer Programs 1996 (2 ed) [22]
SL-CF Engineering Modeling Languages: Turning Domain Knowledge into Tools 2017 [23]

SL-RL Software Languages: Syntax, Semantics, and Metaprogramming 2017 [24]

TABLE I
SOURCES: THE 24 BOOKS CLASSIFIED IN 8 CATEGORIES. THE THREE BOOKS WHOSE TITLES ARE MARKED WITH AN ASTERISK, ARE CODED BY THEIR
CORRESPONDING RUSSIAN TRANSLATIONS (PAGE NUMBERS IN THE ORIGINALS MIGHT DIFFER).

links, the other four were assessed to belong to language
construction. Finally, there is the well-cited” When and How to
Design DSLs [55], which introduces five development phases
of a language: decision, analysis, design, implementation and
deployment, lists several patterns for each of the first four
phases, and gives examples of those patterns used in real
languages. These patterns are of varying usefulness for us:
the decision ones are definitely what we classify as language
design; the analysis patterns are way too abstract to be of
any use, half of the design patterns are the same and the rest
are mapped to one Sublanguage card, some implementation
patterns are marked, and Deployment was marked as the entire
phase since the paper fails to elaborate on it.

The resulting language design card toolkit called DYOL
(pronounced as “duel”), for Design Your Own Language, can
be found summarised on Table II and in complete form with
96 cards at http://slebok.github.io/dyol.

IV. THE CORPUS

In this section we introduce the corpus shown on Table I
by dedicating one paragraph to each of the categories to
summarise the books.

There are three Dragon Books: the Green, DB-GD [1],
the Red, DB-RD [2] and the Purple, DB-PD [3], each next
one a direct extension of its predecessor. Their nicknames
come from the dragons depicted on covers of most editions,
with “complexity of compiler design” written on the beast
being attacked by a knight with names of various compiler
engineering techniques inscribed on its armour and weapons.
Dragon Books are equally popular as self-study material,
as university course foundations and as cookbooks among
industrial developers. The most popular one is DB-RD, since

71613 citations as of 19 April 2017, according to Google Scholar.

DB-PD has sacrificed many detailed discussions on topics of
general importance and, instead of adding object orientation,
added several hundred pages on code optimisation, in partic-
ular related to parallel computation. There is a big audience
for those, but they are not every compiler engineer’s concern.

PT-AO [4] is an ode to the Vienna development method,
and is a side product of a project of modelling the semantics
of PL/I in a formal way. It does not contain a lot of useful
information on design, but the entire category of parsing
books was included in our corpus to confirm that parsing
in the narrow sense and language design are unrelated. This
particular book is pretty realistic and mixes formal defini-
tions with a selection of language constructs which a real
world language designer may decide to use. It also covers
Concurrency and Synchronisation, but surprisingly avoids the
complexity of Parameter Passing discussion when formalising
Subprograms. PT-HU [5] is better known as the Cinderella
Book for its artistic cover, and was the rewrite of the original
Formal Languages and Their Relation to Automata [60]. It
restructured the material while also made it more mundane by
cutting away treatment of deeper issues. Despite the critique,
even after all these years it is a great book to learn formal
language theory and the basics of the theory of computation,
but it has precious little to do with language design. Neither
PT-AO nor PT-HU mention Operator Precedence when talking
about ambiguous grammars. PT-GJ [6] is the bible of parsing,
a very dense description of most, if not all, parsing algorithms
known to mankind up till 2008. As if that were not enough, the
bibliography of the book is annotated, takes almost a hundred
pages and turns several decades of parsing techniques research
into several well-organised stories. There are only two down-
sides of PT-GJ: the existence of several significant advances
made in the decade since it was last revised (GLL [61] and
ALL(*) [62]), and the weak connection to language design.

http://slebok.github.io/dyol

Access Modifier
Alphabet

Assignment
Backtracking

Backward Compatibility
Block

Branching

Character Type

Class

ClientServer

Compilation Error
Compilation Warning
Comprehension
Concrete Syntax
Concurrency
Constraint
Cross-compilation
Debugging

