
Grammar Zoo:
A Corpus of Experimental Grammarware

Vadim Zaytsev

Software Analysis & Transformation Team (SWAT),
Centrum Wiskunde & Informatica (CWI), The Netherlands;

Universiteit van Amsterdam, The Netherlands

Abstract

In this paper we describe composition of a corpus of grammars in a broad sense
in order to enable reuse of knowledge accumulated in the field of grammarware
engineering. The Grammar Zoo displays the results of grammar hunting for big
grammars of mainstream languages, as well as collecting grammars of smaller
DSLs and extracting grammatical knowledge from other places. It is already
operational and publicly supplies its users with grammars that have been recov-
ered from different sources of grammar knowledge, varying from official language
standards to community-created wiki pages.

We summarise recent achievements in the discipline of grammarware engi-
neering, that made the creation of such a corpus possible. We also describe
in detail the technology that is used to build and extend such a corpus. The
current contents of the Grammar Zoo are listed, as well as some possible future
uses for them.

Keywords: grammarware engineering, grammar recovery, experimental
infrastructure, curated corpus

1. Introduction

This paper contains a description of a method to compose a corpus of gram-
mars in a broad sense. Having such a corpus could be profitable for mining
new properties and patterns from the existing body of grammatical knowledge,
for comparing grammar-based techniques and developing new ones. Formal
grammars are inherently complex software artefacts, and until recently it was
technically unfeasible to create such a large scale corpus, so in existing literature
most case studies involve one, two or no more than a handful of grammars, and
many statements about software language design remain statistically unchecked
and empirically unvalidated or even unprovable.

The main contributions of this paper are:

Email address: vadim@grammarware.net (Vadim Zaytsev)

Preprint submitted to Science of Computer Programming October 29, 2014

• The Grammar Zoo as the big and still growing corpus of hundreds of
grammars in a broad sense.

• An open source toolkit for supporting the creation and expansion of the
Grammar Zoo.

• A Grammar Zoo entry metadata model for enabling efficient sampling and
reuse.

The paper is organised as follows: §2 explains the problem in detail, moti-
vates the need for its solution, sets goals, defines context and envisions possible
problems. In §3 we revisit those grammarware engineering challenges that have
already been addressed in prior work, and have made the current development
possible1. In §4, the metadata model for the corpus is presented and the tools
available for grammar extraction, recovery and evolution are highlighted2. §5
lists the current contents of the Grammar Zoo and sketches directions for future
work. §6 concludes the paper.

2. A repository of grammars

In [3], Klint et al. have defined the field of “grammarware” and identified
its set of problems, promises, principles and challenges. The foundation of their
work was formed by the vast existing body of knowledge about formal grammars,
compiler construction, metaprogramming, source code analysis, term rewriting,
parsing techniques, generative programming, attribute grammars, graph trans-
formation and other adjacent fields. In the years after that, there have appeared
many publications contributing directly to this domain, and the “engineering
discipline for grammarware” from the ideal long term goal has turned into a
technically achievable and partially even achieved objective. However, compar-
ison of different grammar-based methods is still hindered by the relative lack
of stability in grammar metrics and their sensitivity to many factors ranging
from grammar development style (e.g., horizontal or vertical style of writing
production rules has a substantial impact on the number of rules) to the choice
of grammar-based technology (some syntactic notations are more expressive
than others; some technologies implicitly expect grammars to be written with
a specific kind of recursion, etc).

In contemporary software engineering, especially in empirical studies thereof,
a similar problem has been addressed by introducing a curated collection of
code artefacts [4]. In model-driven engineering, many metamodels — artefacts
commonly compared to grammars in the literature — have been collected in one
place to form a corpus available in many formats [5]. Such reference corpora
can be used as an input of various newly proposed analysis and transformation

1Parts of the section (e.g., §3.1) have previously appeared in a workshop publication [1].
2Parts of the section (e.g., §4.3) have previously appeared in a workshop publication [2].

2

techniques, allowing their output to be measured and reported in a systematic
manner.

In [6], van Wijngaarden states that a powerful and elegant language should
not contain many concepts and should be explainable in few words. In [7], Wirth
concludes that language simplicity should be achieved through modularity and
not through generalisation. In [8], Hoare claims that in programming language
design, simplicity is different from and more important than modularity. In [9],
Mernik et al. argue that language modularity is positively influenced by the pres-
ence of a textual notation. In [10], Völter et al. tie the multitude and diversity
of general purpose programming languages to their domain-specific optimisa-
tions. In [11], Chomsky elaborates that semantic and statistical considerations
should be of no consequence to the grammatical structure of the language. In
[12], Erwig and Walkingshaw maintain that language design should be seman-
tics driven. In [13], Tratt establishes that the evolution of a domain specific
language mostly involves adding functionality found in general purpose pro-
gramming languages. In [14], Herrmannsdörfer et al. observe that modelling
languages evolution is bound to requirements creep and technological progress.
In [15], Hutchinson et al. claim that effectiveness of a domain specific language
and narrowness of its domain are in inverse proportion. Many more claims like
these can be found in academic and engineering publications about grammar-
ware and related topics — most are backed by expert opinions and case studies
of manageable size. However, we still lack the luxury of (re)formulating them as
research hypotheses and subsequently validating against (a chosen part of) the
corpus of grammars and languages. We construct the Grammar Zoo in order to
enable such activities in the future.

It has been previously noted by Do et al. that obtaining the right kind of
infrastructure for setting up experiments is nontrivial and labour intensive, and
its usefulness has huge impact on future experiments [16]. According to Do et
al., the users of such infrastructure mostly face the following challenges:

Supporting replicability across experiments. Homogeneity or well-documented het-
erogeneity of the collected artefacts and completeness of metadata are the
key factors for the creators of the infrastructure, to help addressing this
challenge [16, 17, 18].

Supporting aggregation of findings. Systematic capture of the experimental con-
text is required to complement high replicability, in order to guarantee
correct aggregation of findings from different experiments [16, 19].

Reducing the cost of controlled experiments. In order to facilitate painless arte-
fact reuse, artefact organisation needs to be standardised, they need to
be complete in some sense (preferably by conforming to a well-defined
completeness level) and require as little manual handling as possible [16].

Obtaining sample representativeness. The main problems foreseen by [16] in al-
lowing the users to acquire representative samples, are small sample sizes
and sampling bias. These are to be addressed by including many artefacts
obtained from different heterogeneous sources.

3

Isolating the effects of individual factors. Isolating software language design con-
cerns and decoupling conceptual modules within one software language
have always been challenging problems, and still pose great difficulty.
Since this is an open research question, we will not be able to prevent
all problems that it leads to.

2.1. Illustration: Grammar Zoo utilisation

Suppose that we have assembled the Grammar Zoo as a collection of various
grammars. What kind of research questions we can answer with it and what
kind of problems can we address? We provide some scenarios below.

Interoperability testing. Suppose that we have identified multiple grammars of
the same intended language that correspond to its different frontends. To
test their interoperability, one can do code reviews or develop a test suite,
but a better, more systematic, way is to generate such a suite and compare
or converge those grammars automatically. An approach for that has
been proposed in [20] and evaluated by two case studies involving 4 Java
grammars and 33 TESCOL grammars, which were extracted from parser
specifications and became one of the early fragments of the Grammar Zoo.

Grammar recovery heuristics. There have been many successful attempts of
reusing grammatical knowledge embedded in various software artefacts
like parser specifications, data format descriptions or metamodels. Some
focused on idiosyncratic properties of the source notation, others tried to
generalise the relaxed ways of treating the baseline artefact with heuristic
rules for splitting/combining names, matching parentheses, etc [1]. The
more grammars can be recovered with such heuristics, the better validated
and motivated they become.

Empirical grammar analysis. Grammar metrics is a mature field of research,
but more elaborate characterisations such as “top” or “bottom” nonter-
minals are common in grammar-based papers. Given a large enough repos-
itory of various grammars, the micropattern mining methodology [21] can
be applied to infer characterisations by mining the repository [22]. They
can in turn be used for clustering grammars based purely on statistical
data about sets of indicators.

Grammar components. There is ongoing work on identifying semantic compo-
nents of software languages that correspond to concepts like loops, vari-
ables, exception throwing, etc. [23]. By using a combination of pro-
gram slicing and clone detection techniques on a large enough corpus, we
can identify syntactic components of software languages and investigate
whether there is any correspondence with semantic components.

2.2. Software Language Processing Suite and GrammarLab

The creation of the Grammar Zoo was facilitated by the tools accumulated
within two projects: the Software Language Processing Suite, also abbreviated

4

as SLPS [24], and the GrammarLab [25]. SLPS started in 20083 on the Source-
forge platform and migrated to GitHub in 2012. GrammarLab is a grammar
manipulation library for Rascal [26] developed within a project with the same
name4, conceptually based on the same techniques and also hosted at GitHub.

