Objectifying a Metaprogramming Language

Vadim Zaytsev
Raincode Labs, Brussels, Belgium
vadim@grammarware.net

ACM Reference format:

Vadim Zaytsev. 2017. Objectifying a Metaprogramming Language.
In Proceedings of the -2th Workshop on New Object-Oriented Lan-
guages, Vancouver, Canada, October 2017 (NOOL’17), 1 pages.

Abstract

Introducing object-oriented functionality is well-studied in
the context of reverse and re-engineering for at least two
decades [2-4], and on the instance level can usually be auto-
mated at least to some extent by object/component identifi-
cation and wrapping techniques. In this abstract we would
like to consider the same problem for forward engineering
and apply it on the language level.

We have implemented a language extension for Rascal
metaprogramming language [1]. Rascal combines features
and syntax from Java, Haskell, SDF and some other lan-
guages, as well as implements some design patterns as built-
in language constructs: it is a comfortable language for pro-
totyping compilers and similar tools for program analy-
sis and translation. Our primary goal was to create a non-
disrupting extension that would “blend in” and allow to use
the classic features of Rascal naturally together with OO
code. The result is called BOOL, short for Binary Object-
Oriented Language, because each statement of the language
is a binary binding. The prototype is publicly available at
http://github.com/grammarware/bool.

Rascal’s syntax for defining composite types seemed like
a good notation, so we extended it to cover concrete syn-
tax constructs to create a sense of symmetry. A BOOL pro-
grammer can write “Foo := plus[word] ~ list[str]”, to
automatically generate a concrete syntax for parsing layout-
separated sequences of words (the left hand of the bind-
ing), an abstract syntax to represent them as lists of strings
(the right hand), and constructors to create an abstract in-
stance from any concrete instance (parse tree), or its tex-
tual (parsable) representation, or pure data. Classes are de-
fined the same way, e.g. “Point := seq[int x, comma,
int y] ~class[int x, int y, method add, method
sub]”, and require a separate declaration for each of the

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

NOOL’17, October 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s).

methods, which are bindings from function signatures to
code, e.g., “Point.add := fun[Point 1, Point r] ~
Point[x:=1.x+r.x; y:=1.y+r.y]”. Such a class gets com-
piled to an algebraic data type, which allows native Rascal
code to access fields and methods with a dot notation, but
requires adding a disposable constructor name.

To make the extension more elegant and efficient, we allow
to split classes into records and clusters. Records contain
only data, cannot be recursive and thus are easily compilable
to Rascal tuples, e.g., “Pair := seq[int x, comma, int y]
~record[int x, int y]”. Clusters contain only code of
what can be seen as static methods in other languages, e.g.,
“Point := Pair ~ cluster[method add, method sub]”,
which gets compiled to another tuple type. In this example, a
Rascal programmer can then instantiate a Pair and use it as a
Point, e.g. “Point.add(newPair(1,2),newPair(3,4))”. If
the left hand of the cluster binding is a record name, nothing
special happens, but if it is another cluster, the new cluster in-
herits all the methods of the original one, e.g., “Complex :=
Point ~ cluster[method mul]” will assume Complex.add
and Complex. sub to have the same semantics as Point.add
and Point. sub, respectively, unless explicitly overridden.

The absence of the right hand of a binding is denoted by
a dot and is useful for defining negligible concrete syntax,
e.g., “Layout := or[space, tab, newlinel~ .”.

The result is an extremely concise DSL that compiles
BOOL bindings to Rascal grammars, data types and map-
pings, and allows to use OO-like abstractions and techniques
in accompanying Rascal code. It remains to be seen what the
boundaries are of the chosen implementation strategy, and
in general how it compares to alternatives (such as tuples of
data-encapsulating closures), but a presentation can include
demonstration of many interesting implementation details.

References

[1] P.Klint, T. van der Storm, and J. J. Vinju. 2009. Rascal: A Domain
Specific Language for Source Code Analysis and Manipulation. In
SCAM. IEEE, 168-177. https://doi.org/10.1109/SCAM.2009.28

[2] G. A.Di Lucca, A. R. Fasolino, P. Guerra, and S. Petruzzelli. 1997. Mi-
grating Legacy Systems towards Object-Oriented Platforms. In ICSM.
IEEE, 122-129. https://doi.org/10.1109/ICSM.1997.624238

[3] P.Newcomb and G. Kotik. 1995. Reengineering Procedural into Object-
Oriented Systems. In WCRE. IEEE, 237-249. https://doi.org/10.1109/
WCRE.1995.514712

[4] S.Pidaparthi and G. Cysewski. 1997. Case Study in Migration to Object-
Oriented System Structure Using Design Transformation Methods. In
CSMR. IEEE, 128-135. https://doi.org/10.1109/CSMR.1997.583021


http://github.com/grammarware/bool
http://tutor.rascal-mpl.org/Rascal/Declarations/AlgebraicDataType/AlgebraicDataType.html
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/ICSM.1997.624238
https://doi.org/10.1109/WCRE.1995.514712
https://doi.org/10.1109/WCRE.1995.514712
https://doi.org/10.1109/CSMR.1997.583021

	References

