
Software Language Identification
with Natural Language Classifiers

Juriaan Kennedy van Dam† (juriaankennedy@gmail.com) and Vadim Zaytsev†? (vadim@grammarware.net)
†University of Amsterdam, The Netherlands

?Raincode, Belgium
NB: This PDF is the authors’ version of the paper. It contains more elaborate bibliography and might
have other subtle differences, but the core content is guaranteed to be the same as published by IEEE
in the Proceedings of SANER 2016. You have been warned.

Abstract—Software language identification techniques are ap-
plicable to many situations from universal IDE support to legacy
code analysis. Most widely used heuristics are based on software
artefact metadata such as file extensions or on grammar-based
text analysis such as keyword search. In this paper we propose
to use statistical language models from the natural language
processing field such as n-grams, skip-grams, multinominal naïve
Bayes and normalised compression distance. Our preliminary
experiments show that some of these models used as classifiers
can achieve high precision and recall and can be used to
properly identify language families, languages and even deal with
embedded code fragments.

I. Introduction
Software language identification (SLI) is a problem of

determining correctly which software language was a source
code fragment written in. (We use “code” to deliberately limit
ourselves to textual sequential representations of software arte-
facts. If they happen to be purely graphical, some parsing in
a broad sense [1] in the form of image/object recognition [2],
[3] must happen first to lift their perception to the structural
level, at which point we can use canonical or even ad hoc
representation of such “parsed” structures).

Example scenarios of SLI application include:
• IDE support: syntax highlighting, code completion, de-

ployment environments, refactoring, etc. Many IDEs offer
such support for several different languages, and SLI can
help choosing which environment variant to use.

• Code interaction as the developer-artefact interface can
be affected by the language, determining simple things
like what should happen when an Enter key is pressed,
as well as more global issues like aiding code navigation.

• Reverse engineering a legacy code base, written in an
unknown language or a collection of languages, has at
some point to step up beyond simple language-agnostic
methods to heavyweight reverse engineering activities,
most of which are fundamentally language-specific.

• Code search in unstructured data such as legacy
documentation, email archives, blogosphere, discussion
boards, wiki-websites, can be optimised if code fragments
are reliably identified and classified into languages.

Following Conway’s law, heuristics that use SLI for the
purpose of keyword highlighting often are implemented as

thresholded statistical keyword counters (prone to misclassi-
fying domain terms); file storing versioning system managers
focus on file extensions (limited: does a .h file contain C
or C++ code? Is a .pl file written in Perl or Prolog?); and
grammarware-based approaches rarely step beyond attempts
to parse everything available with anything that fits (slow and
inapplicable to program fragments). Some of these heuristics
are computationally heavy, others are unreliably imprecise, and
none ever work on small embedded code fragments. In this
paper, we investigate whether natural language identification
techniques are applicable to software language identification.

Natural language identification is a large and well explored
field of natural language processing with many different ap-
proaches [4], [5]. In the next section we present a set of SLI
methods which are used against one another in the section
after that. With the dataset collected, the question which
classification method is the best for classifying source code,
can be answered. We also look at what other information
can be gained from this data and find clusters in software
languages, which can show which languages are alike and may
belong to the same family. The dataset can help to determine
what method is the best at identifying a specific language.
It can also be used to find the best method between two
specific languages, which could be very helpful if we are in a
domain that is limited to a selection of languages — like web
pages, which usually only contain HTML, CSS and JavaScript.
Finally, we try to determine if it is possible to correctly classify
a piece of embedded code (e.g., HTML within PHP; CSS
within HTML; any other language within Markdown).