In particular, they contain the following groups of tooling:

• Formats for storing grammars [27], grammar transformations [28], gram-
mar mutations [29], metalanguage notations [30], grammar documenta-
tion [31], etc. These formats have evolved by being used in methods and
tools working with grammars in a broad sense and thus abstract from
many technical idiosyncrasies. The formats are designed to describe es-
sential grammatical knowledge and are therefore compatible with many
different platforms and technologies.

• Transformers for grammars [28, 29], metasyntactic specifications [32], lan-
guage documents [31], etc. These can be used either as first class entities
to encapsulate grammar evolution or correction steps, or just as a technical
aid for changing grammar-related artefacts.

• Megamodels for modelling a linguistic architecture of a system (a meg-
amodel is model of a software system with some elements denoting very
complex notions like languages, grammars, technologies and stakehold-
ers) when nontrivial differences between similar technologies need to be
spotted, modelled and resolved [33]. SLPS contains a Rascal megamod-
elling library that is compatible with the most recently developed general
purpose megamodelling language MegaL [34, 35, 36].

• Extractors for locating and obtaining fragments of grammatical knowl-
edge from various software artefacts such as parser specifications, data
type definitions, grammars of various kinds, data schemata, etc. Since
extractors are essential for the process of creation of the Grammar Zoo,
they will be described in more detail in §4.7.

• Recovery tools are advanced extractors that use heuristics or context con-
ditions to infer corrections to the source during or immediately after the
extraction of a grammar. In the past, grammar recovery has been done
manually [37] or semi-automatically [38]. The state of the art tools allow
fully automatic grammar recovery to work based on a specification of the
expected metalanguage [1].

• Analysers for investigating grammar properties, calculating grammar met-
rics [39, 40], expressing and collecting micropatterns [22], to aid in other
grammar-based activities.

3Ralf Lämmel, Software Language Processing Samples (SLPS). MSDN blog post in
Grammarware, Haskellware, XMLware, May 2008, http://blogs.msdn.com/b/ralflammel/

archive/2008/05/23/software-language-processing-samples-slps.aspx.
4 Paul Klint, Jurgen Vinju, Tijs van der Storm, Vadim Zaytsev, Foundations for a Gram-

mar Laboratory, NWO 612.001.007, 2010–2013, http://grammarware.github.io/lab.

5

http://blogs.msdn.com/b/ralflammel/archive/2008/05/23/software-language-processing-samples-slps.aspx
http://blogs.msdn.com/b/ralflammel/archive/2008/05/23/software-language-processing-samples-slps.aspx
http://grammarware.github.io/lab

• Exporters take care of grammar visualisation and producing grammars in
a form recognisable by other language workbenches and metaprogramming
environments.

• Test generators can automatically support a test suite exercising all fea-
tures of a software language described by a grammar and possibly limited
by coverage criteria [41, 20].

• Documentation support is present as well: in its foundation we have a uni-
fied format for language documents [31] that was constructed by analysing
and comparing hundreds of software language specifications, descriptions,
standards, studybooks and alike.

• Frameworks for working with the above are present in languages like Pro-
log, Python and Rascal.

Both the Software Language Processing Suite and the GrammarLab are
noncommercial efforts mainly aimed at developing tool prototypes and proofs
of concepts [24, 25]. They are publicly available on the internet for distribution
through a free and open software license (CC-BY: Attribution5).

2.3. Main objectives

We define the main goals of the Grammar Zoo as follows:

• Collecting grammars in the broad sense — structural definitions of
software languages.

• Annotating each grammar with information about its source, original
format and authors.

• Complementing each grammar with details about how it was fetched,
extracted, recovered, adapted, etc.

• Documenting usages of each grammar — its derivatives, tools, doc-
uments and other grammars.

• Making all grammars publicly available in a variety of formats.

What the Grammar Zoo is not about:

• It is not about collecting parsers. Not all grammars in a broad sense are
meant to be used for syntactic analysis of textual data, and collecting a
large number of them systematically would mean committing to a specific
parsing technology or even a specific grammar manipulation framework
(metagrammarware).

5CC Attribution 3.0 Unported, http://creativecommons.org/licenses/by/3.0/.

6

http://creativecommons.org/licenses/by/3.0/

• It is not about unifying syntactic notation for grammars. Numerous at-
tempts to unify textual representations of context-free grammars have
failed in the past. Instead of fighting the diversity of notations, we em-
brace it and develop tools that can deal with it. We ultimately aim at
storing the pure grammatical knowledge and exporting it on demand ac-
cording to the users’ needs.

• It is not about enforcing the quality and level of grammars. Heterogeneous
content is also inherent to the field of grammarware engineering in its
current state: different tasks expect different properties from grammars.
Instead, we aim at properly documenting such differences so that the
corpus can be used to obtain representative sets of grammars that are
similar in some required sense.

2.4. Summary

Recent advances in the field of grammarware engineering make it possible
to design and engineer a corpus of grammars in a broad sense. Having such a
repository of grammars, each annotated with metadata about its source, means
of extraction and recovery, its evolution and linked tooling, would allow us
to mine it for similarities and singularities, as well as to use it as a common
testing ground for grammar-based methods. Based on the experience gained
from several such experiments in the past, in the next sections we will compose
the Grammar Zoo, which will collect as many grammars as we can secure.

3. Previously addressed challenges

The Grammar Zoo is a relatively new initiative which was infeasible until
recently. The following subsections are dedicated to the challenges which were
solved during the last years by various researchers, and helped us to found
this initiative on top of their methodologies. We credit the following research
directions:

Grammar extraction. Automated recovery of grammars from existing artefacts
is required, otherwise adding each grammar to the corpus will always be
a separate project with its own specifics.

Grammar evolution. When grammar recovery goes decidedly beyond extrac-
tion, it involves bringing systematic changes to the grammar. Proper doc-
umentation of such adjustments relies on an advanced transformational
infrastructure.

Metalinguistic evolution. With many notations for syntactic definitions being
used in various grammar-based toolkits, it is crucial to be able to export
each grammar in a variety of notations, or perhaps even in a new notation
defined on-the-fly.

Generating browsable documentation. One of the most common uses for a gram-
mar, beside generating grammarware code, is facilitating its inspection.

7

3.1. Grammar extraction and automated recovery

Basically, there are three main challenges in developing grammar extraction:
the unnecessary diversity of notation [54, 30]; the error-prone manual process of
grammar creation and typesetting; and the semantic gap between the metalan-
guages. The first (notational) challenge is addressed by the notation-parametric
approach [1] that requires a formal specification of a notation and can base the
extraction steps on it. The second (lexical) challenge is solved by heuristics
expressing relaxed conformance to the intended notation. The third (semantic)
challenge is avoided by using the “extraction through abstraction” [27] approach
of extracting pure grammatical knowledge from the available artefacts while ab-
stracting from the technology-specific details. All three challenges are addressed
by automated tools from SLPS/GrammarLab, a more detailed overview of them
will follow in §4.7.

The progress of the grammar extraction methods with automated error re-
covery, also summed up in Table 1, was as follows6 [1]:

Message Sequence Charts was a DSL described in a Word document, which was
converted to an ASCII file in 1996, processed by a Perl script and produced
BNF rules, which were in turn manually edited with all 14 changes claimed
to be documented. Another script was used to generate a hypertext form
of a grammar suitable for browsing [44].

COBOL grammar capable of handling a range of language dialects was recov-
ered in 1997 by converting 1100 production rules of the ANSI COBOL 85
standard to SDF [56]. A long and sophisticated process of forced coupling
followed, leading to (disciplined) changes brought both to the codebase
and to the grammar, and resulting in capability of the adjusted grammar
to parse the adjusted source code [37].

Switching System Language was a proprietary DSL documented in a set of
HTML files containing its grammar in an BNF dialect they called SBNF.
The recovery endeavour was reported in 2000 and is a remarkable mile-
stone in a way that it was an attempt to use precise parsing on an un-
reliable source. A range of (as we are now aware) typical issues arose
such as naming convention violations and non-matching brackets, and sig-
nificant amount of interactive grammar adjustments was needed. The
project succeeded also due to development support of the ASF+SDF
Meta-Environment, resulting again in the situation where an adjusted
SBNF grammar was used to parse adjusted syntax rules [44].

6NB: we limit the mentioned initiatives to those which were extracting grammatical knowl-
edge from software artefacts that were already known to contain it and to define structures:
context-free grammars, compiler sources, parser definitions, XML schemata, etc. For a com-
prehensive overview of methods and initiatives of extracting/inferring grammatical knowledge
from a collection of language instances, we redirect the reader to [55].

