
Incremental Coverage of Legacy Software Languages
Extended Abstract

Vadim Zaytsev
Raincode Labs
Kazernestraat 45

Brussels 1000, Belgium
vadim@grammarware.net

Abstract
Legacy software systems were often written not just in pro-
gramming languages typically associated with legacy, such
as COBOL, JOVIAL and PL/I, but also in decommissioned
4GLs. Writing compilers and other migration and renovation
tools for such languages is an active business that requires
substantial effort but has proven to be a successful strat-
egy for many cases. However, the process of covering such
languages is filled with unconventional requirements and
limitations: the lack of useful documentation, large scale of
codebases, counter-intuitive language engineering princi-
ples, buggy reference implementations, etc.

In this paper, we motivate the incremental nature of soft-
ware language engineering when it concerns legacy lan-
guages in particular, and outline a few related challenges.

Keywords legacy software systems, fourth generation pro-
gramming languages, compiler construction

ACM Reference format:
Vadim Zaytsev. 2017. Incremental Coverage of Legacy Software
Languages. In Proceedings of the Third Edition of the Programming
Experience Workshop, Vancouver, Canada, October 2017 (PX/17.2),
3 pages.

1 Introduction
There are hundreds of software languages currently in use,
and only a few dozens of them are in widespread use. For the
rest, it is possible to find systems written in those languages,
deployed in ecosystems characteristic for them and being
worked on by developers familiar with the fine details of
language constructs and context, but it is not realistic to hire
new engineers familiar with the language, unless they are
switching from one such non-mainstream project to another.
Most of these not-widespread languages are prototypical,
experimental or domain-specific, which means that they
were meant to cater for very peculiar needs of a limited
group of people solving specific problems. The remaining
ones are what people refer to as legacy languages.
Many languages that became legacy, were once called

fourth-generation programming languages (4GLs), the name

PX/17.2, October 2017, Vancouver, Canada
2017. ACM ISBN 123-4567-24-567/08/06. . . $15.00

signifying the fact that they came after the first genera-
tion (machine codes), second generation (assemblers) and
third generation (compiled ones). Basically, 4GLs are DSLs
(domain-specific languages) designed around the 1980s be-
fore powerful language workbenches and other software lan-
guage engineering technologies made the process easy and
(to some extent) error-proof. Programs in a 4GL are typically
compiled into a 3GL and then fed into a standard compiler,
possibly complemented by code fragments written directly
in the 3GLs (and sometimes 2GLs [2]) for performance and
expressiveness reasons. Each 4GL is usually known by a
small and steadily shrinking group of people and used inside
companies that have their entire business logic expressed
in that particular 4GL. Eventually every 4GL is decommis-
sioned, and then the companies using it are faced with a
choice of migration, re-engineering or bankruptcy.
One of the possible ways out of a decommissioned 4GL

is redevelopment of its compiler with modern technologies,
and the author of this paper works for a company regularly
providing such services to paying customers. A new compiler
requires a substantial effort to become operational, since
even writing a quality parser for a COBOL-like language
takes 2–3 years, according to professionals [16]. However, it
provides numerous advantages such as modern deployment
platforms (e.g., cloud), modern IDEs (e.g., Eclipse or Visual
Studio), as well as the opportunity to evolve the language
further in a desired direction—the combination of these offers
a threatened company a very bright future.
Besides classic compiler design and development chal-

lenges elaborately articulated in many books [6], compiler
engineering for legacy languages faces others such as the
lack of documentation (which either does not exist, or is
outdated beyond usefulness, or may not be used for legal rea-
sons) or a mixture of language rules (imposed by the original
compiler) and company conventions (imposed by in-house
coding style manuals). In the proposed talk we can discuss
some of them, with details sketched below.
The process of incrementally covering a legacy software

language goes as follows:

• there is a legacy language, represented by a complete
codebase of the customer company and complemented
by the knowledge of the in-house experts;

1

PX/17.2, October 2017, Vancouver, Canada Vadim Zaytsev

• there is a grammar that covers some of the language
and is being continuously worked and improved on;

• one of the failing code samples is considered by the
grammar engineer who changes the grammar to ac-
commodate it;

• the cycle is repeated until the entire codebase can be
parsed and compiled (or migrated).