Instead of comparing all natural language identification
methods, we will look at the most commonly used ones that
do not require any specific knowledge of features of the
languages. This means that these methods work with only
the training data and no additional information. This is a
very limiting requirement since many gains can be obtained
from comment information, indentation, alphabets, quoting
rules, escaping policies or by applying supervised learning. We
also leave out particularly complex and heavy computational
methods like Support Vector Machines (SVM), since they are
usually highly customisable and require substantial research
on good feature selection.

mailto:juriaankennedy@gmail.com
mailto:vadim@grammarware.net

II. Language IdentificationMethods

Five language models will be compared among themselves:
Naïve Bayes, n-grams with Good-Turing discounting, n-grams
with Knesser-Ney discounting, n-grams with Witten-Bell dis-
counting, the skip-gram language model and a Normalized
Compression Distance model. Each of these models can have
varying parameters: n-gram size (only for the models using n-
grams), tokeniser (all language models except for NCD), size
of the training set [6] and if out of vocabulary (OoV) words
are weighted or skipped (only the SRILM models).

Multinominal Naïve Bayes (MNB) is a well-known classi-
fier, a simple and easy to implement method, still giving very
good results [4], [7]. MNB finds the probability of a document
d belonging to a certain class c by:

P(c|d) = P(c)
n∏

i=1

P(xi|c)

P(xi|c) =
freq(xi, c) + 1∑

x∈V
freq(x, c) + |V |

where n is the number of all the features in the document; freq
gives the frequency of x in class c; V is the vocabulary of all
classes. To avoid a zero probability in case of not occurring
feature, Laplace smoothing is used.

Naïve Bayes classifiers assume that all features are inde-
pendent of each other, but for classifying software languages
some feature dependency can be important. For example, the
word “system” occurs often in both Java and C#, but the
combination of “system”, “out” and “println” will almost
never appear in C#, while it is standard in Java. To cover these
possible dependencies this implementation of MNB uses the
frequencies of word n-grams, with a length of one to five
words, as the features, instead of the characters or words that
are typically used in MNB [8].

N-gram language model is used to predict the probability
of a n-gram in a language. More specifically, it predicts
the next word after a sequence of words. By using these
probabilities, one can calculate the probability that a document
d belongs to a certain class c:

P(c|d) =

n∏
i=1

P(wi|wi−1
i−n+1)

P(wi|wi−1
i−n+1) =

freq(wi−1
i−n+1wi)

freq(wi−1
i−n+1)

where freq gives the frequency of the n-gram in the class.
Since training data is finite, it is very likely that some n-

grams will occur in a document are not seen in the training
data. These n-grams will cause the above model to assign a
probability of zero to the document. These zero-probability
n-grams need to be changed to ensure an accurate probability
can be calculated. This is done by smoothing. Smoothing
changes zero-probabilities and other low probabilities by
redistributing some probability of high probabilities. There
are different kinds of smoothing techniques; Good-Turing,
Modified Kneser-Ney and Witten-Bell were used [9].

Smoothing gives probabilities to n-grams of which the
smaller n-grams have occurred in the training data. Words that
do not occur in the training data require a different approach.
These out of vocabulary (OoV) words can either be skipped
or get assigned a probability. Skipping OoV words does
not calculate the probability for any OoV word. Assigning
a probability is done by changing the first occurrence of
each word in the training data to a special <unk> token.
The language model will then have a unified probability for
unknown words.

The n-gram language models were implemented with the
SRILM tool [10].

Skip-gram is a variant of n-grams with one or more
words “skipped” [11]. For example, private int x would
form a skip-gram like {private, x}, causing it to also match
private string x The skip-gram language model was also
implemented with the SRILM tool.

Normalized Compression Distance is a relatively new
technique primarily created for clustering [12]. By compress-
ing two files separately and combined, the NCD can show the
similarity between the files. The NCD between two files is
calculated by:

NCD(x, y) =
C(xy) −min(C(x),C(y))

max(C(x),C(y))

where C gives the size of the file after compression. The
resulting number is the similarity score; lower scores means
more similar files. In this implementation all training files
of a language are concatenated, this combined file is then
used to compare each test file with NCD using a compressor.
The language that scores the lowest NCD is the most likely
language. The compressors tested were GZip and ZLib.

Two tokenisers were used: alpha-numerical and all-symbols.
Alpha-numerical only tokenises alpha-numerical characters
separated by whitespace; it discards all kinds of punctuation
and uses it to slice up the character stream into tokens.
All-symbols tokenises all characters separated by whitespace.
Also both tokenisers had the option of keeping uppercase and
lowercase letters or converting all characters to lowercase.