8

L
a
n
g
u
a
g
e

S
o
u
r
c
e

E
x
tr
a
c
te

d
C
o
n
n
e
c
te

d
A
d
o
p
te

d
B
r
o
w
sa

b
le

R
e
su

lt
R
e
f

A
N

S
I

C
O

B
O

L
II

I
sp

ec
in

“
g
en

er
a
l

fo
rm

a
t”

m
a
n
u

a
ll
y

m
a
n
u
a
ll

y
—

—
n

o
[4

2
]

IB
M

C
O

B
O

L
S

C
2
6
-9

0
4
6
-0

3
sp

ec
P

ro
lo

g
—

—
P

ro
lo

g
[4

3
]

IB
M

O
S

P
L

/
I

V
2
R

3
S

C
2
6
-4

3
0
8
-0

2
sp

ec
P

ro
lo

g
—

—
P

ro
lo

g
[4

3
]

E
ri

cs
so

n
M

S
C

IT
U

Z
.1

2
0

(M
S

-W
o
rd

d
o
cu

m
en

t)
P

er
l

m
a
n
u
a
ll

y
—

P
er

l
n

o
[4

4
]

A
N

S
I

C
O

B
O

L
8
5

h
a
rd

co
p
y

re
u

se
d

re
u

se
d

A
S

F
—

n
o

[3
7
]

A
d

a
9
5

IS
O

/
IE

C
8
6
5
2
:1

9
9
5

sp
ec

P
ro

lo
g

—
—

P
ro

lo
g

[4
3
]

E
ri

cs
so

n
S

S
L

h
y
p

er
te

x
t

d
o
cu

m
en

ta
ti

o
n

b
n

f2
sd

f
m

a
n
u
a
ll

y
A

S
F

B
o
x

n
o

[4
4
]

E
ri

cs
so

n
P

L
E

X
B

N
F

ru
le

s
in

co
m

p
il
er

so
u

rc
es

6
×

S
D

F
in

te
ra

ct
iv

e
A

S
F

—
n

o
[4

5
]

IB
M

V
S

C
O

B
O

L
II

la
n

g
u

a
g
e

sp
ec

[4
6
]

P
ro

lo
g

in
te

ra
ct

iv
e

A
S

F
P

ro
lo

g
[4

3
]

[3
8
]

C
#

E
C

M
A

-3
3
4

sp
ec

[4
7
]

m
a
n
u

a
ll
y

F
S

T
F

S
T

A
S

F
[4

3
]

[4
8
]

F
L

v
a
ri

o
u

s
g
ra

m
m

a
rs

in
a

b
ro

a
d

se
n

se
a
u

to
m

a
te

d
X

B
G

F
—

X
S

L
T

[2
4
]

[2
7
]

J
a
v
a

S
u

n
la

n
g
u

a
g
e

sp
ec

s
[4

9
,

5
0
,

5
1
]

P
y
th

o
n

B
G

F
[2

4
]

[2
8
]

M
ed

ia
W

ik
i

co
m

m
u
n

it
y
-c

re
a
te

d
g
ra

m
m

a
r

5
×

E
D

D
X

B
G

F
—

X
S

L
T

[2
4
]

[5
2
]

S
L

P
S

Z
o
o

4
2

so
u

rc
es

v
a
ri

es
v
a
ri

es
—

X
S

L
T

[2
4
]

[5
3
,

..
.]

S
L

P
S

T
a
n

k
5
3

so
u

rc
es

v
a
ri

es
v
a
ri

es
—

X
S

L
T

[2
4
]

[5
3
,

..
.]

G
ra

m
m

a
r

Z
o
o

1
7
1
0

so
u

rc
es

v
a
ri

es
X

B
G

F
o
r

G
L

U
E

—
X

S
L
T

[2
4
]

h
er

e

T
a
b

le
1
:

T
h

e
su

m
m

a
ry

o
f

g
ra

m
m

a
r

re
co

v
er

y
a
ct

iv
it

ie
s

th
a
t

to
o
k

p
la

ce
b

ef
o
re

th
e

G
ra

m
m

a
r

Z
o
o
.

T
h

e
ea

rl
y

S
L

P
S

Z
o
o

a
n

d
S
L

P
S

T
a
n

k
,

a
s

w
el

l
a
s

th
e

cu
rr

en
t

G
ra

m
m

a
r

Z
o
o
,

a
re

a
d

d
ed

fo
r

co
m

p
a
ri

so
n

to
th

e
b

o
tt

o
m

o
f

th
e

ta
b

le
.

In
th

e
“
ex

tr
a
ct

ed
”

co
lu

m
n

w
e

d
en

o
te

a
m

et
h

o
d

o
f

o
b

ta
in

in
g

a
n

ex
tr

a
ct

ed
(l

ev
el

1
)

g
ra

m
m

a
r,

a
fr

es
h

ly
ex

tr
a
ct

ed
C

F
G

co
rr

ec
te

d
fr

o
m

m
is

sp
el

li
n

g
s.

T
h

e
n

ex
t

co
lu

m
n

is
a

m
et

h
o
d

o
f

g
et

ti
n

g
a

m
a
x
im

a
ll
y

co
n

n
ec

te
d

(l
ev

el
2

o
r

3
)

g
ra

m
m

a
r,

w
h

il
e

“
a
d

a
p

te
d

”
u

su
a
ll
y

re
fe

rs
to

a
le

v
el

4
o
r

5
g
ra

m
m

a
r

st
ro

n
g
ly

li
n

k
ed

to
a

to
o
l

th
a
t

h
a
s

b
ee

n
ex

er
ci

se
d

o
n

la
rg

e
co

d
eb

a
se

.
§4

.3
el

a
b

o
ra

te
s

o
n

th
e

n
o
ti

o
n

o
f

a
g
ra

m
m

a
r

le
v
el

.

9

Programming Language for EXchanges was a complex DSL consisting of 20
sublanguages (“sectors”) and having over 60 Mb of grammarware source
code. The mining process delivered fragments of BNF found in the com-
ments, which with the help of six parsers were transformed to pure aggre-
gated BNF and subsequently to SDF, which was combined with a lexer.
The project took only two weeks and resulted in parsing 8 MLOC of un-
modified PLEX, as reported in 2001 [45].

IBM VS COBOL II recovery project is one of the most complicated among
those reported in academic sources. A raw grammar was extracted from
the language documentation, which was not trivial since it used “rail-
road track” kind of syntax diagrams instead of purely textual (E)BNF.
The recovery went in stages: static error fixing, adding lexical syntax,
test-driven correction/completion, beautification, modularisation, disam-
biguation, adaptation, etc. The recovery was reported in 2001 [38], and its
outcome was made freely available for reuse from the authors’ website [43].

C# recovery targeted a non-legacy language in 2005, but witnessed similar
problems. In order to parse C# code, the project involved manual transi-
tion from the ECMA-produced PDF to LLL and intensive grammar trans-
formation with FST and GDK, as reported in [48] and [57, §3].

FL was an artificial toy functional language used to demonstrate the principles
of grammar convergence in [27]. The project assumed sources to be reli-
ably correct and focused on the lightweight extraction process from con-
crete syntax definitions in SDF [58], parser specifications in ANTLR [59],
definite clause grammars in Prolog [60], grammars in TXL [61], object
models in Java [51], document schemata of XML [62].

Java grammar recovery required tolerance to overcome layout inconsistencies
and other lexical deviations of the source grammars, which was expressed
as a list of heuristics and described in detail [28]. The same technology was
used later for grammars of C, C++ and C# found in other ISO standards
written in the same syntactic notation [57].

Notation-parametric recovery method [1] relies on encapsulating commonly vary-
ing details of the syntactic notation in a notation specification [30] and
binding the recovery heuristics to those variation points. This approach
allows to extract a grammar in a never-seen-before notation in a matter
of several minutes required to compose such a specification.

3.2. Grammar evolution support

The ability to express grammar evolution steps as first class executable enti-
ties, was identified as one of the crucial components of the engineering discipline

10

for grammarware [3]. Below we try to cover the existing spectrum of the gram-
mar evolution support7:

Attribution as a claim that one grammar is “derived from” or “written from”
some other source like another extracted grammar or language documen-
tation, is a common way to represent grammar evolution in many exist-
ing grammar repositories [67, 68, 5]. However, these derivation steps are
rarely documented, so this level of detail is not informative enough for
any automated verification of such claims or even for their consistency
management.

Documented patches as lists of changes that were applied to the grammar in
order to get from the original to the final version, are much more useful,
even if they are not entirely formal. They have been used in early grammar
engineering projects [44], and are also not uncommon in grammar-related
bug reports [69]. What is often missing in such lists, is justification for
the proposed solution: for example, compare [69] with [28].

