Two-Faced Data

Vadim Zaytsev, vadim@grammarware.net

Raincode, Belgium

Intent

One data fragment has several alternative structural representations tailored
toward specific data manipulation approaches.

Also Known As

o Concrete Syntax and Abstract Syntax
o simplifying concrete syntax to abstract syntax [20, 58]
o parsing [44], more than parsing [24,30], parsing in a broad sense [61]
o object grammars [52]
¢ Interparadigmatic Data Binding
o COBOL — OO — Relational databases — XML [35]
o OO — Relational [13]
o CRUD — OO [49]
¢ XML Data Binding
o XML to Java [37]
o XML to Haskell |6]
o XML to C# [38]
¢ GUI Data Binding
o generic GUISs [1]
o WebSocket-based data binding [23]
o Intermediate Representation
o support imperative and declarative idioms [34]
o multiple languages within one paradigm: FP [27], OO [11]
o implementation-geared [5,42]
o validation-geared [9] and analysis-geared [22,31]
o Views
o integrated personalised views in databases [48]
o model views [3,4,10]
o view-based software engineering [7,46]
o architectural views [15,51,59]

mailto:vadim@grammarware.net

Motivation

When modelling or programming, people tend to think in terms of conceptual
constructs: “inheritance” (of classes), “conformance” (of models to metamodels),
“conditional statement” (programming), “input” (data flow, side effects) and oth-
ers. In practice these conceptual entities are represented as concrete elements:
in textual form, in graphical diagrams, in memory blocks, etc. Since the actual
solution has to be expressed in such elements, this notation exposed to the lan-
guage end user, has great impact on the effectiveness of both the solution and
the process of modelling or programming.

Results from ontological analysis tell us that a mapping between a modelling
notation and an underlying domain model (in SE usually the Bunge-Wand-
Weber ontology [57]) should be bijective [39,39,40] to avoid the following issues:

o Construct deficit: when something that exists in the ontology (i.e., in
the mind of domain experts), has no counterpart in the modelling nota-
tion. Notations with construct deficit are called incomplete and have their
place in environments that are deliberately limited for reasons of security or
(sub)domain-specificity.

¢ Construct redundancy: when one conceptual entity can be modelled with
more than one notational construct that are identical or subtly different
from one another. Notations with construct overloaded are called wunclear
and are advocated by ontological analysts to be defective. Construct re-
dundancy in programming languages often leads to discussions of taste and
conventions being imposed on top of the language. For example, a func-
tional language called Haskell [26] supports comprehensions and higher order
functions equally well, so map (\x->x*x) xs is equally acceptable, equally
performant and equally maintainable as [x*x | x <- xs], and the choice is
up to the particular programmer. Other functional languages like Rascal [29]
have better support for comprehensions than for explicit mappings, so the
choice there has farther going consequences, known only to programmers
that reached certain affinity with the language at hand.

¢ Construct overload: when one notational entity represents several con-
ceptual entities. Notations with this smell are a different kind of unclear:
they are merely slightly counter-intuitive to domain experts but give wrong
impressions to those who learn the domain through this notation. A famous
example nowadays is the Git version control framework that bundles unre-
lated functionality: for instance, git reset is a command that, depending
on parameters, can simply “unstage” code changes (which means they will
not be included in the next commit) or undo several unpushed commits or
even irrecoverably wipe any pending changes away.

¢ Construct excess is said to happen when a modelling notation have ele-
ments that do not have any correspondence in the domain model. Notations
frequently have construct excesses as practical shortcuts and quick hacks that

solve the problem at hand but are totally alien to the uninvolved domain
experts. Excessive constructs are never “designed” into a notation but find
their way into it by the time of implementation, especially under deadline
pressure.

Success stories from updatable views in databases [8], synchronised model
views [4], data integration [43], serialisation [16] and structure editors [25] demon-
strate how it can be useful to have several systematic representations of the same
underlying constructs [14]. We argue that this pattern is universal to the entire
software language engineering and thus can be used across technical spaces any-
where where a language has several user groups or application varieties.