Default

Deployment

Esotericism

Event

Exception Handling
Execution Error
Expressivity

First Class Citizen
Garbage Collection
Generation
Heterogeneous Data
IDE

Keyword
Labelling

Lazy Evaluation
Live Feedback
Lock-out/Opt-in

Parametrised Type
Performance

Phased Process
Picture Clause
Platform Lock-in/out

Smell

Standard Library
Static Analysis
Sublanguage
Subprogram

Code Completion IDE GUI

Code Generation

Deprecated Construct
Design ChartDiagram

Code Mining Documentation Inheritance
Code Ownership Encapsulation InputOutput
Collection Energy Saving Instruction Set
Comment Enumeration Type Iteration

Indentation & Whitespace

Macro Pointer Substitution
Metaphor Pretty-printing Synchronisation
Module Preview Syntactic Sugar
Natural Pattern Product Line Syntax Highlighting
Numeric Data Type Readability Trade Off

Operator Overloading ~ Record Type Analysis
Operator Precedence Redefine Type Definition
Optimisation Refactoring Undefined Behaviour
Order Runtime Unification
Orthogonal Design Scope & Binding Variable

Parameter Passing Security Virtual Machine

TABLE 11
THE NAMES OF THE 96 CARDS OF DYOL V0.2, IN LEXICOGRAPHICAL ORDER.

CC-DG [7] had the same domain-defining status before the
first Dragon Book came out. It is still useful now (46 years
later!) but some terminology has noticeably changed in the
meantime. CC-WG [8] is true to its name: most elements of a
language related to design or any part visible to the user, are
enumerated quickly in the introduction, and the main focus
of the rest of the book is on the implementation details and
in how to construct a compiler in the best possible way. One
of the interesting oddities is that this book never talks about
Comments, even in the lexical analysis chapter. CC-NW [9]
is rather minimalistic and refuses to acknowledge modern
language concepts such as Class even though the version we
processed was updated by the author in 2005.

CD-AH [10] is heavily implementation-driven, and shows
everything from the point of view of the compiler writer.
CD-SM [11] has “advanced” in the title and indeed starts off
on the advanced level (e.g., Type Definition comes before Vari-
able declaration), Subprogram calls are considered in much
more detail beyond Parameter Passing (prologues, epilogues,
returns, etc); several chapters dedicated to optimisations, like
in DB-PD. CD-GR [12] is currently (as of 2017) one of the
most comprehensive guides to the compiler world, recently up-
dated to include new research achievements. It is linked from
53 DYOL cards, this exceeds the average number twofold.

LI-BH [13] is a book about compilers for beginners. It takes
the readers by the hand and walks them very gently through
all phases of designing and developing a compiler of a subset
of Pascal written in a superset of Pascal. Some terminology
has become outdated: e.g., Keywords are “word symbols” and
Virtual Machines are “language-based computers”. The author
also heavily optimises every step which has a fair chance
of teaching people premature optimisation, and makes some
sections unnecessarily outdated for dismissing certain design
options for the compiler because they would require 82kb
more memory than the personal computer could have. Besides
those points, it is a great introductory resource for writing lan-
guage translators. LI-RM [14] contains a story of developing
a manually written compiler in C for a fairly advanced Pascal-
like language. It starts off very basic and gradually acquires
more realistic and useful details. LI-PZ [15] is structured

top-down from the programming language concepts towards
reviews of existing languages.