Grammar transformation operators are a functional way of representing patches.
Each change step is expressed as a function application, with a function
being one of the predefined operators from a grammar transformation op-
erator suite. First such operator suites that were published, are FST [70]
and the one used for COBOL grammar recovery [71, 38]. The differences
between them are insignificant for the current paper — a discussion about
them can be found in [28]. An ideologically similar approach was demon-
strated by TXL [61], a framework where grammar specialisation for each
task is an essential part of the grammarware engineering paradigm.

Higher-level grammar transformation operators like “fold a nonterminal” or “per-
form a safe refactoring” were shown to be more useful and better main-
tainable than the low-level ones like “remove any part of a grammar”
or “replace any expression by another expression everywhere” [72]. This
approach was used in Grammar Deployment Kit, experimental metagram-
marware that was used successfully in a number of projects [73]. A sim-
ilarly advanced operator suite for the modelware technological space, has
also been developed and published [74]: even though always taking coupled
evolution of models into account when dealing with metamodel changes,
has its challenges [75], they seem to be addressed in recent research [76].

Recovery domain-specific operators were introduced for Grammar Recovery Kit
as a demonstration of how a successful grammar recovery project can be
undertaken and documented with a minimal number of them [77].

General purpose grammar evolution was the opposite attempt to cover all pos-
sible use cases for grammar evolution, recovery, convergence, adaptation,

7NB: we limit our overview on programmable grammar evolution, without considering
adjacent initiatives such as incremental grammar refinement [63, 64, 65, 66].

11

etc. The resulting grammar manipulation language is called XBGF, for
Transformations of BNF-like Grammar Format [57, §7], and was also used
extensively throughout the Software Language Processing Suite, for many
tasks in many projects [24], some of which involved operating on grammars
of industrial size (Java, C#, C++, etc).

Bidirectional grammar evolution operator suite ΞBGF is a bidirectional varia-
tion of XBGF, that has shown its usefulness for metalinguistic evolution
and derivation of transformation steps [32].

3.3. Metalinguistic evolution

Even though many metagrammarware tools and language documents claim
to use EBNF [54], it does not mean that they agree on a metalanguage. EBNF
has grown to become a family of textual notations for defining context-free
grammars with possible extensions. We speak of “metalinguistic evolution” as
a specific case of grammar evolution, when the language defined by the gram-
mar, does not change, but the metalanguage in which it was written, does. This
is a known problem at least since [44] (translation between SBNF and SDF) and
[48] (translation from EBNF used by ISO standards to LLL), which received a
relatively straightforward solution with the introduction of the notation speci-
fication [30].

Given a grammar GN (L) written in a metalanguage N , we can express
metalinguistic evolution as a metalanguage transformation σ that transforms
specification S(N) into a specification S(N ′). A new metalanguage N ′, de-
fined by the transformed specification; its own grammar G(N ′) and an updated
grammar GN ′(L) can all be automatically derived from this σ, as shown in [32].

3.4. Generating browsable artefacts

In [44], the generation of browsable artefacts was claimed to be possible
with the Box functionality of the ASF+SDF Meta-Environment [78]. In [77],
the author went to great length to inject the changes in the grammar back to
its documentation. As a part of research on language documentation in [31],
a case study was completed that involved extracting all the available informa-
tion from a language manual for the purpose of regenerating it after necessary
manipulations.

In general, we have expected and achieved the following qualities in order to
claim useful browsability:

Metasyntax highlighting means that different entities are displayed differently
— for example, terminal and nonterminal symbols use different colours.

Interactiveness means that if an element can be observed, it can also be inter-
acted with, if such interaction makes sense — for example, one can get to
a definition of a nonterminal from its occurrence.

12

Metrics as simple as top and bottom nonterminals proposed by [44, 79] or
as complex as grammatical level depth and others listed in [39, 40], aid
comprehension of a grammar just as much as traditional software metrics
help estimating code quality and detecting code smells.

Full automation is expected to take care of the abovementioned qualities with-
out asking the end user to set up any complex infrastructure or configu-
ration.

All four objectives can be achieved in at least two different ways: hyper-
text and IDEs. Hypertextual rendering of grammars is a pretty straightforward
mapping from the language of their internal representation to XHTML sup-
ported by a predefined CSS. There is hardly anything scientifically challenging
in this mapping, but we have of course engineered and automated it within
the SLPS/GrammarLab to support the Grammar Zoo [24]. The other way to
achieve browsability is relying on a sufficiently advanced IDE framework such
as Rascal language workbench [26]. Using the framework functionality, one
can quickly prototype a powerful grammarware engineering environment, which
would be highly domain-specific and yet extensible and programmable.

4. Creating a grammar repository

Having set up the objectives in §2 and revisited previously addressed chal-
lenges that enable the creation of the Grammar Zoo in §3, we move on to explain
the repository creation process. In particular, we will define the model of the
metadata that is supplied for each grammar in the repository (§4.1), explain
different kinds of sources for grammar extraction and the levels of grammars
extracted from them (§4.5), list the currently available automated extractors
(§4.7) and exporters (§4.8) and explain the recovery process (§4.10). Several
intervening sections will present illustrative examples to demonstrate our ap-
proach.

4.1. The model of metadata

We present the data model behind the Grammar Zoo frontend on Figure 1.
(An intuitively readable dialect of EBNF is used with ? denoting “zero or one”,
* denoting “zero or more”, + denoting “one or more” and using | for choice;
x:y means referencing a nonterminal y with the name x). Details follow:

repository — the root element;

entry — the first class entity, an entry in a repository; can be one language
or language family (e.g., “Java”, “C#”, “(E)BNF”), or one version of a
language with all its grammars and metadata (e.g., “Java 5”), in both
cases containing subdirectories with other entries; can also be a particular
identifiable software language (e.g., “a Java 5 grammar from §18 of the
Java Language Specification”);

13

// A repository is hierarchically structured
repository ::= entry+;

// Each directory has a name for its hierarchy level
// (which corresponds to a language, a dialect or any group)
// and lists resources and possibly grammars.
entry ::= name source:resource (item:resource)* grammar*;

// Each (re)source refers to its origin and may state title, subtitle,
// publication venue, edition number, etc.
resource ::= origin title? subtitle? venue? version? edition?

date specific? link+;

// Resource origin is a list of authors, a reference number of a standard
// or an organisation name that produced it.
origin ::= author+ | standard | organisation;

// Each grammar refers back to the descriptive name of the language,
// its corresponding status, a method of obtaining this grammar,
// as well as tools and files used.
grammar ::= of? status level method toolused* fileused*;

// There are many methods of obtaining a grammar:
method ::= copy|download|automatic|semi-automatic|git|...;

// Each link can be named and is generally a URI with shorthand notations.
link ::= name? (uri|doi|tool|xbgf|wiki|readme|slps|...);

// Each related grammarware tool has a name (e.g., parser),
// a technology it is based on (e.g., ANTLR) and a list of links.
tool ::= name technology link+;

// There is also a repository of tools known to the system
toolused ::= tool | toolref;

Figure 1: The data model of Grammar Zoo displayed as an annotated grammar.

grammar — one grammar usually with files used in the process of its extraction,
metadata annotations, execution scripts, grammar manipulation scripts,
etc;

name — a string naming something; important for identification of a language,
a language version or a grammar within the repository, although does not
have to be unique: it is possible and useful to have several grammars of
the same intended language in a repository;

source — the primary resource used for grammar extraction (several resources
are allowed if the grammar fragments needed to be collected); discussed
in detail in §4.5;

item — a related resource of secondary importance;

resource — a publication related to the grammar or using it extensively, a
website dedicated to its recovery process, etc;

14

origin — any entity responsible for creating a resource;

title — the title of a resource;

subtitle — a string necessary to identify the resource, but not a part of the
title itself;

venue — the name of a conference, a workshop or a journal;

edition/version — language specifications often have editions or versions;

date — when the resource was created, usually the year of publication: times-
tamps can be important (among other things) to identify the version of
the intended language, if it cannot be derived through other means;

specific — specific coordinates for the extraction source within the generally
identified resource (i.e., a chapter of a book, page numbers, an important
note);

link — essentially a customary named URI;

author — the name of each of the authors stored as a string: possibly can
be matched with DBLP, ORCID or similar framework and appropriately
linked;

standard — a reference number for a language standard (e.g., for the ISO
standard of EBNF it is “ISO/IEC 14977:1996(E)” [80]);

organisation — the name of a company or a standardisation body responsible
for the creation of the resource (and possibly the holder of the copyright);

of — an explicitly verbose human readable identification of a software language
intended to be defined by the grammar (used in the visualisation);

status/level — the maturity status of the recovered grammar; discussed in
detail in §4.3; the status also serves as the name of the subdirectory where
the grammar is located together with its attachments;

method — a particular way of obtaining the grammar of this status and level:
manual copy-paste, automated download, automatic use of a toolkit, semi-
automatically programming the necessary steps, digging it out of the
repository history, etc;

toolused — usually a grammar refers to at least one set of extraction tools,
but there can possibly be more (recovery toolkits, disambiguation tools,
grammar correction scripts, etc); discussed in detail in §4.7 for extractors
and §4.10 for recovery tools;

fileused — the name of a particular file used for extraction: especially cru-
cial for multipart sources such as modularised grammars or complicated
modularised adaptation scenarios;