Applicability

Use the Two-Faced Data pattern when

¢ You design a software language and must provide functionality in the entire
spectrum from parsing the textual input to advanced semantic consistency
validation like type checking.

o If you make your grammar too close to the desired conceptual represen-
tation, you risk making it ambiguous, inefficient for parsing and/or not
user friendly for the language users. Projectional language workbenches
deliberately choose this path due to their naturally powerful IDE sup-
port [25,55,56], other approaches are filled with perils, unless they adopt
the same techniques [53].

o If you make it too close to the desired way of writing and reading
sentences in the language, you risk overburdening your traversals and
rewritings with unnecessary details concerning a particular textual rep-
resentation. Solutions without multiple “faces” usually include conven-
tions that allow to use one representation to mean multiple things at
once [28,54] (e.g., using layout for pretty-printing but ignoring it for
parsing/matching).

¢ You want your software language to have both textual and visual concrete
syntax which are conceptually the same but technically get a different rep-
resentation each. Due to the “natural” flow of the textual representation
(usually left to right, character by character) and a much freer structure of
the visual syntax, elements that correspond to the same entities may not only
be represented differently individually, but also appear in different order.

¢ The need for several notations of one domain-specific language is widely
known and acknowledged in practice [18, 36], but its foundations are
lagging somewhat behind.

¢ In general textual information is perceived by humans to be more trust-
worthy [50] and is faster digestible [45], but with appropriate training
visual notations can be more effective and maintainable [41,47].

¢ Graphical models of text that take physical distance between words into
account [2] and consider the visual aspect of operations performed on
text [12] are an emerging field of research without a readily available
cookbook of practically mature recipes.

o Structured data that you are working with, needs to be serialised — for
storage, communication or backup.

¢ Using the existing textual syntax would mean losing the structure and
may imply future overhead and/or ambiguity in deserialising such data.

¢ In practice people tend to develop a yet another format which conceptu-
ally represents the same structure of the same data, but is more suitable
for marshalling and unmarshalling. Such a format can be a standalone
project but usually is a sublanguage of XML or JSON.

Structure
Metamodel — — — Language e mmm m— Metamodel
1 definiti0n0f> og o <definitionOf 2
I
conformsTo |e|ement0f conformsTo
|
o ...
correspondsTo correspondsTo
inputOf inputOf
A 2 \

Participants and Collaborations

The same language (yellow box on the megamodel) can be defined by different,
possibly incomplete, metamodels, and thus the models that conform to them,
correspond to the same language instances, but belong to different technological
stacks and thus can be effectively used with different algorithms. Functions Fj,
are used in a broad sense and can represent true functions like sorting or traver-
sals, as well as other data manipulation activities such as editing or validation.

Implementation

Consider the following implementation issues:

o If the “faces” of the data allow interaction, you need some set of bidirec-
tional update mappings; these imply overhead which might outweigh the
advantages of using the faces.

¢ One of the “faces” can be dominant within a domain for historical reasons and
so advanced that over the time it developed all necessary algorithms usually
associated with other faces — e.g., concrete syntax in metaprogramming [54].

© Some mapping need to bridge a semantic gap between “faces” that cannot
be fully bridged — e.g., ADT vs OO [13], even though many practically
sufficing strategies exist [35].

¢ In scenarios with more than two “faces” it gets too complex to develop direct
mappings for each pair; in that case it is better to consider a star-shaped
infrastructure with one canonic representation which is capable of synchro-
nising with any of the other ones.

o When metamodels are well-defined and their differences are explicitly ex-
pressed, we can do coupled transformations [32] — that is, infer model-level
mappings from metamodel-level ones. This has been done for various techni-
cal spaces: modelware [21], grammarware [60], databases [19], xmlware [33].