LD-ED [16] was an interesting challenge since its style is
different from both compiler books and from modern language
documents. Sections have unhelpful Dijkstraesque names:
“local quantities” mean the Order of declarations, “formal
parameters” is about Scope & Binding, etc. Interestingly,
Character Type (strings) are neither mentioned nor used in
this book, except in the appendix which contains Backus et
al.’s Revised Report. LD-JW [17] explains Pascal the way its
inventor thought perfect: by showering the reader with syntax
diagrams. LD-WH [18] is one of the many modern language
manuals we have on our desks, and was chosen because it
presented not just one language out of its context, but an
entire platform. The second half of the book is dedicated
to specific languages that run on .NET (Visual Basic, C#,
Python, Perl, Active Oberon, Component Pascal, HotDog and
Mondrian). Because of this platform focus, the book covered
many language design aspects that were otherwise easily
overlooked (Runtime, Standard Libraries, Deployment, etc).

PL-BM [19] has the same name (Principles of Program-
ming Languages) as the flagship conference in the domain
of programming languages, but is not as overly formal as
their proceedings. It gives a fairly comprehensive overview
of the domain for early 1980s and includes concepts such
as OOP and Garbage Collection. PL-WC [20] covers more
concepts and more languages and profits fully from the decade
that separates it from PL-BM. PL-RS [21] is fairly similar,
but unfortunately not many breakthroughs were made in the
meantime, so in general its added value for those familiar with
PL-BM and PL-WC is minimal.

SL-AS [22] is a very famous book that is not directly asso-
ciated with software language engineering, but the principles
explained there (like modelling with data), are universally
applicable. The book covers a wide range of topics, is written
in a reader-friendly style and is generously sprinkled with
realistic examples — this combination brought it its popularity.
SL-CF [23] is perhaps the most significant book of this year in
MDE and covers many concepts and technologies of creating
domain-specific modelling languages. SL-RL [24] has not

been published yet, but a final draft was requested from the
author and granted specially for this project. When published,
this book will fill the niche of a standard studybook for SLE
courses [63]. At this point, it was particularly hard to map
to our cards because of its ambitious nature: many notions
like Variables, Classes or Inheritance are used without ever
explaining or introducing them, and many others (much more
than were put on cards as of yet) are mentioned in passing. In
the end we confirmed marking only those concepts that either
took considerable space or were explained as being significant.

V. DYOL: THE LANGUAGE DESIGN TOOLKIT

The resulting DYOL (Design Your Own Language) deck
can be found at http://slebok.github.io/dyol. Its snapshot
from the time of paper’s submission is archived with
doi: 10.6084/m9.figshare.5234581.v1.

As an example, consider a card called Alphabet:

Alphabet §

The basic alphabet is often taken for granted, especially
for textual languages, but it is an important design
aspect. In some languages (APL being the extreme) the
alphabet is extremely broad, with specific symbols being
used for built-in operators, which shifts the visual feel of
the language closer to mathematics. In other languages
keywords are taken from English, which limits language
appeal to some groups of users (and may lead to
reimplementations with translated keywords).

VRN TNEG N TG ETEYS, DB-GD:28, DB-RD:92, DB-PD:165, CC-DG:15, CC-NW:10,
CD-AH:52, LI-BH:10, | ,|LD-ED:5|

The textual description quickly introduces the design aspect.
The text refers to external resources (http://tryapl.org) and
to two other cards (Standard Library and Keyword). On the
bottom, we have a list of markings for this card. The only
Design with Intent relation is “perceived affordances” from
the perception lens (indicated by the pink background colour)
which describes how the form of some elements of the system
being designed can suggest or constrain particular actions of
the end users. Just like reshaping the waste recycling bins was
shown to increase recycling levels, choosing the alphabet to
support or prefer bare numbers, card holes, Unicode, ASCII,
EBCDIC, emoji, etc, suggests what one can do with the
programs in such a language, on which platform that should
happen and who is the target audience (e.g., mathematical
notation would suggest scientists and colourful cartoon icons
suggest children). The other markings show that the notion of
an alphabet is always introduced up front in parsing books and
is mentioned eventually in compiler implementation-biased
books. The § symbol in the top right corner of the card
refers to an individual card page at http://slebok.github.io/
dyol/cards/Alphabet.html which contains concrete examples of
punch cards, character tables, fan-made APL keyboards and
translated Concrete Syntaxes. The individual page also goes
slightly deeper into the subject by linking the notion of an

alphabet to the notion of a dictionary (the typical way of
higher level language designers to call their alphabets to stress
the fact that atomic language elements are words and not just
letters of symbols).

