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Intent

One data fragment has several alternative structural representations tailored
toward specific data manipulation approaches.

Also Known As

o Concrete Syntax and Abstract Syntax
o simplifying concrete syntax to abstract syntax [20, 58]
o parsing [44], more than parsing [24,30], parsing in a broad sense [61]
o object grammars [52]
¢ Interparadigmatic Data Binding
o COBOL — OO — Relational databases — XML [35]
o OO — Relational [13]
o CRUD — OO [49]
¢ XML Data Binding
o XML to Java [37]
o XML to Haskell |6]
o XML to C# [38]
¢ GUI Data Binding
o generic GUISs [1]
o WebSocket-based data binding [23]
o Intermediate Representation
o support imperative and declarative idioms [34]
o multiple languages within one paradigm: FP [27], OO [11]
o implementation-geared [5,42]
o validation-geared [9] and analysis-geared [22,31]
o Views
o integrated personalised views in databases [48]
o model views [3,4,10]
o view-based software engineering [7,46]
o architectural views [15,51,59]
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Motivation

When modelling or programming, people tend to think in terms of conceptual
constructs: “inheritance” (of classes), “conformance” (of models to metamodels),
“conditional statement” (programming), “input” (data flow, side effects) and oth-
ers. In practice these conceptual entities are represented as concrete elements:
in textual form, in graphical diagrams, in memory blocks, etc. Since the actual
solution has to be expressed in such elements, this notation exposed to the lan-
guage end user, has great impact on the effectiveness of both the solution and
the process of modelling or programming.

Results from ontological analysis tell us that a mapping between a modelling
notation and an underlying domain model (in SE usually the Bunge-Wand-
Weber ontology [57]) should be bijective [39,39,40] to avoid the following issues:

o Construct deficit: when something that exists in the ontology (i.e., in
the mind of domain experts), has no counterpart in the modelling nota-
tion. Notations with construct deficit are called incomplete and have their
place in environments that are deliberately limited for reasons of security or
(sub)domain-specificity.

¢ Construct redundancy: when one conceptual entity can be modelled with
more than one notational construct that are identical or subtly different
from one another. Notations with construct overloaded are called wunclear
and are advocated by ontological analysts to be defective. Construct re-
dundancy in programming languages often leads to discussions of taste and
conventions being imposed on top of the language. For example, a func-
tional language called Haskell [26] supports comprehensions and higher order
functions equally well, so map (\x->x*x) xs is equally acceptable, equally
performant and equally maintainable as [x*x | x <- xs], and the choice is
up to the particular programmer. Other functional languages like Rascal [29]
have better support for comprehensions than for explicit mappings, so the
choice there has farther going consequences, known only to programmers
that reached certain affinity with the language at hand.

¢ Construct overload: when one notational entity represents several con-
ceptual entities. Notations with this smell are a different kind of unclear:
they are merely slightly counter-intuitive to domain experts but give wrong
impressions to those who learn the domain through this notation. A famous
example nowadays is the Git version control framework that bundles unre-
lated functionality: for instance, git reset is a command that, depending
on parameters, can simply “unstage” code changes (which means they will
not be included in the next commit) or undo several unpushed commits or
even irrecoverably wipe any pending changes away.

¢ Construct excess is said to happen when a modelling notation have ele-
ments that do not have any correspondence in the domain model. Notations
frequently have construct excesses as practical shortcuts and quick hacks that



solve the problem at hand but are totally alien to the uninvolved domain
experts. Excessive constructs are never “designed” into a notation but find
their way into it by the time of implementation, especially under deadline
pressure.

Success stories from updatable views in databases [8], synchronised model
views [4], data integration [43], serialisation [16] and structure editors [25] demon-
strate how it can be useful to have several systematic representations of the same
underlying constructs [14]. We argue that this pattern is universal to the entire
software language engineering and thus can be used across technical spaces any-
where where a language has several user groups or application varieties.

Applicability

Use the Two-Faced Data pattern when

¢ You design a software language and must provide functionality in the entire
spectrum from parsing the textual input to advanced semantic consistency
validation like type checking.

o If you make your grammar too close to the desired conceptual represen-
tation, you risk making it ambiguous, inefficient for parsing and/or not
user friendly for the language users. Projectional language workbenches
deliberately choose this path due to their naturally powerful IDE sup-
port [25,55,56], other approaches are filled with perils, unless they adopt
the same techniques [53].

o If you make it too close to the desired way of writing and reading
sentences in the language, you risk overburdening your traversals and
rewritings with unnecessary details concerning a particular textual rep-
resentation. Solutions without multiple “faces” usually include conven-
tions that allow to use one representation to mean multiple things at
once [28,54] (e.g., using layout for pretty-printing but ignoring it for
parsing/matching).