III. Preliminary Experiments

All the test data and training data for the classifiers are
source code files. The source code files were selected from
GitHub. Since GitHub already determines the programming
language a project is written in, the files were already organ-
ised per programming language. Three data sets were created.
One set for testing, containing 4000 (200 per language) source
code files and two sets for training, small and large, containing
200 (10 per language) and 10000 (500 per language) files re-
spectively. The source code files were collected from multiple
GitHub projects. For obvious reasons, none of the projects
used in the test data set were used in either of the training
sets. To keep the amount of data per language equal each file
had to be between 5 and 10kb.

As traditional for natural language identification research,
we have used the F1 measure for ranking:

Figure 3.1: F1 Measure of all classifiers

The size of the symbol shows which training set was used: large symbols used the large training set and small symbols the small
training set.

11

Fig. 1. Language model is coded by colour: red for Naïve Bayes; blue for Good-Turing; lime for Kneser-Ney; purple for Witten-Bell; green for skip-grams.
Geometric form denotes a tokeniser: alpha-numeric (�); alpha-numeric lowercase (�); all symbols (N); all symbols lowercase (H). D represents NCD. A white
border marks OoV methods. Larger signs refer to large training sets, smaller signs to smaller ones.

F1 =
2 × Precision × Recall

Precision + Recall

A. Classifiers Comparison

In total all the classifiers and their varying parameters
resulted in 348 different methods. The F1 measure of each
of them can be seen on Figure 1. Many perform adequately,
but the classifier with the highest F1 measure is Modified
Kneser-Ney discounting using the all-symbols tokeniser, n-
grams with a maximum size of three, the large training set
and skipping OoV words. This classifier had a recall of 0.969
and a precision of 0.969 resulting in an F1 measure of 0.969,
much better than anticipated. The results also clearly show
that, with almost all classifiers, having a larger dataset yields
better results: only 2 out of 174 classifiers (GZip NCD and
ZLib NCD) gave slightly higher F1 with a small dataset, but
they were not competitive with alternatives in all other aspects.

B. Best Classifier per Language

If the problem is limited to identifying one specific lan-
guage, we can advise to use the classifier that was especially

Figure 3.3: Best classifier per language combination

C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
as

ke
ll

Ja
va

Ja
va

S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
yt

h
on

R R
u
by

S
ca

la

S
ch

em
e

X
M

L

Scheme

Scala

Ruby

R

Python

Perl

PHP

Objective-C

Lua

JavaScript

Java

Haskell

HTML

Go

Clojure

CSS

C++

C#

C 1 3 1 3 3 3 1 1 1 3 1 1 4 3 2 2 1 3 3

1 3 4 1 4 3 1 3 3 4 4 4 3 3 3 3 3 3

4 4 3 3 4 1 4 4 1 4 1 4 4 3 3 4 3

3 3 3 2 2 3 2 3 1 1 3 3 1 2 3 3

3 3 3 4 3 3 3 4 3 3 3 3 4 3 3

3 3 2 5 5 3 3 3 3 1 4 1 4 3

3 2 1 3 4 2 3 3 3 3 3 3 2

2 2 1 2 3 3 3 3 3 3 5 3

4 2 2 3 2 3 3 4 4 4 4

4 3 4 3 3 3 3 3 3 3

3 4 3 3 3 4 3 3 1

4 3 3 3 3 2 2 2

4 3 4 3 3 3 3

2 2 4 3 3 3

3 2 3 3 1

1 1 3 2

2 3 3

2 2

4

3.2.4 Best classifier between two languages

Looking at language families shows that classifiers occasionally make mistakes
di↵erentiating between two languages. This is especially prevalent between the
languages C and C++, as seen in table 3.3 and 3.4. This raises the question
which classifier is the best at di↵erentiating between two specific languages. To
answer this question classifiers had to be scored. The score is calculated for a
classifier C di↵erentiating between languages A and B. For each file belonging
to language A we looked at what rank language B was predicted to be, according
to the method described in 3.2.2. The inverse of these ranks was combined. The
same was done for files belonging to language B. The results of both scores was
combined as well. This gives a score which is higher if the classifier C does
better in di↵erentiating between languages A and B. It is still important to
also take the actual accuracy of the classifier in consideration, so this number
was added to the score. With this scoring method each classifier could be rated
for each language combination. The results are shown in figure 3.3

15

TABLE I
Best classifier per language combination, in the same notation.

good for that language and not on average: the accuracy is
upwards of 0.975 with C++ (0.865) as the worst case outlier.