DYOL v0.2 contains 96 such cards (recall Table II). They
were challenging to make, but they are also obviously chal-
lenging to consume in one sitting, so some grouping and
classification of them is needed. Let us try an automated
approach first. By having or not having a mark that a particular
card is handled by a particular book, we get a matrix of 96
by 24 of Boolean values. Compressing it by book category,
we get 96 vectors with 8 values each (each value is between
0 and 3, inclusive). Running k-means clustering analysis on
this data produced by the prevalence of marks per category of
books, yielded one big cluster of 40 cards that were mostly
never marked, as well as the following four (cluster names
added manually):

o Programming Core: Assignment, Branching, Collection,
Iteration, Pointer, Record, Scope & Binding, Subprogram,
Type Definition, Variable.

o DSL Core: Comment, Constraint, Encapsulation, Event,
Heterogeneous Data, IDE, Indentation & Whitespace, In-
put / Output, Instruction Set, Labelling, Lazy Evaluation,
Numeric Data Type, Pretty-printing, Substitution, Virtual
Machine.

o Compiler Practice: Alphabet, Block, Code Generation,
Compilation Error, Compilation Warning, Concrete Syn-
tax, Design Chart/Diagram, Keyword, Operator Prece-
dence, Optimisation, Phased Process, Runtime, Static
Analysis, Type Analysis.

o Language Processing: Backtracking, Character Type,
Class, Concurrency, Debugging, Enumeration Type, Ex-
ception Handling, First Class Citizen, Garbage Collec-
tion, Generation, Inheritance, Macro, Module, Parameter
Passing, Redefine, Synchronisation, Unification.

The Programming Core cluster contained cards marked in
all categories besides PT (which was low on marks anyway)
and SL (which, we presume, intentionally glanced over topics
so prominent elsewhere). The DSL Core cluster was formed
around cards marked mostly in SL with a strong presence in
some combination of LI, LD and PL. The Compiler Practice
cards were strong in DB, CC, CD and LI. The Language
Processing cards were strongly present in PL, almost absent
in PT and CC but never totally out of the other categories.

This is a very crude way of classifying the cards, but it
forms a plausible starting point to introduce a classification
like Lockton’s lenses [27], [28], [34], Wile’s concerns [54] or
Mernik et al.’s phases [55], but grounded solidly on the marks
made in existing information sources. The result needs either
some manual tweaking (such as making sure that all the data
types end up in the same group) or more base data.

Alternatively, we could contemplate explicit modelling of
the users, as was also done for Design with Intent [29],
to map behaviour patterns of language designers to pre-
cooked subcollections of cards. This could be validated by
looking at designs of existing languages and decomposing

http://slebok.github.io/dyol
https://doi.org/10.6084/m9.figshare.5234581.v1
http://tryapl.org
http://slebok.github.io/dyol/cards/Alphabet.html
http://slebok.github.io/dyol/cards/Alphabet.html

them into cards, effectively reverse engineering the designer’s
decisions. This future direction, if pursued, is expected to yield
several recognisable categories like “concrete”, “abstract”,
“statics”, “dynamics”, “integration”, etc. It is also quite likely
to face challenges of explaining past design’s imperfections.
For example, in Java, Access Modifier and Defaults form
an antipattern, since having no modifiers results in a state
unreachable by any other modifiers (subclasses of the same
package will have access to the field but subclasses from other
packages will not).

At the present moment, each card has a very short expla-
nation, possibly linking to other cards or external resources
and providing hover help on acronyms. Prior to submission of
this paper, the toolkit was seen only by a selected few people
(not exclusively compiler engineers) who helped to refine the
definitions. Ideally, each card should get its detailed individual
page with an extended description akin to how design patterns
are described, with consequences spelt out and with links to
related papers that treat each topic in depth. The Alphabet
example shown above is one of the few reasonably complete
individual pages, but even that one can be improved.