Sample Code

Consider the following Rascal [29] code:

data A = foo(bool)

| bar(set[A] xs)

s

It defines a piece of very simple abstract data type with two constructors. The
metaprogramming facilities provided by Rascal allow us to comfortably traverse
instances structured in such a way and perform computations:

visit(T)
{
foo(True) : cx += 1
}
(even more concise, len([1 | /foo(True) := T])), and in place rewritings:
visit(T)
{
bar(_) => foo(False)
}

However, writing them to a file can only be done in one fixed notation, and
reading back will not be smooth. For such actions, we need concrete syntax —
for example, this one:

syntax A = foo: "F00"?
| bar: l|<|l {A ll:ll}+ l|>ll;

Parsing any textual input with this concrete syntax definition is trivial in
Rascal with the use of parse(#A, ...) function. The resulting trees, however,
are somewhat clunky, contain too much information (who cares that we used
colons as a separator? should we really update the traversal code if the separator
changes in the future?) and can only be traversed in their default term form.
However, there is a built-in matching function called implode that can couple
the two:

T = implode(A, parse(#A, input))

The implode function follows grammar production alternative labels and
match them to the constructors of the data type. Then, it maps the presence
of FOO text to a true value and the lack of it to a false value of the Boolean
argument of the foo constructor. Parse-guiding anti-ambiguity angle brackets
in the concrete syntax carry no structural meaning, so they are disregarded,
and the collection of inner entries is mapped to a set because that is what the
abstract data type expects (it could have been mapped to a list instead).

Related Patterns

Adapter; Bridge; Visitor; Interpreter [17].

References

1. P. Achten, M. C. J. D. van Eekelen, and M. J. Plasmeijer. Compositional Model-
Views with Generic Graphical User Interfaces. In Proceedings of the Sizth Inter-
national Symposium on Practical Aspects of Declarative Languages, volume 3057
of LNCS, pages 39-55. Springer, 2004.

2. C. C. Aggarwal and P. Zhao. Graphical Models for Text: a New Paradigm for Text
Representation and Processing. In Proceedings of the 33rd International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages
899-900. ACM, 2010.

3. A. Anjorin, S. Rose, F. Deckwerth, and A. Schiirr. Efficient Model Synchronization
with View Triple Graph Grammars. In Proceedings of the 10th European Confer-
ence on Modelling Foundations and Applications, volume 8569 of LNCS, pages
1-17. Springer, 2014.

4. M. Antkiewicz and K. Czarnecki. Design Space of Heterogeneous Synchronization.
In R. Lammel, J. Visser, and J. Saraiva, editors, Revised Papers of the Second
International Summer School on Generative and Transformational Techniques in
Software Engineering, volume 5235 of LNCS, pages 3-46. Springer, 2007.

5. Z. M. Ariola and Arvind. P-TAC: A Parallel Intermediate Language. In Proceedings
of the Fourth Conference on Functional Programming Languages and Computer
Architecture, pages 230-242. ACM Press, 1989.

10.

11.

12.

13.

14.

15.

16.

17.

F. Atanassow, D. Clarke, and J. Jeuring. UUXML: A Type-Preserving XML
Schema-Haskell Data Binding. In Proceedings of the Sizth International Sympo-
stum on Practical Aspects of Declarative Languages, volume 3057 of LNCS, pages
71-85. Springer, 2004.

C. Atkinson. Orthographic Software Modelling: A Novel Approach to View-Based
Software Engineering. In Proceedings of the Sizth European Conference on Mod-
elling Foundations and Applications, volume 6138 of LNCS, page 1. Springer, 2010.

F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM
TODS, 6(4):557-575, 1981.

M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L. Mounier.
IF: An Intermediate Representation and Validation Environment for Timed Asyn-
chronous Systems. In Proceedings of the World Congress on Formal Methods in
the Development of Computing Systems. Volume I, volume 1708 of LNCS, pages
307-327. Springer-Verlag, 1999.

R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Systems, Views and
Models of UML. In The Unified Modeling Language — Technical Aspects and
Applications, pages 93-108. Physica-Verlag, 1997.

J. Chen and D. Tarditi. A Simple Typed Intermediate Language for Object-
Oriented Languages. In J. Palsberg and M. Abadi, editors, Proceedings of the
32nd Symposium on Principles of Programming Languages, pages 38-49. ACM,
2005.

S. Conversy. Unifying Textual and Visual: A Theoretical Account of the Visual
Perception of Programming Languages. In Proceedings of the Fourth Symposium
on New Ideas in Programming and Reflections on Software, pages 201-212. ACM,
2014.