15

uri — a uniform resource identifier, a link to a webpage;

doi — a digital object identifier, the easiest way to refer to most academic
publications: can be easily resolved to an official publisher’s page with
http://dx.doi.org;

tool — a grammarware tool coupled with the grammar or related to it; for
example, if this grammar was extracted from a parser specification, this
will link to the executable parser; it can be a validator for data models, a
refactoring tool, a migration tool, etc.;

xbgf — a shorthand notation for referencing grammar transformation scripts,
which are then also automatically rendered as hypertext; such link does
not need a name since it can be inherited from the transformation script;

wiki — a shorthand notation for referencing a page on the SLPS wiki at
http://github.com/grammarware/slps/wiki, usually such a page is au-
tomatically generated and contains links to multiple files in the repository
that comprise one tool;

readme — a shorthand notation for referencing a verbose README.txt file sup-
plied with more details described in natural language;

slps — a shorthand notation for referencing other files in the SLPS repository
on GitHub [24];

The specifications of the Grammar Zoo conforming to the data model de-
scribed above, can be found as zoo.xml files in SLPS in directories with each ex-
tracted grammar. The root zoo.xml document8 in the GitHub project slps.git
hub.com collects links to all those. The table with a brief overview of the current
contents of the Grammar Zoo will be presented later as ??.

4.2. Illustration: notation-parametric recovery of a Java grammar

Consider Figure 2 as an example of one of the 1710 entities comprising the
Grammar Zoo. In this example, dots represent omissions. Additional resources
refer to [28] and other related publications. The (post-)extraction grammar
transformation scripts recover.xbgf and correct.xbgf are inherited from the
Java grammar convergence case study in [28] and pretty-printed in hypertext as
a part of the Grammar Zoo. Both represent grammar evolution steps that lift
this Java grammar from the extracted (freshly recovered) to connected (checked
and tested) — we will list all supported statuses later in §4.5. The main dif-
ference between them is that correct.xbgf fixes the mistakes made by the
creators of the grammar source, while recover.xbgf fixes the mistakes that
were not automatically handled by recovery heuristics. For instance, the non-
terminal FormalParameter was erroneously left undefined in the specification

8http://github.com/slps/slps.github.com/blob/master/_dev/zoo.xml

16

http://dx.doi.org
http://github.com/grammarware/slps/wiki
http://slps.github.com
http://slps.github.com
http://github.com/slps/slps.github.com/blob/master/_dev/zoo.xml

<entry>

<name>Implementable</name>

<source>

<author>James Gosling</author>

<author>Bill Joy</author>

<author>Guy Steele</author>

<author>Gilad Bracha</author>

<title>Java Language Specification</title>

<edition>3</edition>

<date>2004</date>

<specific>Ch. 18: Syntax, pages 585-596</specific>

<link>

<uri>http://java.sun.com/.../syntax.html</uri>

<name>HTML</name>

</link>

</source>

<readme/>

<grammar>

<dir>fetched</dir> <level>0</level>

<method>download</method>

</grammar>

<grammar>

<of>Java (J2SE 5.0 "Tiger)</of>

<dir>extracted</dir> <level>1</level>

<method>automatic</method>

<toolused>html2bgf</toolused>

</grammar>

<grammar>

<of>Java (J2SE 5.0 "Tiger")</of>

<dir>connected</dir> <level>2</level>

<method>semi-automated</method>

<fileused>recover.xbgf</fileused>

<fileused>correct.xbgf</fileused> <toolused>xbgf</toolused>

</grammar>

</entry>

Figure 2: A typical entry in the Grammar Zoo, corresponding to the “more implementable”
grammar of Java 5 extracted from the Java Language Specification [51] for the purpose of
reverse engineering its relationships with other Java grammars [28].

— hence, correct.xbgf contains a call to a define operator with appropri-
ate arguments. On the other hand, on several occasions curly bracket terminal
symbols were mistaken by the extractor to be repetition metasymbols (i.e., in
the JLS notation “{x}” means “zero or more x”) — hence, these mistakes were
fixed in the recover.xbgf script.

4.3. Grammar maturity status

Lämmel and Verhoef proposed the notion of a grammar level9 to specify
a quality level or a recovery status of a grammar. For the Grammar Zoo, we

9These “grammar levels” are essentially CMM-like levels applied to grammars, unrelated
to well-known “grammatical levels” used for a range of grammar metrics [81, 39].

17

have essentially inherited that hierarchy and extended it to accommodate more
important details, yielding a maturity model for grammars [2]. We distinguish
among the following grammar levels:

• A grammar is fetched if it can be put in a file which we claim to con-
tain grammatical knowledge. A fetched grammar is usually written in
an (E)BNF-like notation, but it can also be an XML Schema schema, an
Ecore model, a parser specification, etc. A grammar from an undisclosed
ISO standard or a grammar built in a proprietary tool is not fetched, since
we have no possible way to extract the knowledge from it. A compiler is
therefore not a fetched grammar since the grammatical knowledge is in-
grained too deep in it and requires special techniques to be fetched. The
sources of a compiler, however, can be considered fetched, since further
extraction can be semi-automated, and the result will depend mostly on
the source and not on the extraction algorithm. Hence, a corpus of pro-
grams in a given language is also not a fetched grammar, but an APTA
(Augmented Prefix Tree Acceptor) [82] or a DFA (Deterministic Finite
Automaton) constructed from it by a grammatical inference algorithm, is
a fetched grammar. A fetched grammar can contain unreadable symbols,
incorrect indentation, parts written in an unknown notation or a natural
language, or even be present in a form of an image or a manuscript.

• A grammar is extracted, if it was fetched and then successfully pro-
cessed by a (hopefully automatic) grammar extractor, possibly also cor-
rected of typographical, text recognition and similar errors and converted
into a context-free grammar or, more broadly speaking, to a Boolean
grammar [83]. (Not venturing beyond context freedom is simply a con-
sequence of the current lack of theoretical foundations for linking classic
context-dependent grammars to generalised types — in general, aligning
the Chomsky hierarchy [84] with Barendregt λ-cube [85]). An extracted
grammar is suitable for automated processing: it can be pretty-printed
in a range of different ways and transformed by general means, without
writing a tool specific for its peculiar notation or format: syntax dia-
grams, Relax NG schemata, algebraic data types, parser specifications all
lose their notational differences when they are being extracted, but they
retain all structural peculiarities such as using a particular style of recur-
sion (syntax diagrams are incapable of expression left recursion, and some
parsing algorithms tend to avoid it as well), the lack or presence of termi-
nal symbols (anything that defines an abstract syntax, has no terminals)
or nonterminal symbols (classic regular expressions [86] have no notion
of named subcomponents), etc. An extracted grammar corresponds to a
level 1 grammar from [38].

• A grammar is connected, if it was extracted and then processed to not
contain unwanted top sorts (defined but never used) and bottom sorts
(used but not defined). These two quality indicators were proposed in

18

[79, 44] and discussed in more detail in [71] before being formalised as mi-
cropatterns [22]. Connecting a grammar can be done automatically with
a mutation [32, 29], semi-automatically with a sequence of transformation
steps, or by editing it inline. Any connected grammar corresponds to level
2 from [38]. Connecting is a simple procedure that allows to start making
some claims about the grammar, since it enables its formalisation (the
classic 〈N , T ,P, s〉 model of a grammar requires it to have one known
starting symbol) and possible application of grammar-based algorithms
(in particular grammar-based test data generation expects the grammar
to be connected because otherwise it is futile to use any coverage criteria).
In a broader sense, a connected grammar always relies on some underly-
ing mechanism of testing or validation which ensures its general quality
— as opposed to the extracted grammar which can be an output of an
automated extractor and never checked nor inspected further.

• A grammar is adapted, if it is connected and then transformed towards
satisfying some constraints: it could be complemented with a lexical part,
or its naming convention can be adjusted, or certain metaconstructs can
be introduced to or removed from its syntax. The adaptation has a clear
intent: adding a lexical part can lead to automated generation of a parser
or at least a recogniser; conforming to a naming convention can enable the
use of the grammar in specific language workbenches, etc. An adapted
grammar corresponds to level 3, or to level 4 if it has been tested on a
large scale [38].

• A grammar is exported, if it was adapted and then a piece of grammar-
ware was generated from it. An exported grammar bidirectionally and
possibly nontrivially corresponds to a real piece of grammarware such as
a compiler or a code analysis or transformation tool. This is a level 5
grammar [38] which either demonstrates the absence of manual steps in
grammar deployment, or documents them by its existence.