The idea of incremental grammar engineering was con-
ceptually proposed by Klint et al. [12], there is a case study
reported in detail [1], there are techniques to converge mul-
tiple imperfect grammars [15] and many others that can
also be useful. These techniques can be either applied di-
rectly or used from a language workbench [3, 5] such as
Rascal [13], Spoofax [9], ASF+SDF Meta-Environment [11],
JastAdd [7], Xtext [4], Intentional [19] or MPS [22]. As a
more recent example of a realistic combination of grammar
engineering, tool building and static program analysis, we re-
fer to [21]. However, the incremental aspect is not researched
well enough to provide tool support for it (which would go
beyond conceptual process guidelines). There is research
on incremental parsing, which is usually a combination of
semiparsing [23] and ad hoc algorithms of selective or lazy
parsing. However, they solve a much less painful problem
of reducing parse time, as opposed to reducing compiler de-
velopment time, which has substantially bigger impact on
developers’ lives. It is possible for powerful parallel parsing
techniques in combination with bug prioritisation and error
clustering to become somewhat useful at some point, but
not in the near future.

2 Research Challenges
We identify at least the following research challenges:

Regression Parsing
Similar to regression testing [18] we would like to be able to
quickly and incrementally check if the change in the gram-
mar has had any detrimental effect on the standing coverage
of the language. Reparsing the entire codebase is definitely
an option, but the usual scale of legacy portfolios is in the
tens or hundreds of millions of lines of code, which unnec-
essarily brings up scalability and performance challenges
toward the very beginning of the project. (During later stages
of the project this typically takes place on a separate server
running the nightly build system).

Test Suite Inference from Codebase
The current practice of regression parsing is to approximate
the codebase with a test suite which must be gradually de-
signed by hand and coevolve [14] with each discovered detail
of the language. Alternatively, this can be done automatically
by a some combination of test prioritisation [20], test suite
minimisation [21], as well as machine learning techniques
based on the assumption of the naturalness of software [8]
which was shown to yield positive results in the past with

language identification [10] and works very effectively with
position-sensitive pattern languages [24].

Dependency Analysis within the Grammar
Many incremental techniques can be based on the knowledge
of dependencies existing within the grammar, since it enables
fast and cheap impact analysis of the changes. There is a
substantial body of techniques and tools on change impact
analysis [17], but to the best of our knowledge, they have
not yet been extended to grammars, parsing specifications
and other compiler-building models.

Dependency Analysis on the Grammar vs. Samples
Alternatively or complementary, we can investigate and de-
velop algorithms for tracing dependencies between the code-
base (or some representation thereof like a repository of
parse trees) and the grammar, and updating the parsabil-
ity metadata incrementally whenever needed or whenever
the CPU is idle, to provide the results of regression/impact
analysis to the grammar engineer.

Neighbour Analysis
A lot of grammar development cycles are lost on tiny tweaks
of features: can you only print a variable or can it be any
expression? is assignment target always one identifier or can
it be multiple? can you call a method on the result of call
of another method? is there an else clause to the if? how
does a default clause of the caseof look like? The answers
to all these questions in mainstream languages are either
straightforward or easily obtained from language manuals.
For legacy languages, we must follow the trial and error
approach. However, it should be possible, given both the
original tested grammar and the changed one, and detailed
enough information about the language coverage of both,
to identify and show examples of “near misses”—cases that
were bluntly rejected by the original grammar and still fail
in the new one but “later” or “better” by some definition.

