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Abstract
Legacy software systems were often written not just in pro-
gramming languages typically associated with legacy, such
as COBOL, JOVIAL and PL/I, but also in decommissioned
4GLs. Writing compilers and other migration and renovation
tools for such languages is an active business that requires
substantial effort but has proven to be a successful strat-
egy for many cases. However, the process of covering such
languages is filled with unconventional requirements and
limitations: the lack of useful documentation, large scale of
codebases, counter-intuitive language engineering princi-
ples, buggy reference implementations, etc.

In this paper, we motivate the incremental nature of soft-
ware language engineering when it concerns legacy lan-
guages in particular, and outline a few related challenges.
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1 Introduction
There are hundreds of software languages currently in use,
and only a few dozens of them are in widespread use. For the
rest, it is possible to find systems written in those languages,
deployed in ecosystems characteristic for them and being
worked on by developers familiar with the fine details of
language constructs and context, but it is not realistic to hire
new engineers familiar with the language, unless they are
switching from one such non-mainstream project to another.
Most of these not-widespread languages are prototypical,
experimental or domain-specific, which means that they
were meant to cater for very peculiar needs of a limited
group of people solving specific problems. The remaining
ones are what people refer to as legacy languages.
Many languages that became legacy, were once called

fourth-generation programming languages (4GLs), the name
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signifying the fact that they came after the first genera-
tion (machine codes), second generation (assemblers) and
third generation (compiled ones). Basically, 4GLs are DSLs
(domain-specific languages) designed around the 1980s be-
fore powerful language workbenches and other software lan-
guage engineering technologies made the process easy and
(to some extent) error-proof. Programs in a 4GL are typically
compiled into a 3GL and then fed into a standard compiler,
possibly complemented by code fragments written directly
in the 3GLs (and sometimes 2GLs [2]) for performance and
expressiveness reasons. Each 4GL is usually known by a
small and steadily shrinking group of people and used inside
companies that have their entire business logic expressed
in that particular 4GL. Eventually every 4GL is decommis-
sioned, and then the companies using it are faced with a
choice of migration, re-engineering or bankruptcy.
One of the possible ways out of a decommissioned 4GL

is redevelopment of its compiler with modern technologies,
and the author of this paper works for a company regularly
providing such services to paying customers. A new compiler
requires a substantial effort to become operational, since
even writing a quality parser for a COBOL-like language
takes 2–3 years, according to professionals [16]. However, it
provides numerous advantages such as modern deployment
platforms (e.g., cloud), modern IDEs (e.g., Eclipse or Visual
Studio), as well as the opportunity to evolve the language
further in a desired direction—the combination of these offers
a threatened company a very bright future.
Besides classic compiler design and development chal-

lenges elaborately articulated in many books [6], compiler
engineering for legacy languages faces others such as the
lack of documentation (which either does not exist, or is
outdated beyond usefulness, or may not be used for legal rea-
sons) or a mixture of language rules (imposed by the original
compiler) and company conventions (imposed by in-house
coding style manuals). In the proposed talk we can discuss
some of them, with details sketched below.
The process of incrementally covering a legacy software

language goes as follows:

• there is a legacy language, represented by a complete
codebase of the customer company and complemented
by the knowledge of the in-house experts;
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• there is a grammar that covers some of the language
and is being continuously worked and improved on;

• one of the failing code samples is considered by the
grammar engineer who changes the grammar to ac-
commodate it;

• the cycle is repeated until the entire codebase can be
parsed and compiled (or migrated).

The idea of incremental grammar engineering was con-
ceptually proposed by Klint et al. [12], there is a case study
reported in detail [1], there are techniques to converge mul-
tiple imperfect grammars [15] and many others that can
also be useful. These techniques can be either applied di-
rectly or used from a language workbench [3, 5] such as
Rascal [13], Spoofax [9], ASF+SDF Meta-Environment [11],
JastAdd [7], Xtext [4], Intentional [19] or MPS [22]. As a
more recent example of a realistic combination of grammar
engineering, tool building and static program analysis, we re-
fer to [21]. However, the incremental aspect is not researched
well enough to provide tool support for it (which would go
beyond conceptual process guidelines). There is research
on incremental parsing, which is usually a combination of
semiparsing [23] and ad hoc algorithms of selective or lazy
parsing. However, they solve a much less painful problem
of reducing parse time, as opposed to reducing compiler de-
velopment time, which has substantially bigger impact on
developers’ lives. It is possible for powerful parallel parsing
techniques in combination with bug prioritisation and error
clustering to become somewhat useful at some point, but
not in the near future.

2 Research Challenges
We identify at least the following research challenges:

Regression Parsing
Similar to regression testing [18] we would like to be able to
quickly and incrementally check if the change in the gram-
mar has had any detrimental effect on the standing coverage
of the language. Reparsing the entire codebase is definitely
an option, but the usual scale of legacy portfolios is in the
tens or hundreds of millions of lines of code, which unnec-
essarily brings up scalability and performance challenges
toward the very beginning of the project. (During later stages
of the project this typically takes place on a separate server
running the nightly build system).

Test Suite Inference from Codebase
The current practice of regression parsing is to approximate
the codebase with a test suite which must be gradually de-
signed by hand and coevolve [14] with each discovered detail
of the language. Alternatively, this can be done automatically
by a some combination of test prioritisation [20], test suite
minimisation [21], as well as machine learning techniques
based on the assumption of the naturalness of software [8]
which was shown to yield positive results in the past with

language identification [10] and works very effectively with
position-sensitive pattern languages [24].

Dependency Analysis within the Grammar
Many incremental techniques can be based on the knowledge
of dependencies existing within the grammar, since it enables
fast and cheap impact analysis of the changes. There is a
substantial body of techniques and tools on change impact
analysis [17], but to the best of our knowledge, they have
not yet been extended to grammars, parsing specifications
and other compiler-building models.

Dependency Analysis on the Grammar vs. Samples
Alternatively or complementary, we can investigate and de-
velop algorithms for tracing dependencies between the code-
base (or some representation thereof like a repository of
parse trees) and the grammar, and updating the parsabil-
ity metadata incrementally whenever needed or whenever
the CPU is idle, to provide the results of regression/impact
analysis to the grammar engineer.

Neighbour Analysis
A lot of grammar development cycles are lost on tiny tweaks
of features: can you only print a variable or can it be any
expression? is assignment target always one identifier or can
it be multiple? can you call a method on the result of call
of another method? is there an else clause to the if? how
does a default clause of the caseof look like? The answers
to all these questions in mainstream languages are either
straightforward or easily obtained from language manuals.
For legacy languages, we must follow the trial and error
approach. However, it should be possible, given both the
original tested grammar and the changed one, and detailed
enough information about the language coverage of both,
to identify and show examples of “near misses”—cases that
were bluntly rejected by the original grammar and still fail
in the new one but “later” or “better” by some definition.

3 Conclusion
We have raised a question of developing a systematic ap-
proach of covering legacy software languages incrementally,
and outlined a few challenges to be solved in developing,
testing, validating and deploying parsers and other form of
grammarware. There do not seem to be major roadblocks
in this research direction, but engineering and architectural
challenges are substantial.
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