Each Grammar Zoo entry has one fetched grammar: ones with less than
one are “non-entries” that can perhaps be referred to, but can under no cir-
cumstances be machine processed; having more than one fetched grammar can
happen for cases such as multiple websites mirroring one another, but then a
simple check is required to assert them to be equal. If several extractors are
available (e.g., one straightforward one and one heuristic-based error-correcting
one), there can be multiple extracted grammars per entry. Similarly, there can
be several grammars of level connected and up per entry, varying per their
extracted source and methods of processing.

At this point in the history of the Grammar Zoo we have not yet experienced
the need to explicitly distinguish the reason for adaptation of each grammar:
some are massaged for better readability, some adjusted with parsing in mind,
some are disambiguated [87], some adapted for testing purposes [88, 20], etc.
We intentionally leave the hierarchy as general as it is, and leave its extension
to future work.

19

4.4. Illustration: a grammar life cycle

Suppose we would like to have a piece of grammarware to parse and analyse
programs in a particular software language — say, COBOL or PHP. Being
constrained in time, we usually start by looking for existing grammars: once we
find one that seems reasonably suitable for our needs, we can declare it fetched.
If a fetched grammar of our intended language is already in the Grammar Zoo,
it can save us the search, the frustration from websites having been taken down,
as well as the ambiguity about the true source of the grammar.

Once the grammar is fetched, it is usually necessary for us to extract it. In
the simplest cases, grammar extraction methods and tools can be applied with
reasonable success. There is quite a collection of them readily available within
Software Language Processing Suite and GrammarLab (see §4.7), and it is fairly
straightforward to use notation-parametric grammar extraction [1], if the input
notation is anything like BNF or EBNF. If all available methods fail, we can
attempt to apply grammar recovery tools (see §4.10), which have heuristics
known to overcome frequent erroneous patterns. Once some reasonable kind of
non-empty grammar is obtained or if it was in the Grammar Zoo to begin with,
the grammar can be considered to be extracted.

An extracted grammar is a full-fledged tangible software artefact that can
be processed further, analysed, transformed, exported, imported, visualised etc
— there are many tools in the GrammarLab and SLPS that can do it di-
rectly, and they can also help to export it to a format readily consumable by
other metagrammarware. However, it does not mean that this grammar would
“work” there, whatever that might mean. There are some sensible metrics,
constraints and grammar analyses established in state of the art grammar re-
covery [38, 44, 57], that are almost universally useful in improving the quality
of a grammar. For instance, we would like to identify the starting symbol of a
grammar, establish it being unique. Furthermore, for each parts unreachable
from it, we would like to make a decision and either remove them or connect
to the rest of the grammar. This is usually done by programming the corre-
sponding steps in XBGF [27], SLEIR [29] or any other grammar manipulation
language. This usually implies manual examination of a grammar and its met-
rics by an expert, making the appropriate decisions and then documenting the
changes. Once this is completed, we speak of having a connected grammar.

The next step is grammar adaptation: a goal-specific continuation of gram-
mar transformation activities. For example, if we have decided to parse and
analyse code in COBOL or PHP, this is our goal, and in case of Rascal it will
mean having a complete concrete syntax specification, and a suitable algebraic
data type. Both can be obtained from a connected grammar, but the adap-
tation strategies are different. For a syntax specification, we need to add the
lexical part, specify layout, increasingly disambiguate the grammar, etc. For a
data type, we should think of its suitability for specifying our analyses later,
and we can easily eliminate all terminal symbols and massage the remaining
abstract grammar to enable more concise and readable patterns. These streaks
of activity end up with an adapted grammar each.

20

Finally, our two grammars (or a syntax spec and a data type, or a grammar
and a schema — terminology may vary) are ready to be exported — we do this
with out of the box renderers (see §4.8), possibly followed by manual polishing
such as adding documenting annotations and inserting copyright notices. It is
not unusual for an exported grammar to be linked to a specific tool which it
forms a part of.

4.5. Grammar sources

So far, we have encountered the following kinds of grammar sources:

Language standard is a language document that was developed under super-
vision or received acknowledgement from a standardisation body (ANSI,
ECMA, IEEE-SA, ISO, IEC, ITU, IETF, OASIS, OMG, WSA, W3C, etc).
There are two additional factors that play important roles:

Centralised or distributed? Grammar knowledge can be concentrated in
an appendix or a specific section of the language standards, but it
can also be distributed all over the document (e.g., when it is used
for explaining language constructs one at a time). In the second case,
the extraction process is prone to missing grammar fragments due to
incorrect markings and other reasons.

Open or closed? When a standardisation body commits to public disclo-
sure of a language standard, it goes through a certain process which
usually comprises sanitising the contents at least to some extent:
clean up, mark up, linking and similar activities improve the quality
of the grammar source. If the standard is a close publication, it can
be unavailable for inspection for a broad audience (require payment
or special subscription), and there is an additional step of reentering
the data from its printed copy back into a computer. Both manual
retyping and automated text recognition processes are error-prone.
A grammar from an uncompromisingly closed publication cannot be
fetched at all.

Industrial specification is in many aspects the same as a language standard, but
it is developed inside a commercial company (Ericsson, Google, IBM, Mi-
crosoft, Oracle, etc). The same additional factors from language standards
apply, with conditions for disclosure usually being even more strict.

Browsable documentation is often found in many corners of the Internet. Many
people spend their own time on extracting grammar knowledge from the
artefacts they were able to obtain, sanitising it and reformatting the re-
sulting grammar as hypertext. Some of such endeavours that we men-
tioned before, are well-documented and linked to a published scientific
report [43], others contain conformance and validity claims that require
thorough verification.

21

Parser specification is an executable grammar that contains many annotations
that often take it beyond the context-free class. Grammars specified in
ANTLR [59, 67], Bison [89], JavaCC [90], Kiama [91], Rascal [26, 92],
SDF [56, 58, 93], TXL [61, 68], YACC [94] and many other metagram-
marware frameworks can be located in their corresponding repositories or
just anywhere close to end users of these products. Such specifications can
be stripped from excessive information and extracted in the form expected
by the representation central for the repository.

Metamodel is a grammar in a broad sense used in the modelware technological
space. Just like a parser specification, it can contain details that transcend
structural definitions: constraints, certain relations, etc. However, that
information can be abstracted from, and the grammars can be extracted.
AtlanMod already started an initiative of accumulating metamodels from
model-driven open source projects: we have referenced the EMF XMI part
of it as [5], but the same repository also contain metamodels in KM3 [95],
MSchema [96], Clojure [97], SBVR [98], UML 2.1 [99], GraphML [100],
OWL [101], MOF [102], etc.

Wiki pages can also be a source for grammar extraction, if the grammar was
developed by a community. So far we have encountered only one such
initiative, with several reverse engineered grammars of MediaWiki, and
reported it in detail in [52].

Scientific papers often contain small grammars or grammar fragments. We have
not yet attempted a big scale mining process of recovering all possible
grammar fragments published in a certain set of venues. However, at least
once [32] it was useful to compare the grammar published in a workshop
paper [72] with its updated version published electronically in a program-
mer’s manual [73].

4.6. Illustration: fetching grammar knowledge

Apart from grammar sources occasionally found in various places, we have
systematically inherited and extracted grammars from the existing collections,
listed in Table 2.

ANTLR Grammar Lists are collections of context-free and lexical definitions
intended to be used in a parser generator called ANTLR [59]. The cur-
rent version has a separate grammar repository, and thus is growing and
exposing all versions for each grammar, which can eventually be useful
for mining their evolution. For the previous version (ANTLR 3), there is
an operational website where these grammars can still be downloaded. A
corresponding website for ANTLR 2 has already been taken down, so we
are left with several grammars from it that have been previously used in
research [20].