W. R. Cook. On Understanding Data Abstraction, Revisited. In S. Arora and G. T.
Leavens, editors, Proceedings of the 24th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 557-572. ACM, 2009.

K. Czarnecki, J. N. Foster, Z. Hu, R. Lammel, A. Schiirr, and J. F. Terwilliger.
Bidirectional Transformations: A Cross-Discipline Perspective. In R. F. Paige,
editor, Proceedings of the Second International Conference on Theory and Practice
of Model Transformations, volume 5563 of LNCS, pages 260—283. Springer, 2009.

G. El-Boussaidi, A. B. Belle, S. Vaucher, and H. Mili. Reconstructing Architectural
Views from Legacy Systems. In Proceedings of the 19th Working Conference on
Reverse Engineering, pages 345—-354. IEEE Computer Society, 2012.

K. Fisher and R. Gruber. PADS: A Domain-Specific Language for Processing
Ad Hoc Data. In V. Sarkar and M. W. Hall, editors, Proceedings of the 26th
Conference on Programming Language Design and Implementation, pages 295-304.
ACM, 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Gogolla, L. Hamann, J. Xu, and J. Zhang. Exploring (Meta-)Model Snapshots
by Combining Visual and Textual Techniques. FElectronic Communications of the
European Association of Software Science and Technology (EC-EASST), 41, 2011.

M. Gogolla and A. Lindow. Transforming Data Models with UML. In Knowledge
Transformation for the Semantic Web, pages 18-33. I0S Press, 2003.

R. W. Gray, S. P. Levi, V. P. Heuring, A. M. Sloane, and W. M. Waite. Eli: A
Complete, Flexible Compiler Construction System. Communications of the ACM,
35(2):121-130, Feb. 1992.

T. Girba, J.-M. Favre, and S. Ducasse. Using Meta-Model Transformation to Model
Software Evolution. Electronic Notes in Theoretical Computer Science, 137(3):57—
64, 2005.

J. Hayes, W. G. Griswold, and S. Moskovics. Component Design of Retargetable
Program Analysis Tools That Reuse Intermediate Representations. In C. Ghezzi,
M. Jazayeri, and A. L. Wolf, editors, Proceedings of the 22nd International Con-
ference on Software Engineering, pages 356-365. ACM, 2000.

M. Heinrich and M. Gaedke. Data Binding for Standard-based Web Applications.
In S. Ossowski and P. Lecca, editors, Proceedings of the 27th Symposium on Applied
Computing, pages 652—-657. ACM, 2012.

A. Herranz and P. Nogueira. More Than Parsing. In F. J. L. Fraguas, editor, V
Jornadas Sobre Programacion y Lenguajes, Conferencia Espaniola de Informdtica
(CEDI’05), pages 193-202. Thomson Paraninfo, 2005.

Z. Hu, S.-C. Mu, and M. Takeichi. A Programmable Editor for Developing Struc-
tured Documents Based on Bidirectional Transformations. Higher-Order and Sym-
bolic Computation, 21(1-2):89-118, 2008.

P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzméan, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-
tain, and J. Peterson. Report on the Programming Language Haskell: A Non-
strict, Purely Functional Language Version 1.2. SIGPLAN Notices, 27(5):1-164,
May 1992.

S. L. P. Jones, M. Shields, J. Launchbury, and A. P. Tolmach. Bridging the Gulf:
A Common Intermediate Language for ML and Haskell. In D. B. MacQueen and
L. Cardelli, editors, Proceedings of the 25th Symposium on Principles of Program-
ming Languages, pages 49-61. ACM, 1998.

L. C. L. Kats, K. T. Kalleberg, and E. Visser. Interactive Disambiguation of Meta
Programs with Concrete Object Syntax. In B. A. Malloy, S. Staab, and M. van den
Brand, editors, Revised Selected Papers of the Third International Conference on
Software Language Engineering, volume 6563 of LNCS, pages 327-336. Springer,
2010.