Table 3.3: Percentage of files classified as a certain language with F1 measure
higher than 0.9

Classified as

C C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
a
sk

el
l

J
a
v
a

J
a
v
a
S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
y
th

o
n

R R
u
b
y

S
ca

la

S
ch

em
e

X
M

L

C 82 0 15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
C# 0 96 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C++ 15 1 80 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0
CSS 0 0 0 98 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Clojure 0 0 0 0 97 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
Go 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HTML 0 0 0 0 0 1 93 0 0 4 0 0 1 0 0 0 0 0 0 1
Haskell 0 1 0 1 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0
Java 0 0 1 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0
JavaScript 0 1 1 0 0 1 1 0 1 93 0 0 0 0 0 0 1 0 0 0

A
ct

u
a
l
la

n
g
u
a
g
e

Lua 0 0 0 0 0 1 0 0 0 1 93 1 0 0 1 0 1 0 1 0
Objective-C 1 0 1 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0
PHP 0 0 0 1 0 0 2 0 0 0 0 0 95 0 0 0 0 0 0 0
Perl 0 0 0 0 0 0 0 0 0 0 0 0 1 98 0 0 0 0 0 0
Python 0 0 0 0 0 0 0 0 0 0 0 0 1 0 96 0 1 0 0 0
R 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 96 0 0 0 0
Ruby 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 95 0 0 0
Scala 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 98 0 0
Scheme 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 96 0
XML 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 93

13

TABLE II
Percentage of files classified as a certain language with F1 measure higher

than 0.9.

C. Best Classifier per Language Combination

More interestingly, we can look into what classifiers that are
best capable of differentiating between two languages, because
there are groups that are particularly easy to mix up, and
distinguishing between, say, C and C++ or HTML and XML
is a realistic application scenario. By only analysing language
identification results for pairs of languages, we rerun the
experiments for each pair of languages, calculated precision
and recall and combined those ranks in Table I.

D. Viability of Reasonable Classifiers

There are a couple of particularly weak classifiers in our
set that blindly classified everything as Java or everything as
Objective C — we exclude them from the final analysis, setting
the threshold at F1 > 0.9. Table II shows the percentages
of files which software language they were able to identify
correctly. As we can see, the results are rather promising
except for C and C++, which are mistaken for each other quite
often (15% of the time). Together with the fact that there were
languages that were never mistaken for one another, this hints
at the existence of families of related software languages.

E. Software Language Families

Table III shows all classifiers with a F1 measure higher than
0.9 and uses the top five languages a file is predicted to belong
to. With this method many possible relationships can be seen:
e.g., Java seems to be related to C#, C++ and Scala. Also
JavaScript is ranked highly among almost every language.

F. Detecting Embedded Software Languages

To detect which piece of code belongs to what software
language within a document, we used the “best classifier per
language combination” to try to find JavaScripts snippets in
HTML files collected from big websites, and checked results
automatically obtained using the Naïve Bayes classifier, with
n-grams of length 1 and the all-symbols lower case tokeniser

Table 3.4: Percentage of files ranking in top 5 as a certain language with F1
measure higher than 0.9