22

Collection Fetched Format(s)
ANTLR 2 Grammar Lista 7 (offline) ANTLR2
ANTLR 3 Grammar Listb 154 ANTLR3
ANTLR 4 Grammar Listc 24 (growing) ANTLR4
TXL Worldd 21 TXL [61]
SDF Librarye 21 SDF2 [58]
JavaCC grammarsf 27 JavaCC [90]
SableCC Grammarsg 18 SableCC [103]
Rascal Language Libraryh 13 Rascal syntax def.i

8 Rascal ADTj

1 EBNF
Atlantic Metamodel Zook 303 Ecore [104]
ReMoDD metamodels l 15 various
TCS Zoom 24 Ecore

24 TCS [105]
Concrete Syntax Zoon 195 EMFText [106], Ecore
RelaxNG Schemaso 90 RELAX NG [107]
ISO/IEC JTC1/SC22p 40 EBNF

WIP (C++q) EBNF
OMG Specificationsr 614 KM3 [95], XSD [62], MOF [102]
SLPS s 12 (FL [27, 108]) various

33 (TESCOL [20]) ANTLR3 [109]
35 (LDF [31]) BGF [27]
23 (other) various

ahttp://web.archive.org/web/20130115233436/http://antlr.org/grammar/list.html
bhttp://www.antlr3.org/grammar/list.html
chttps://github.com/antlr/grammars-v4
dhttp://www.txl.ca/nresources.html
ehttps://github.com/cwi-swat/meta-environment/tree/master/sdf-library/library/languages
fhttps://java.net/projects/javacc/downloads/directory/contrib/grammars
ghttp://sablecc.sourceforge.net/grammars.html
hhttps://github.com/cwi-swat/rascal/tree/master/src/org/rascalmpl/library/lang
ihttp://tutor.rascal-mpl.org/Rascal/Declarations/SyntaxDefinition/SyntaxDefinition.html
jhttp://tutor.rascal-mpl.org/Rascal/Declarations/AlgebraicDataType/AlgebraicDataType.html
khttp://www.emn.fr/z-info/atlanmod/index.php/Ecore
lhttp://www.cs.colostate.edu/remodd/v1/category/artifact-types/metamodel

mhttp://wiki.eclipse.org/TCS/Zoo
nhttp://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
ohttp://relaxng.org/schemas
phttp://open-std.org/jtc1/sc22/
qhttps://github.com/cplusplus/draft/commits/master/source/grammar.tex
rhttp://www.omg.org/spec/index.htm
shttp://github.com/grammarware/slps

Table 2: Existing collections of grammars in a broad sense that have been incorporated (at
least fetched, and at least extracted if an extractor is present) in the Grammar Zoo.

23

http://web.archive.org/web/20130115233436/http://antlr.org/grammar/list.html
http://www.antlr3.org/grammar/list.html
https://github.com/antlr/grammars-v4
http://www.txl.ca/nresources.html
https://github.com/cwi-swat/meta-environment/tree/master/sdf-library/library/languages
https://java.net/projects/javacc/downloads/directory/contrib/grammars
http://sablecc.sourceforge.net/grammars.html
https://github.com/cwi-swat/rascal/tree/master/src/org/rascalmpl/library/lang
http://tutor.rascal-mpl.org/Rascal/Declarations/SyntaxDefinition/SyntaxDefinition.html
http://tutor.rascal-mpl.org/Rascal/Declarations/AlgebraicDataType/AlgebraicDataType.html
http://www.emn.fr/z-info/atlanmod/index.php/Ecore
http://www.cs.colostate.edu/remodd/v1/category/artifact-types/metamodel
http://wiki.eclipse.org/TCS/Zoo
http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
http://relaxng.org/schemas
http://open-std.org/jtc1/sc22/
https://github.com/cplusplus/draft/commits/master/source/grammar.tex
http://www.omg.org/spec/index.htm
http://github.com/grammarware/slps

TXL World is similarly accessed through the internet, but it deploys grammars
in tarballs of varying structure, so the process involved less automation:
each source must have been explored individually to locate the files rele-
vant for grammar extraction. TXL grammars typically are of the adapted
level, and can be considered exported if shipped together with a corre-
sponding tool [61].

SDF Library is a component of the Meta-Environment [70] distribution, bear-
ing similar structure and properties as the ANTLR 4 repository.

JavaCC and SableCC are other compiler compilers, popular among in com-
munities different from ANTLR but sharing a Java ecosystem [90, 103].

Rascal is a metaprogramming system with many components, containing at
least two forms of grammar-related artefacts: concrete syntax definitions
(in fact, concrete grammars with identifiable context-free and lexical parts)
and algebraic data type declarations (similar in notation and intention to
Haskell ADTs) [26]. Both forms are suitable for grammar extraction, and
both end up immediately as both fetched and extracted grammars.

Atlantic Metamodel Zoo is web-based, so obtaining a fetched grammar is easy
with semi-standard widespread tools like wget or curl. All the metadata
about the grammars (i.e., authorship, creation dates, etc) was recovered
by parsing the front webpage. Most of the metamodels yielded connected
grammars, and those that did not, were deliberately designed to consist
of several non-connected components.

ReMoDD is a repository for Model-Driven Development, a recent initiative to
collect any kinds of models used in papers on MDD [110]. We only fetched
models from the artefact category “metamodel” since they have the most
straightforward mapping to grammars.

TCS Zoo is a collection of grammars in Textual Concrete Syntax [105] and a
part of the Eclipse/GMT library. A TCS model is basically a metamodel
annotated with syntactic information.

EMFText Concrete Syntax Zoo is a similar collection of grammars in EMF-
Text [106], and it also contains for most (but not all) grammars corre-
sponding Ecore and GenModel metamodels generated from it — if pro-
vided, the triple can be converged [27] for external validation.

RelaxNG Schemas is a collection of links: some of them became dysfunctional
over time and needed to be located via The Wayback Machine10, otherwise
processing it was similar to TXL, ANTLR and SDF grammars.

10The Wayback Machine, http://archive.org/web/web.php.

24

http://archive.org/web/web.php

ISO and ECMA standards contain grammars in textual form, written in a va-
riety of informally described (E)BNF dialects (far from ISO EBNF), and
are often compromised by typesetting artefacts, misspellings, etc. Still,
advanced notation-parametric grammar recovery [1] combined with some
basic cleanup actions specific for each grammar, was enough to obtain a
number of such extracted grammars.

OMG is a standardisation body similar to the two mentioned above. However,
it exposes much more of its standards freely online, with minimalistic
annotations about their role and format.

SLPS is again an open source project with its repositories also freely exposed
to the public, which allows us not only to extract grammars from them
in a very robust way, but also collect and analyse the whole history of
commits concerning each of them. This was successfully performed as an
experiment for some SLPS grammars, but not yet for other sources.

4.7. Grammar extractors

As of now, we have the following grammar extractors available in the Soft-
ware Language Processing Suite:

ADT to BGF. Without loss of generality, one can assume that abstract data
types in Rascal are conceptually the same as in Haskell or any other ad-
vanced functional language. In this extractor, types are mapped to non-
terminals and constructors are mapped to alternative right hand sides.

Example Bert Lisser, Dot, lang::dot::Dot, 2012

public data DotGraph = graph(Id id, Stms stmts)

| digraph(Id id, Stms stmts);

DotGraph ::= [graph]::([id]::Id [stmts]::Stms)

| [digraph]::([id]::Id [stmts]::Stms);

(All types are treated as nonterminals, constructor names and argument names as
labels).

ANTLR to BGF. In order to be able to extract grammars from ANTLR
parser definitions, we reused the standard ANTLR grammar for ANTLR
grammars by attaching appropriate semantic actions to it. The semantic
actions were programmed for using XML API to serialise the parse tree
as a BGF grammar and abstract from the parsed semantic actions.

25

Example Oliver Kellogg, Ada, ada.g, 2003

use_clause : u:USE^

(TYPE! subtype_mark (COMMA! subtype_mark)*

{ Set(#u, USE_TYPE_CLAUSE); }

| c_name_list { Set(#u, USE_CLAUSE); }

)

SEMI!

;

use_clause ::= [u]::USE ((TYPE subtype_mark (COMMA subtype_mark)*)

| c_name_list) SEMI;

(Both context-free and lexical nonterminals become nonterminals, all AST-building
annotations are abstracted from, as are semantic predicates and actions).

DCG to BGF. Definite clause grammars are a way of specifying a parser in
Prolog [60]. Their clauses are mapped straightforwardly to production
rules by an extractor written also in Prolog.

Example Ralf Lämmel, FL, Parser.pro, 2008

function((N,Ns,E)) -->

name(N),

+(name,Ns),

@("="),

expr(E),

+(newline).

function ::= name name+ "=" expr newline+;

(Left hand sides of definite clauses become left hand sides of a grammar, all pred-
icates on the right hand side that are not recognised as metasyntax, are treated as
nonterminals, except for “@”, “reserved” and “keyword” that are treated as specify-
ing terminal symbols. All information on variables is abstracted from).

Ecore to BGF. Since Ecore models are by default serialised as XMI, we only
needed to express the mapping between Ecore and BGF, which was done
in XSLT.

Example Hugo Bruneliére, Cobol, COBOL.ecore, 2005

<eClassifiers xsi:type="ecore:EClass" name="COBOL88Element">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="has"

ordered="false" lowerBound="1" upperBound="-1"

eType="/0/COBOL88ElementValue" containment="true"/>

</eClassifiers>

COBOL88Element ::= [name]::String <has>:COBOL88ElementValue+;

(The extractor works with the XMI serialisation of an Ecore model. All non-
abstract eClassifiers tags of EClass type become nonterminals, with each of
eStructuralFeatures referring to a named element in the sequence on the right
hand side in the grammar production rule).