P. Klint, T. van der Storm, and J. J. Vinju. EASY Meta-programming with Ras-
cal. In J. M. Fernandes, R. Lammel, J. Visser, and J. Saraiva, editors, Revised
Papers of the Third International Summer School on Generative and Transforma-
tional Techniques in Software Engineering, volume 6491 of LNCS, pages 222-289.
Springer, 2009.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

J. Kort, R. Lammel, and C. Verhoef. The Grammar Deployment Kit — System
Demonstration. Electronic Notes in Theoretical Computer Science, LDTA Special
Issue, 65(3):117-123, 2002.

R. Koschke and J.-F. Girard. An Intermediate Representation for Reverse En-
gineering Analyses. In Proceedings of the Fifth Working Conference on Reverse
Engineering, pages 241-250. IEEE Computer Society, 1998.

R. Ladmmel. Transformations Everywhere. Science of Computer Programming,
52:1-8, 2004.

R. Limmel and W. Lohmann. Format Evolution. In RETIS, volume 155, pages
113-134. OCG, 2001.

R. Leifla, M. Koster, and S. Hack. A Graph-Based Higher-Order Intermediate Rep-
resentation. In K. Olukotun, A. Smith, R. Hundt, and J. Mars, editors, Proceedings
of the 13th International Symposium on Code Generation and Optimization, pages
202-212. IEEE Computer Society, 2015.

R. Lammel and E. Meijer. Mappings Make Data Processing Go 'Round. In R. Lam-
mel, J. Saraiva, and J. Visser, editors, Revised Papers of the First International
Summer School on Generative and Transformational Techniques in Software En-
gineering, volume 4143 of LNCS, pages 169-218. Springer, 2005.

S. Maro, J.-P. Steghofer, A. Anjorin, M. Tichy, and L. Gelin. On Integrating
Graphical and Textual Editors for a UML Profile Based Domain Specific Lan-
guage: An Industrial Experience. In R. F. Paige, D. D. Ruscio, and M. Vdlter,
editors, Proceedings of the Eighth International Conference on Software Language
Engineering, pages 1-12. ACM, 2015.

B. McLaughlin. Java and XML Data Binding. Nutshell handbook. O’Reilly &
Associates, 2002.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: Reconciling Object, Relations
and XML in the .NET Framework. In SIGMOD Conference, page 706. ACM, 2006.

D. L. Moody. The “Physics” of Notations: A Scientific Approach to Designing
Visual Notations in Software Engineering. In J. Kramer, J. Bishop, P. T. De-
vanbu, and S. Uchitel, editors, Proceedings of the 32nd International Conference
on Software Engineering, volume 2, pages 485-486. ACM, 2010.

D. L. Moody and J. van Hillegersberg. Evaluating the Visual Syntax of UML:
An Analysis of the Cognitive Effectiveness of the UMLFamily of Diagrams. In
D. GaSevié, R. Limmel, and E. V. Wyk, editors, Revised Selected Papers of the
First International Conference on Software Language Engineering, volume 5452 of
LNCS, pages 16-34. Springer, 2008.

B. Mora, F. Garcia, F. Ruiz, and M. Piattini. Graphical Versus Textual Soft-
ware Measurement Modelling: An Empirical Study. Software Quality Journal,
19(1):201-233, 2011.

P. A. Nelson. A Comparison of PASCAL Intermediate Languages. In Proceedings of
the 1979 SIGPLAN Symposium on Compiler Construction, pages 208-213. ACM,
1979.

43

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

J. N. Oliveira. Transforming Data by Calculation. In R. Liammel, J. Visser, and
J. Saraiva, editors, Revised Papers of the Second International Summer School
on Generative and Transformational Techniques in Software Engineering, volume
5235 of LNCS, pages 134-195. Springer, 2007.

T. Parr and K. Fisher. LL(*): The Foundation of the ANTLR Parser Generator.
In M. W. Hall and D. A. Padua, editors, Proceedings of the 32nd Conference on
Programming Language Design and Implementation, pages 425-436. ACM, 2011.

Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y.-G. Guéhéneuc. An Em-
pirical Study on the Efficiency of Graphical versus Textual Representations in
Requirements Comprehension. In Proceedings of the 21st International Conference
on Program Comprehension, pages 33—42, 2013.