For example, Van Tassel conducted a thorough historical
investigation on the use of Comments from the beginning of
programming to the present day [64], which helps put them
into perspective and allows designers to understand why most
software languages maintain the strange tradition of mixing
documentation with implementation, and why computing pio-
neers like Knuth had such strong opinions on the matter [65].
Documentation itself was at some point meticulously meta-
modelled by Zaytsev and Ldmmel [66]. Similarly, Martini in-
vestigated the history of types and explained in detail how im-
plementation concerns such as “mode of calculation” gradually
were recognised as design concerns and yielded an entire field
of research around Type Analysis [67]. Van Roy maintains a
diagram of the principal programming paradigms [68] which
explains how logic programming is made from functional
programming by adding Unification, and in turn becomes
something else after adding Constraint solvers, Concurrency
and finally Synchronisation, and one of our future projects
involves aligning his programming landscape megamodel with
DYOL. Together with collaborators, Van Roy showed how this
Labelling is of great use in teaching programming [69], which
was also the experience of the author [74]. Augmenting the
DYOL elements with links to such detailed investigations will
add depth and credibility to the toolkit as a whole, as a means
to establish importance of each element.

VI. CONCLUSION AND FUTURE WORK

By using the available material on development of the
Design with Intent method and its results [25]-[34], and by
marking (coding, in social science’s terminology) books that
are seen to be related to language design [1]-[24], we have
formed a grounded theory of software language design. Fol-
lowing interaction design theory and persuasive technology re-
search, we define design as something that changes behaviour
of the users. With this definition, we identified 96 cards with

811 marks total, and presented them as a software language
design toolkit that can be used by API developers, DSL
makers, format designers, etc (http://slebok.github.io/dyol).
The larger scope of this project is SLEBoK as an attempt to
move towards a SWEBOK-like [73] book of knowledge for
software language engineering, which is one of the current
open problems of SLE [36]. Examples of other subprojects
of SLEBoK are BibSLEIGH (http://bibtex.github.io) which
collects thousands of research papers related to SLE and
analyses them [75], or GraSs (http://slebok.github.io/grass)
which provides a classification/taxonomy of smells found in
grammars, metamodels and other language definitions [70].

The obvious tactic of polishing the DYOL toolkit is to cover
even more books to eliminate selection bias and other threats
to validity. However, a more conceptually challenging step
would be to cover more caregories of them instead. Kinds
of books not covered by this project in its current form but
considered for the future, among others, are: multi-language
and multi-paradigm books (between LD and PL categories)
like Seven Languages in Seven Weeks or Elements of Pro-
gramming Style; comparative language documentation (C#
books for Java programmers, Swift ones aimed for ObjectiveC
professionals, etc); coding advice books such as Structured
Programming, Code Complete and Clean Code; PhD theses;
blog posts. There is a tentative list of books to cover first,
at http://slebok.github.io/dyol/books/wip.html. Some support
from the community at some point would also be nice.

The cards used in software design, like CRC cards [71],
are considerably more structured than the cards used in most
physical design processes [25], so in the future we can possibly
improve them significantly. The processes themselves are also
much better structured as well, with contemporary design
techniques like story-driven modelling [72] which would be
great to learn to apply specifically to software language design.
In any case the next step is to continue to follow in the
footsteps of Design with Intent and to organise language
design workshops where people use the DYOL toolkit to
design languages and measure the degree of success. This
plan is quite realistic and will allow to build up on previous
similar activities of the author with teaching language design
to product designers [76] and running compiler coding dojos
at academic conferences [77].