Classified as

C C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
a
sk

el
l

J
a
v
a

J
a
v
a
S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
y
th

o
n

R R
u
b
y

S
ca

la

S
ch

em
e

X
M

L

C 20 8 20 0 1 3 1 0 10 7 4 16 3 5 1 1 0 1 1 0
C# 5 20 17 1 0 4 1 1 17 10 1 7 1 6 0 0 1 4 0 2
C++ 19 12 20 0 1 3 1 0 10 6 2 14 4 5 0 1 0 1 1 0
CSS 1 4 1 20 1 4 10 2 2 5 4 2 2 1 4 5 9 7 17 1
Clojure 2 8 2 2 20 0 0 18 2 10 6 1 2 15 1 1 8 0 1 0
Go 3 13 6 1 0 20 1 0 6 10 10 2 1 1 3 3 5 14 1 0
HTML 2 5 3 4 1 3 20 1 1 4 7 1 7 3 7 5 9 10 5 0
Haskell 0 2 1 0 2 3 0 20 2 15 12 0 2 18 1 1 2 0 9 9
Java 5 18 14 1 1 2 0 1 20 10 0 6 0 5 0 0 0 15 0 1
JavaScript 3 9 5 1 0 8 1 13 8 20 8 1 3 8 2 2 4 3 1 0

A
ct

u
a
l
la

n
g
u
a
g
e

Lua 3 4 3 2 1 9 5 1 1 11 20 2 3 2 12 6 12 3 1 0
Objective-C 13 10 14 0 0 3 1 2 3 13 5 20 4 4 2 0 3 1 0 0
PHP 3 2 5 1 0 1 6 2 1 13 2 2 20 16 4 5 13 1 2 0
Perl 7 2 8 1 1 0 1 8 5 17 3 1 15 20 1 1 3 3 1 1
Python 1 3 1 1 1 4 2 1 1 11 14 3 5 3 20 4 15 10 1 0
R 2 3 2 2 1 7 5 1 2 10 10 0 6 3 8 20 10 8 2 0
Ruby 0 2 1 4 0 2 3 1 1 9 16 2 11 3 13 6 20 4 1 0
Scala 2 9 4 3 1 11 4 1 13 10 2 3 1 1 7 2 7 20 1 1
Scheme 4 3 5 18 2 2 12 2 1 4 4 2 2 2 4 3 3 7 20 0
XML 0 6 2 2 1 1 2 13 5 4 8 3 7 10 6 2 3 3 4 19

14

TABLE III
Percentage of files ranking in top 5 as a certain software language with the

F1 measure higher than 0.9.

(which was the best at differentiating JavaScript and HTML in
subsection III-C). Our preliminary experiment on 3605 lines
of HTML resulted in 3187 lines classified correctly, which
gives an accuracy of 0.88. The actual language of a line was
determined by looking at the tags and the tag its content
in that line. If more than half of the line consisted out of
<script> tags and <script> content, the line was classified
as JavaScript, otherwise the line was classified as HTML.

IV. RelatedWork

Computer scientists have been fascinated by what they can
learn from natural linguistics for a long time [13]. Combining
natural language processing, information retrieval and software
analysis is promising [14], even though still underexplored.

The most usual place to find natural language processing
methods in software engineering is requirements engineering:
there have been uncitably many papers, luckily with some sur-
veys available [15], [16]. Somewhat closer to our topic, there
have been several reports on successful near-clone detection
in natural language artefacts such as defect reports [17], [18].

Blosseville et al. combine natural language analysis and
statistical analysis to design a system of supervised learning
that classifies project descriptions [19]. If our approach is com-
bined with theirs, it could be possible to improve SLI accuracy
further by switching to semi-automation (supervision).

Nakamura et al. propose to facilitate understanding of
graphical software models by annotating them with links to
concepts known from a given vocabulary as well as other
natural language artefacts [20]. Unfortunately they do not
propose any automation strategy which naturally limits the
usefulness of their solution to forward engineering.

SLI can be seen as a very specific form of fact extrac-
tion, recovering only one extremely trivial fact (what is the
language?) yet applied on such an early stage that nothing
else can be achieved until this fact is settled. Thus, we treat

fact/concept extraction with natural language techniques as
related work [21], [22]. One step farther lie other techniques
that use extracting identifiers, literals and comments and lever-
aging them to improve software maintenance tools without
performing fact/concept extraction in a strict sense [23]. It is
also possible to generate natural language summaries of related
code fragments once their identification was completed using
static code analysis [24], [25], but nobody seems to have been
able yet to connect the two ends and apply numerous natural
language summarisation techniques directly to code.