3 Conclusion
We have raised a question of developing a systematic ap-
proach of covering legacy software languages incrementally,
and outlined a few challenges to be solved in developing,
testing, validating and deploying parsers and other form of
grammarware. There do not seem to be major roadblocks
in this research direction, but engineering and architectural
challenges are substantial.

2

Incremental Coverage of Legacy Software Languages PX/17.2, October 2017, Vancouver, Canada

References
[1] Tiago Laureano Alves and Joost Visser. 2008. A Case Study in Gram-

mar Engineering. In Revised Selected Papers of the First International
Conference on Software Language Engineering (SLE) (LNCS), Vol. 5452.
Springer, 285–304. https://doi.org/10.1007/978-3-642-00434-6_18

[2] Volodymyr Blagodarov, Yves Jaradin, and Vadim Zaytsev. 2016. Tool
Demo: Raincode Assembler Compiler. In Proceedings of the Ninth In-
ternational Conference on Software Language Engineering (SLE), Tijs
van der Storm, Emilie Balland, and Dániel Varró (Eds.). 221–225.
https://doi.org/10.1145/2997364.2997387

[3] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Mar-
tin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler,
Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist,
Guido Wachsmuth, and Jimi van der Woning. 2013. The State of
the Art in Language Workbenches — Conclusions from the Language
Workbench Challenge. In Proceedings of the Sixth International Confer-
ence on Software Language Engineering (SLE) (LNCS), Martin Erwig,
Richard F. Paige, and Eric VanWyk (Eds.), Vol. 8225. Springer, 197–217.
https://doi.org/10.1007/978-3-319-02654-1_11

[4] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your
Language Faster than the Quick and Dirty Way. In Companion to
the 25th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), William R.
Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, 307–309.
https://doi.org/10.1145/1869542.1869625

[5] Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages? MartinFowler.com. (June 2005). https:
//martinfowler.com/articles/languageWorkbench.html

[6] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, and
Koen G. Langendoen. 2012. Modern Compiler Design (second ed.).
Addison-Wesley. https://dickgrune.com/Books/MCD_2nd_Edition/

[7] Görel Hedin and Eva Magnusson. 2003. JastAdd — An Aspect-Oriented
Compiler Construction System. Science of Computer Programming
(LDTA’01 Special Issue) 47, 1 (2003), 37–58. https://doi.org/10.1016/
S0167-6423(02)00109-0

[8] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premku-
mar T. Devanbu. 2012. On the Naturalness of Software. In Proceedings
of the 34th International Conference on Software Engineering (ICSE),
Martin Glinz, Gail C. Murphy, and Mauro Pezzé (Eds.). IEEE, 837–847.
https://doi.org/10.1109/ICSE.2012.6227135

[9] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Specification of Languages and IDEs.
In Proceedings of the 25th Annual Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), William R.
Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, 444–463.
https://doi.org/10.1145/1869459.1869497

[10] Juriaan Kennedy van Dam and Vadim Zaytsev. 2016. Software Lan-
guage Identification with Natural Language Classifiers. In Proceedings
of the 23rd IEEE International Conference on Software Analysis, Evolu-
tion, and Reengineering: the Early Research Achievements track (SANER
ERA), Katsuro Inoue, Yasutaka Kamei, Michele Lanza, and Norihiro
Yoshida (Eds.). IEEE, 624–628. https://doi.org/10.1109/SANER.2016.92

[11] Paul Klint. 1993. A Meta-Environment for Generating Programming
Environments. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 2, 2 (1993), 176–201.