ACKNOWLEDGEMENTS

The author would like to take a moment to show respect
and appreciation to Raincode colleagues, especially Jean-Eric
Waroquier who advised to have a look at LI-BH [13] and
explained the role and importance of CC-DG [7]. Also, credit
goes to Ralf Limmel for providing a draft of SL-RL [24].
With the exception of his book, 10 books that ended up in
the corpus came from the private library of the author, 6 from
the library of Raincode Labs and 7 were purchased. Raincode
Labs paid for these new books, as well as for at least 14
more, filtered out the final corpus for various reasons. The
author also thanks Sabine Janssens for lending an artistic eye
in proofreading and helping to polish the text on the cards.

http://slebok.github.io/dyol
http://bibtex.github.io
http://slebok.github.io/grass
http://slebok.github.io/dyol/books/wip.html

[1]
[2]

[3]
[4]

[6]

(7]
(8]
[9]
[10
[11
[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]
(28]

[29]

[30]

[34]

[35]
[36]

[37]
[38]

[39]

REFERENCES

A. V. Aho and J. D. Ullman, Principles of Compiler Design, 1977.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

A. V. Aho, M. S.-L. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, & Tools, 2nd ed. Addison-Wesley, 2006.

A. Ollongren, Definition of Programming Languages by Interpreting
Automata. Academic Press, 1974.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

D. Grune and C. J. H. Jacobs, Parsing Techniques — A Practical Guide,
2nd ed. Addison-Wesley, 2008.

D. Gries, Compiler Construction for Digital Computers. JW&S, 1971.
W. M. Waite and G. Goos, Compiler Construction. Springer, 1984.
N. Wirth, Compiler Construction. Addison-Wesley, 2005.

A. 1. Holub, Compiler Design in C. Prentice-Hall, 1990.

S. Muchnick, Advanced Compiler Design and Implementation, 1997.
D. Grune, K. van Reeuwijk, H. E. Bal, C. J. H. Jacobs, and K. G.
Langendoen, Modern Compiler Design, 2nd ed. Addison-Wesley, 2012.
P. B. Hansen, Brinch Hansen on Pascal Compilers. Prentice-Hall, 1985.
R. Mak, Writing Compilers & Interpreters: An Applied Approach, 1996.
T. W. Pratt and M. V. Zelkowitz, Programming Languages: Design and
Implementation. Prentice-Hall, 2001.

E. W. Dijkstra, A Primer of ALGOL 60 Programming, 1962, vol. 2.
K. Jensen and N. Wirth, Pascal User Manual and Report, 1985.

D. Watkins, M. Hammond, and B. Abrams, Programming in the .NET
Environment. Addison-Wesley, 2003.

B. J. MacLennan, Principles of Programming Languages: Design,
Evaluation and Implementation. Holt-Saunders, 1983.

L. B. Wilson and R. G. Clark, Comparative Programming Languages,
2nd ed. Addison-Wesley, 1993.

R. W. Sebesta, Concepts of Programming Languages. Pearson, 2001.
H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs, 2nd ed. MIT Press, 1996.

B. Combemale, R. W. France, J.-M. Jézéquel, B. Rumpe, J. Steel, and
D. Vojtisek, Engineering Modeling Languages. CRC Press, 2017.

R. Lammel, Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2017, in print. Marked version of 27 March 2017.
D. Lockton, “Design with Intent: A Design Pattern Toolkit for
Environmental & Social Behaviour Change,” Ph.D. dissertation, Brunel,
2013. [Online]. Available: http://architectures.danlockton.co.uk/phd/

D. Lockton, D. J. Harrison, and N. A. Stanton, Design with Intent: 101
Patterns for Influencing Behaviour Through Design v.1.0. Windsor:
Equifine, 2010. [Online]. Available: http://www.designwithintent.co.uk
——, “The Design with Intent Method: A Design Tool for Influencing
User Behaviour,” Applied Ergonomics, vol. 41, no. 3, pp. 382-392, 2010.
——, “Exploring Design Patterns for Sustainable Behaviour,” The
Design Journal, vol. 16, no. 4, pp. 431-459, 2013.