¢ You want your software language to have both textual and visual concrete
syntax which are conceptually the same but technically get a different rep-
resentation each. Due to the “natural” flow of the textual representation
(usually left to right, character by character) and a much freer structure of
the visual syntax, elements that correspond to the same entities may not only
be represented differently individually, but also appear in different order.

¢ The need for several notations of one domain-specific language is widely
known and acknowledged in practice [18, 36], but its foundations are
lagging somewhat behind.

¢ In general textual information is perceived by humans to be more trust-
worthy [50] and is faster digestible [45], but with appropriate training
visual notations can be more effective and maintainable [41,47].



¢ Graphical models of text that take physical distance between words into
account [2] and consider the visual aspect of operations performed on
text [12] are an emerging field of research without a readily available
cookbook of practically mature recipes.

o Structured data that you are working with, needs to be serialised — for
storage, communication or backup.

¢ Using the existing textual syntax would mean losing the structure and
may imply future overhead and/or ambiguity in deserialising such data.

¢ In practice people tend to develop a yet another format which conceptu-
ally represents the same structure of the same data, but is more suitable
for marshalling and unmarshalling. Such a format can be a standalone
project but usually is a sublanguage of XML or JSON.
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Participants and Collaborations

The same language (yellow box on the megamodel) can be defined by different,
possibly incomplete, metamodels, and thus the models that conform to them,
correspond to the same language instances, but belong to different technological
stacks and thus can be effectively used with different algorithms. Functions Fj,
are used in a broad sense and can represent true functions like sorting or traver-
sals, as well as other data manipulation activities such as editing or validation.

Implementation

Consider the following implementation issues:

o If the “faces” of the data allow interaction, you need some set of bidirec-
tional update mappings; these imply overhead which might outweigh the
advantages of using the faces.



¢ One of the “faces” can be dominant within a domain for historical reasons and
so advanced that over the time it developed all necessary algorithms usually
associated with other faces — e.g., concrete syntax in metaprogramming [54].

© Some mapping need to bridge a semantic gap between “faces” that cannot
be fully bridged — e.g., ADT vs OO [13], even though many practically
sufficing strategies exist [35].

¢ In scenarios with more than two “faces” it gets too complex to develop direct
mappings for each pair; in that case it is better to consider a star-shaped
infrastructure with one canonic representation which is capable of synchro-
nising with any of the other ones.

o When metamodels are well-defined and their differences are explicitly ex-
pressed, we can do coupled transformations [32] — that is, infer model-level
mappings from metamodel-level ones. This has been done for various techni-
cal spaces: modelware [21], grammarware [60], databases [19], xmlware [33].

Sample Code

Consider the following Rascal [29] code:

data A = foo(bool)

| bar(set[A] xs)

s

It defines a piece of very simple abstract data type with two constructors. The
metaprogramming facilities provided by Rascal allow us to comfortably traverse
instances structured in such a way and perform computations:

visit(T)
{
foo(True) : cx += 1
}
(even more concise, len([1 | /foo(True) := T])), and in place rewritings:
visit(T)
{
bar(_) => foo(False)
}

However, writing them to a file can only be done in one fixed notation, and
reading back will not be smooth. For such actions, we need concrete syntax —
for example, this one:

syntax A = foo: "F00"?
| bar: l|<|l {A ll:ll}+ l|>ll;



Parsing any textual input with this concrete syntax definition is trivial in
Rascal with the use of parse(#A, ...) function. The resulting trees, however,
are somewhat clunky, contain too much information (who cares that we used
colons as a separator? should we really update the traversal code if the separator
changes in the future?) and can only be traversed in their default term form.
However, there is a built-in matching function called implode that can couple
the two:

T = implode(A, parse(#A, input))

The implode function follows grammar production alternative labels and
match them to the constructors of the data type. Then, it maps the presence
of FOO text to a true value and the lack of it to a false value of the Boolean
argument of the foo constructor. Parse-guiding anti-ambiguity angle brackets
in the concrete syntax carry no structural meaning, so they are disregarded,
and the collection of inner entries is mapped to a set because that is what the
abstract data type expects (it could have been mapped to a list instead).

Related Patterns

Adapter; Bridge; Visitor; Interpreter [17].
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