One of the experiments most closely related to our project
was performed by Merten et al. last year: combining white
space tokenisation, text heuristics and agglomerative hierar-
chical clustering, they were able to tell natural text from code
F1 = 0.84 [26]. Their notion of “code” was very similar
to ours, covering actual code fragments but also log files
and stack traces. We see our contribution as complementary
to theirs since we essentially focus on refining this clas-
sification as identifying language families within code and
then languages within language families. Interestingly, judging
from techniques’ accuracy, automatic identification of software
language families within code is easier than identification of
code within unstructured data, but harder than identification
of software languages within families.

V. Conclusion and FutureWork

We have presented early results of researching the applica-
bility and viability of SLI with methods available in natural
language identification. 348 different classifiers were obtained
from variations of lightweight natural language methods and
compared on a modest size corpus of 20 languages (per
language we had 109–150 test projects and 146–272 training
projects). While results on smaller training sets were close
to being consistently wrong, there were several methods that,
given a large training set, were able to correctly identify
software languages with the accuracy of 0.975 and higher.

The results obtained so far clearly show that natural lan-
guage methods of language identification are definitely worth
considering in the scope of software language reverse engi-
neering. In the future we plan to run more convincing exper-
iments positioning best NLP-based methods among other ap-
proaches to SLI, highlighting corner cases of pairs of software
languages commonly confused by one family of methods but
not by the other. We also expect certain types of software (e.g.,
compiler sources) to confuse many methods. False positives
and false negatives should be inspected manually to determine
causes for misclassification, possibly followed by recalibration
of the chosen classifier.

We also consider extending the set of chosen methods (in-
cluding SVMs which perform very well for natural languages)
as well as the training set (covering software language variants,
versions and dialects).

References

[1] V. Zaytsev and A. H. Bagge, “Parsing in a Broad Sense,” in Proceedings
of the 17th International Conference on Model Driven Engineering
Languages and Systems (MoDELS), ser. LNCS, J. Dingel, W. Schulte,
I. Ramos, S. Abrahão, and E. Insfrán, Eds., vol. 8767. Springer, 2014,
pp. 50–67.

[2] O. Augereau, N. Journet, and J.-P. Domenger, “Semi-structured Doc-
ument Image Matching and Recognition,” in Proceedings of the 20th
Conference on Document Recognition and Retrieval (DRR), ser. SPIE
Proceedings, vol. 8658. SPIE, 2013.

[3] V. M. Kiyko, “Recognition of Objects in Images of Paper Based Line
Drawings,” in Proceedings of the International Conference on Document
Analysis and Recognition (ICDAR v.II). IEEE, 1995, pp. 970–973.

[4] T. Baldwin and M. Lui, “Language Identification: The Long and the
Short of the Matter,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, 2010, pp. 229–237.

[5] T. Gottron and N. Lipka, “A Comparison of Language Identification
Approaches on Short, Query-style Texts,” in Proceedings of the 32nd
European conference on Advances in Information Retrieval (ECIR), ser.
LNCS, vol. 5993. Springer, 2010, pp. 611–614.

[6] M. Banko and E. Brill, “Mitigating the Paucity-of-Data Problem: Ex-
ploring the Effect of Training Corpus Size on Classifier Performance
for Natural Language Processing,” Computational Linguistics, pp. 2–6,
2001.

[7] A. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multinomial
Naive Bayes for Text Categorization Revisited,” in Advances in Artificial
Intelligence, 2004, pp. 488–499.

[8] M. Lui and T. Baldwin, “Cross-domain Feature Selection for Language
Identification,” in Proceedings of the Fifth International Joint Confer-
ence on Natural Language Processing, 2011, pp. 553–561.

[9] S. F. Chen and J. Goodman, “An Empirical Study of Smoothing
Techniques for Language Modeling,” in Proceedings of the 34th An-
nual Meeting on Association for Computational Linguistics, ser. ACL.
Association for Computational Linguistics, 1996, pp. 310–318.

[10] A. Stolcke, “SRILM — an extensible language modeling toolkit,”
in Proceedings of the Seventh International Conference on Spoken
Language Processing (ICSLP), J. H. L. Hansen and B. L. Pellom, Eds.
ISCA, 2002, pp. 2:901–904.