——, “Models of the User: Designers’ Perspectives on Influencing
Sustainable Behaviour,” Journal of Design Research, vol. 10, no. 1/2,
pp. 7-27, 2012.

——, “Design for Sustainable Behaviour: Investigating Design Methods
for Influencing User Behaviour,” in Proceedings of the 14th Conference
on Sustainable Innovation. The Centre for Sustainable Design, 2009.
——, “Making the User More Efficient: Design for Sustainable Be-
haviour,” Sustainable Engineering, vol. 1, no. 1, pp. 3-8, 2008.

——, Design with Intent: Persuasive Technology in a Wider Context.
Springer, 2008.

——, “Choice Architecture and Design with Intent,” in Proceedings of
the Ninth Bi-annual International Conference on Naturalistic Decision
Making. British Computer Society, 2009.

D. Lockton, D. J. Harrison, T. Holley, and N. A. Stanton, “Influencing
Interaction: Development of the Design with Intent Method,” in Fourth
Conference on Persuasive Technology. ACM, 2009, pp. 5:1-5:8.

J. Sammet, Programming Languages: History and Fundamentals.
Prentice-Hall, 1969.

A. H. Bagge and V. Zaytsev, “Open and Original Problems in Software
Language Engineering 2015 Workshop Report,” SENotes, vol. 40, 2015.
J. Kolko, Thoughts on Interaction Design. Brown Bear, 2007.

D. Lilley, V. Lofthouse, and T. Bhamra, “Towards Instinctive Sustainable
Product Use,” in On Sustainability, 2005.

J. Zachrisson, G. Storrg, and C. Boks, “Using a Guide to Select Design
Strategies for Behaviour Change,” in Proceedings of EcoDesign, 2011.

[40]

[41]

[42]
[43]

[44]
[45]
[46]
[47]
(48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
(571
[58]
(591
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
(73]
[74]
[75]
[76]

(771

N. Tromp, P. Hekkert, and P.-P. Verbeek, “Design for Socially Respon-
sible Behavior: A Classification of Influence Based on Intended User
Experience,” Design Issues, vol. 27, no. 3, pp. 3-19, 2011.

A. Stevenson and J. R. Cordy, “A Survey of Grammatical Inference in
Software Engineering,” SCP, vol. 96, pp. 444459, 2014.

V. Zaytsev, “Notation-Parametric Grammar Recovery,” in LDTA, 2012.
J. Kennedy van Dam and V. Zaytsev, “Software Language Identification
with Natural Language Classifiers,” in SANER’16. IEEE, 2016.

G. Klein, Sources of Power: How People Make Decisions. MIT, 1999.
D. Perkins, Knowledge as Design. Lawrence Erlbaum Associates, 1986.
B. Lawson, “Schemata, Gambits and Precedent: Some Factors in Design
Expertise,” Design Studies, vol. 25, pp. 443457, 2004.

T. W. Barber, The Engineer’s Sketch-Book of Mechanical Movements,
Devices, Appliances, Contrivances and Details. Spon, 1890.

T. L. Robbins, “Social Loafing on Cognitive Tasks: An Examination of
the ‘Sucker Effect’)” Business & Psychology 9(3), pp. 337-342, 1995.
M. Diehl and W. Stroebe, “Productivity Loss in Brainstorming Groups:
Toward the Solution of a Riddle,” PSP, vol. 53(3), pp. 497-509, 1987.
A. Furnham, “The Brainstorming Myth,” Business Strategy Review,
vol. 11, no. 4, pp. 21-28, 2000.

J. H. Flawell, “Developmental Studies of Mediated Memory,” Advances
in Child Development and Behavior, vol. 5, pp. 181-211, 1970.

A. L. Brown, “The Role of Strategic Behavior in Retardate Memory,”
Int. Review of Research in Mental Retardation, vol. 7, pp. 55-111, 1974.
J. Baron, “Intelligence and General Strategies,” Strategies in Information
Processing, pp. 403-450, 1978.