J. J. Shilling and P. F. Sweeney. Three Steps to Views: Extending the Object-
Oriented Paradigm. In G. Bosworth, editor, Proceedings of the Fourth Conference
on Object-Oriented Programming: Systems, Languages, and Applications, pages
353-361. ACM, 1989.

D. Stein and S. Hanenberg. Comparison of a Visual and a Textual Notation to
Express Data Constraints in Aspect-Oriented Join Point Selections: A Controlled
Experiment. In Proceedings of the 19th International Conference on Program Com-
prehension, pages 141-150. IEEE Computer Society, 2011.

D. E. Swartwout and J. P. Fry. Towards the Support of Integrated Views of
Multiple Databases: An Aggregate Schema Facility. In E. I. Lowenthal and N. B.
Dale, editors, Proceedings of the Eighth ACM SIGMOD International Conference
on Management of Data, pages 132-143. ACM, 1978.

D. Thomas. The Impedance Imperative Tuples + Objects + Infosets = Too Much
Stuft! Journal of Object Technology, 5(2):7-12, 2003.

C. L. Toma. Perceptions of Trustworthiness Online: The Role of Visual and Textual
Information. In Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work, pages 13—22. ACM, 2010.

Q. Tu and M. W. Godfrey. The Build-Time Software Architecture View. In
Proceedings of the 17th International Conference on Software Maintenance, pages
398-407. IEEE Computer Society, 2001.

T. van der Storm, W. R. Cook, and A. Loh. The Design and Implementation of
Object Grammars. Science of Computer Programming, 96:460-487, 2014.

O. van Rest, G. Wachsmuth, J. R. H. Steel, J. G. Siif, and E. Visser. Robust
Real-Time Synchronization between Textual and Graphical Editors. In K. Duddy
and G. Kappel, editors, Proceedings of the Sizth International Conference on The-
ory and Practice of Model Transformations, volume 7909 of LNCS, pages 92-107.
Springer, 2013.

E. Visser. Meta-programming with Concrete Object Syntax. In Proceedings of
the Second International Conference on Generative Programming and Component
Engineering, volume 2487 of LNCS, pages 299-315. Springer, 2002.

10

55.

56.

57.

58.

59.

60.

61.

M. Vélter. Embedded Software Development with Projectional Language Work-
benches. In D. C. Petriu, N. Rouquette, and @Qystein Haugen, editors, Proceedings
of the 13th International Conference on Model Driven Engineering Languages and
Systems, Part II, volume 6395 of LNCS, pages 32-46. Springer, 2010.

M. Vélter, J. Siegmund, T. Berger, and B. Kolb. Towards User-Friendly Projec-
tional Editors. In B. Combemale, D. J. Pearce, O. Barais, and J. J. Vinju, editors,
Proceedings of the Seventh International Conference on Software Language Engi-
neering, volume 8706 of LNCS, pages 41-61. Springer, 2014.

Y. Wand and R. A. Weber. An Ontological Model of an Information System. IEEE
TSE, 16(11):1282-1292, 1990.

D. S. Wile. Abstract Syntax from Concrete Syntax. In W. R. Adrion, A. Fuggetta,
R. N. Taylor, and A. I. Wasserman, editors, Proceedings of the 19th International
Conference on Software Engineering, pages 472-480. ACM, 1997.

A.S. Yeh, D. R. Harris, and M. P. Chase. Manipulating Recovered Software Archi-
tecture Views. In W. R. Adrion, A. Fuggetta, R. N. Taylor, and A. I. Wasserman,
editors, Proceedings of the 19th International Conference on Software Engineering,
pages 184-194. ACM, 1997.

V. Zaytsev. Cotransforming Grammars with Shared Packed Parse Forests. Elec-
tronic Communications of the European Association of Software Science and Tech-
nology (EC-EASST), Graph Computation Models, 2016. In print.

V. Zaytsev and A. H. Bagge. Parsing in a Broad Sense. In J. Dingel, W. Schulte,
I. Ramos, S. Abrah&o, and E. Insfran, editors, Proceedings of the 17th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2014),
volume 8767 of LNCS, pages 50—67. Springer, Oct. 2014.

11