[11] D. Guthrie, B. Allison, and W. Liu, “A Closer Look at Skip-gram
Modelling,” in Proceedings of the 5th international Conference on
Language Resources and Evaluation, ser. LREC, 2006, pp. 1222–1225.

[12] R. Cilibrasi and P. M. B. Vitányi., “Clustering by Compression,” IEEE
Transactions on Information Theory, vol. 51, no. 4, pp. 1523–1545,
2005.

[13] P. Naur, “Programming Languages, Natural Languages, and Mathemat-
ics,” in Conference Record of the Second Symposium on Principles of
Programming Languages (POPL), R. M. Graham, M. A. Harrison, and
J. C. Reynolds, Eds. ACM Press, 1975, pp. 137–148.

[14] L. L. Pollock, “Leveraging Natural Language Analysis of Software:
Achievements, Challenges, and Opportunities (Keynote),” in Proceed-
ings of the 28th International Conference on Software Maintenance
(ICSM). IEEE, 2012, p. 4.

[15] D. Falessi, G. Cantone, and G. Canfora, “A Comprehensive Character-
ization of NLP Techniques for Identifying Equivalent Requirements,”
in Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM). ACM, 2010, pp. 18:1–18:10.

[16] U. S. Shah and D. C. Jinwala, “Resolving Ambiguities in Natural
Language Software Requirements: A Comprehensive Survey,” SIGSOFT
Software Engineering Notes, vol. 40, no. 5, pp. 1–7, Sep. 2015.

[17] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” in Proceedings
of the 29th International Conference on Software Engineering (ICSE).
IEEE, 2007, pp. 499–510.

[18] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach to
Detecting Duplicate Bug Reports Using Natural Language and Execution
Information,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE), W. Schäfer, M. B. Dwyer, and V. Gruhn,
Eds. ACM, 2008, pp. 461–470.

[19] M. J. Blosseville, G. Hébrail, M. G. Monteil, and N. Pénot, “Auto-
matic Document Classification: Natural Language Processing, Statistical
Analysis, and Expert System Techniques used together,” in Proceedings

of the 15th International Conference on Research and Development in
Information Retrieval (SIGIR). ACM, 1992, pp. 51–58.

[20] Y. Nakamura, R. Furukawa, and M. Nagao, “Diagram Understanding
Utilizing Natural Language Text,” in Proceedings of the Second Inter-
national Conference on Document Analysis and Recognition (ICDAR).
IEEE, 1993, pp. 614–618.

[21] J. Nilsson, W. Löwe, J. Hall, and J. Nivre, “Natural Language Parsing
for Fact Extraction from Source Code,” in Proceedings of the 17th
International Conference on Program Comprehension (ICPC). IEEE,
2009, pp. 223–227.

[22] S. L. Abebe and P. Tonella, “Natural Language Parsing of Program
Element Names for Concept Extraction,” in Proceedings of the 18th
International Conference on Program Comprehension (ICPC). IEEE,
2010, pp. 156–159.

[23] L. L. Pollock, K. Vijay-Shanker, D. C. Shepherd, E. Hill, Z. P. Fry,
and K. Maloor, “Introducing Natural Language Program Analysis,” in
Proceedings of the Seventh Workshop on Program Analysis for Software
Tools and Engineering (PASTE). ACM, 2007, pp. 15–16.

[24] S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating Natural
Language Summaries for Crosscutting Source Code Concerns,” in
Proceedings of the 27th Conference on Software Maintenance (ICSM).
IEEE, 2011, pp. 103–112.

[25] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and
K. Vijay-Shanker, “Automatic Generation of Natural Language Sum-
maries for Java Classes,” in Proceedings of the 21st International
Conference on Program Comprehension (ICPC), 2013, pp. 23–32.

[26] T. Merten, B. Mager, S. Bürsner, and B. Paech, “Classifying Unstruc-
tured Data into Natural Language Text and Technical Information,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR). ACM, 2014, pp. 300–303.