D. S. Wile, “Supporting the DSL Spectrum,” Journal of Computing and
Information Technology, vol. 9, no. 4, pp. 263-287, 2001.

M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-Specific Languages,” ACM CSUR, vol. 37, no. 4, 2005.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design or Existing Code. Addison-Wesley, 1999.

V. Zaytsev and A. H. Bagge, “Parsing in a Broad Sense,” in MoDELS’14,
ser. LNCS, vol. 8767. Springer, 2014, pp. 50-67.

D. Spinellis, “Notable Design Patterns for Domain-specific Languages,”
The Journal of Systems and Software, vol. 56, no. 1, pp. 91-99, 2001.
T. Parr, Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages. Pragmatic, 2010.

J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation
to Automata. Addison-Wesley, 1968.

E. Scott and A. Johnstone, “GLL Parsing,” in LDTA’09, ser. ENTCS,
vol. 253, no. 7, 2010, pp. 177-189.

T. Parr, S. Harwell, and K. Fisher, “Adaptive LL(*) Parsing: The Power
of Dynamic Analysis,” in OOPSLA’14. ACM, 2014, pp. 579-598.

A. H. Bagge, R. Limmel, and V. Zaytsev, “Reflections on Courses for
Software Language Engineering,” in EduSymp’14, CEUR 1346, 2015.
D. Van Tassel, “Comments,” http://www.gavilan.edu/csis/languages/
comments.html, 2004.

D. E. Knuth, “Literate Programming,” The Computer Journal, vol. 27,
no. 2, pp. 97-111, 1984.

V. Zaytsev and R. Liammel, “A Unified Format for Language Docu-
ments,” in SLE’10, ser. LNCS, vol. 6563. Springer, 2011, pp. 206-225.
S. Martini, “Several Types of Types in Programming Languages,” in
History and Philosophy of Computing, vol. 487, 2015, pp. 216-227.

P. Van Roy, “The Principal Programming Paradigms, v1.08,” https://
www.info.ucl.ac.be/~pvr/paradigms.html, 2008.

P. Van Roy, J. Armstrong, M. Flatt, and B. Magnusson, “The Role of
Language Paradigms in Teaching Programming,” in SIGCSE, 2003.

M. Stijlaart and V. Zaytsev, “Towards a Taxonomy of Grammar Smells,”
2017, under review. [Online]. Available: http://slebok.github.io/grass
K. Beck and W. Cunningham, “A Laboratory for Teaching Object-
Oriented Thinking,” in OOPSLA. ACM, 1989, pp. 1-6.

U. Norbisrath, A. Ziindorf, and R. Jubeh, Story Driven Modeling.
CreateSpace, 2013.

P. Bourque and R. Fairley, “Guide to the Software Engineering Body of
Knowledge, Version 3.0,” 2014, http://www.swebok.org.

V. Zaytsev, “Flipped Top-Down is Systematic Bottom-Up,” in MoDELS
EduSymp’15, ser. CEUR, vol. 1555, 2015, pp. 17-28.

——, “BibSLEIGH: Bibliography of Software (Language) Engineering
in Generated Hypertext,” in SATToSE’15, CEUR 1820, 2017, pp. 54-64.
——, “The DSGA Model of DSL Design: Domain, Schema, Grammar,
Actions,” 2016, presented at DSLDI’16 at SPLASH.

——, “CoCoDo: Raincode Labs Compiler Coding Dojo,” http://cocodo.
github.io, 2017.

http://architectures.danlockton.co.uk/phd/
http://www.designwithintent.co.uk
http://www.gavilan.edu/csis/languages/comments.html
http://www.gavilan.edu/csis/languages/comments.html
https://www.info.ucl.ac.be/~pvr/paradigms.html
https://www.info.ucl.ac.be/~pvr/paradigms.html
http://slebok.github.io/grass
http://www.swebok.org
http://cocodo.github.io
http://cocodo.github.io