[12] Paul Klint, Ralf Lämmel, and Chris Verhoef. 2005. Toward an En-
gineering Discipline for Grammarware. ACM Transactions on Soft-
ware Engineering Methodology (TOSEM) 14, 3 (2005), 331–380. https:
//doi.org/10.1145/1072997.1073000

[13] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. Rascal: A
Domain Specific Language for Source Code Analysis andManipulation.
In Proceedings of the Ninth International Working Conference on Source

Code Analysis and Manipulation (SCAM). IEEE Computer Society, 168–
177. https://doi.org/10.1109/SCAM.2009.28

[14] Ralf Lämmel. 2016. Coupled Software Transformations—Revisited. In
Proceedings of the Ninth International Conference on Software Language
Engineering (SLE). ACM, 239–252. https://doi.org/10.1145/2997364.
2997366

[15] Ralf Lämmel and Vadim Zaytsev. 2009. An Introduction to Grammar
Convergence. In Proceedings of the Seventh International Conference on
Integrated Formal Methods (iFM 2009) (LNCS), Michael Leuschel and
Heike Wehrheim (Eds.), Vol. 5423. Springer, 246–260. https://doi.org/
10.1007/978-3-642-00255-7_17

[16] Vadim Maslov. 1998. Re: An Odd Grammar Question. http://compilers.
iecc.com/comparch/article/98-05-108. (May 1998).

[17] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia
Chesley. 2004. Chianti: A Tool for Change Impact Analysis of Java
Programs. In Proceedings of the 19th Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM,
432–448. https://doi.org/10.1145/1028976.1029012

[18] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Efficient
Regression Test Selection Technique. ACM Transactions on Software
Engineering and Methodology (TOSEM) 6, 2 (1997), 173–210. https:
//doi.org/10.1145/248233.248262

[19] Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. In-
tentional Software. In Proceedings of the 21th Annual Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Peri L. Tarr and William R. Cook (Eds.). ACM, 451–464.
https://doi.org/10.1145/1167473.1167511

[20] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing
Tests in Development Environment. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA). ACM, 97–106.
https://doi.org/10.1145/566172.566187

[21] Nicole Vavrová and Vadim Zaytsev. 2017. Does Python Smell Like
Java? The Art, Science and Engineering of Programming (‹Program-
ming›) 1 (April 2017), 11–1–11–29. Issue 2. https://doi.org/10.22152/
programming-journal.org/2017/1/11

[22] Markus Völter and Vaclav Pech. 2012. Language Modularity with the
MPS Language Workbench. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), Martin Glinz, Gail C. Mur-
phy, and Mauro Pezzè (Eds.). IEEE, 1449–1450. https://doi.org/10.1109/
ICSE.2012.6227070

[23] Vadim Zaytsev. 2014. Formal Foundations for Semi-parsing. In Pro-
ceedings of the Software Evolution Week (IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering), Early Research
Achievements Track (CSMR-WCRE 2014 ERA), Serge Demeyer, Dave
Binkley, and Filippo Ricca (Eds.). IEEE, 313–317. https://doi.org/10.
1109/CSMR-WCRE.2014.6747184

[24] Vadim Zaytsev. 2017. Parser Generation by Example for Legacy
Pattern Languages. In Proceedings of the 16th International Confer-
ence on Generative Programming: Concepts and Experience (GPCE),
Matthew Flatt and Sebastian Erdweg (Eds.). ACM, 212–218. https:
//doi.org/10.1145/3136040.3136058

3

https://doi.org/10.1007/978-3-642-00434-6_18
https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1145/1869542.1869625
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://dickgrune.com/Books/MCD_2nd_Edition/
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1109/SANER.2016.92
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1145/2997364.2997366
https://doi.org/10.1145/2997364.2997366
https://doi.org/10.1007/978-3-642-00255-7_17
https://doi.org/10.1007/978-3-642-00255-7_17
http://compilers.iecc.com/comparch/article/98-05-108
http://compilers.iecc.com/comparch/article/98-05-108
https://doi.org/10.1145/1028976.1029012
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/1167473.1167511
https://doi.org/10.1145/566172.566187
https://doi.org/10.22152/programming-journal.org/2017/1/11
https://doi.org/10.22152/programming-journal.org/2017/1/11
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://doi.org/10.1145/3136040.3136058
https://doi.org/10.1145/3136040.3136058

	Abstract
	1 Introduction
	2 Research Challenges
	3 Conclusion
	References