Java to BGF. The object model of a Java program is extracted from a Java
source by the use of reflection. Classes are treated as nonterminals, and
their visible interfaces (public members and getters/setters) serve as the
right hand side. This mapping helped to trivially converge the structure

26

defined by the Java source generated by a data binding framework (JAXB)
with the structure defined by the original schema (XSD) in [27].

Example Ralf Lämmel, FL, types/Binary.java, 2008

public class Binary extends Expr {

public Ops ops;

public Expr left, right;

public Binary(Ops o, Expr left, Expr right) {

this.ops = o;

this.left = left;

this.right = right;

}

public void accept(Visitor v) {

v.visit(this);

}

}

Expr ::= Binary;

Binary ::= [ops]::Ops [left]::Expr [right]::Expr;

(Each class is mapped to a nonterminal. Inheritance is treated as a chain production
rule. Every public element of a class becomes a sequentially composed element on the
right hand side of the grammar production rule, with types becoming nonterminals
and names becoming selectors).

LDF to BGF. Since we assume that any language document does contain
grammar knowledge explicitly, i.e., in BGF, we use a special extractor
to take out the BGF bits and compose a grammar from them. In the
past, the LDF to BGF extractor was mostly used for testing purposes.
We leave it without an example since extraction from LDF is basically
selective copying.

LLL to BGF. The first extractor from LLL was developed as a means of im-
porting grammars manipulated by GDK [72]. Later it has been retired
in favour of an EBNF Dialect Definition (EDD) of LLL that serves as a
parameter for Grammar Hunter (see below).

Example Vadim Zaytsev, C#, Final.lll extracted from ECMA-344, 2005

goto-statement

: "goto" lex-csharp/identifier ";"

| "goto" "case" expression ";"

| "goto" "default" ";"

;

goto-statement ::= "goto" lex-csharp/identifier ";"

| "goto" "case" expression ";"

| "goto" "default" ";";

(The notations are very close: BGF covers strictly more metasyntactic features than
LLL).

Python to BGF. A Python library called PyParsing allows to define a PEG
inside Python code. This extractor, written in Rascal, relies on the struc-
ture expected by PyParsing, in order to recover grammar knowledge from
a Python program.

27

Example Ruwen Hahn, FL, parser.py, 2008

ifThenElse = (

_IF + expr + _THEN + expr + _ELSE + expr

).setParseAction(lambda tok: t.IfThenElse(*tok))

ifThenElse ::= _IF expr _THEN expr _ELSE expr;

(The extractor abstracts from all parse actions of the PyParsing library and treats
all components as nonterminals, while also recognising combinators for sequential
composition (“^” and “+”), optionality (Optional), negation (NotAny), Kleene star
(ZeroOrMore), etc).

Rascal grammar to BGF. By reusing Rascal grammar for Rascal and inter-
nal interfaces for accessing it, this extractor delivers a platonic grammar
extracted from a Rascal [26] concrete syntax definition (which is essen-
tially an annotated parser specification).

Example Jurgen Vinju, Pico, lang::pico::syntax::Main, 2011–2012

syntax Expression

= id: Id name

| strcon: String string

| natcon: Natural natcon

| bracket "(" Expression e ")"

> left concat: Expression lhs "||" Expression rhs

> left (add: Expression lhs "+" Expression rhs

| min: Expression lhs "-" Expression rhs

)

;

Expression ::= [id]::([name]::Id)

| [strcon]::([string]::String)

| [natcon]::([natcon]::Natural)

| "(" e:Expression ")"

| <left>:[concat]::([lhs]::Expression "||" [rhs]::Expression)

| <left>:([add]::([lhs]::Expression "+" [rhs]::Expression)

| [min]::([lhs]::Expression "-" [rhs]::Expression));

(The extractor abstracts from associativity rules and priority specifications and treats
names of alternatives as labels. Any annotations are also neglected during extrac-
tion).

RelaxNG schema to BGF. RELAX NG is a schema language for XML, al-
ternative to a much more popular XML Schema [107]. It is in general be-
lieved to be simpler and thus more understandable and making the users
less prone to mistakes, but all commonly used features are present in both
languages, making the choice between them usually platform-dependent
or library-dependent. The extractor was developed incrementally by cov-
ering the functionality found in the schemata referenced at the RELAX
NG home page [111]; it was not a scientifically challenging process.

28

Example Norman Walsh, DocBook, dbhier.rng, 2002

<define name="tocfront">

<element name="tocfront">

<ref name="tocfront.attlist"/>

<zeroOrMore>

<ref name="para.char.mix"/>

</zeroOrMore>

</element>

</define>

tocfront ::= [tocfront]::(tocfront.attlist para.char.mix*);

(All define clauses with a nested element are mapped to labelled production rules.
References to other definitions are treated as nonterminals, repetition kinds are also
mapped straightforwardly. The interleave construct is abstracted from and mapped
to a sequence, which is still a reasonably good representation in the case of an abstract
grammar. Mixed content is mapped to a Kleene star over the choice of the actual
content and a raw string).

SDF to BGF. We encoded the necessary traversal functions for crawling the
parse trees of SDF grammars and producing BGF and reused the SDF
module and the XML module from the standard package of the Meta-
Environment. Separate command line tools are used to make a parse
table, to compile ASF formulæ, to parse the input grammar, to rewrite
the parse tree and to serialise the transformed parse tree into a file. They
are bundled together and wrapped in a black box extraction script.

Example Jurgen Vinju, Taeke Kooiker, Mark van den Brand,

C, ansi-c/syntax/Declarations.sdf, 2006–2008

context-free syntax

Specifier+ {InitDeclarator ","}+ ";" -> Declaration

Specifier+ ";" -> Declaration {avoid}

Declaration ::= Specifier+ {InitDeclarator ","}+ ";";

Declaration ::= Specifier+ ";";

(The notations are very similar, except the right hand side and the left hand sides
are flipped to a more common position, and priority specifications are neglected.
Constructor names, if present, becomes labels for production rules).

W3C Specification to BGF. As a part of the initiative to create a unified
data model for language documentation, a case study was completed to
map the W3C specification of XPath to it [31]. This extractor looks for
all <scrap> elements inside a W3C standard specification and maps its
<prod> elements to production rules.

29

Example W3C, XPath, REC-xpath-19991116.xml, 1999

<prod id="NT-LocationPath">

<lhs>LocationPath</lhs>

<rhs>

<nt def="NT-RelativeLocationPath">RelativeLocationPath</nt>

</rhs>

<rhs>

|

<nt def="NT-AbsoluteLocationPath">AbsoluteLocationPath</nt>

</rhs>

</prod>

LocationPath ::= [NT-LocationPath]::(RelativeLocationPath

| AbsoluteLocationPath);

(Production rules are formed from <prod> tags, with their IDs becoming production
labels and each reference to a nonterminal being mapped to a nonterminal).

TXL to BGF. We reused the TXL grammar for TXL grammars and made
use of the TXL engine’s option of returning the parse tree in an XML
form. The mapping between TXL XML and our XML (i.e., BGF) was
straightforwardly encoded in XSLT.

Example William Waite, James Cordy, Fortran, fortran.grm, 2009

define BlockDataStmt

[LblDef] ’blockdata [opt BlockDataName] [EOS]

end define

BlockDataStmt ::= LblDef "blockdata" BlockDataName? EOS;

(Each define and redefine clause is mapped to a production rule. All combinators
of the latest version of TXL (opt, repeat, list, etc) are supported. All rule clauses
are ignored).

XML Schema to BGF. Not all elements of the XML Schema can be mapped
to grammar concepts efficiently, but the most used ones easily find their
counterparts. The mapping is thus partial and bidirectional at best (e.g.,
XML elements and XSD complex types are both mapped to nonterminal
symbols).

Example Vadim Zaytsev, LDF, ldf.xsd, 2010

<xsd:complexType name="named-link">

<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>

<xsd:choice minOccurs="0">

<xsd:element name="version" type="xsd:string"/>

<xsd:element name="edition" type="xsd:string"/>

</xsd:choice>

<xsd:element name="uri" type="xsd:anyURI" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

named-link ::= [title]::str

([version]::str | [edition]::str)? [uri]::str?;

(All elements, groups, complex and simple types become nonterminals. Combina-
tions of minOccurs and maxOccurs constraints are mapped to the closest possible
variant available in BGF: “+”, “*” or “?”).

30

4.8. Grammar renderers

Technically, a grammar renderer (pretty-printer, exporter) is a part of a
bidirectional transformation [112, 113] between the source grammar specified
in a notation of a particular framework or methodology, and the platonic piece
of grammatical knowledge stored in the repository. When the grammar is re-
covered, corrected and otherwise changed, the two become desynchronised and
can be brought back in sync by a renderer. A more simplistic view would be
to assume that the source grammar is lost or empty, and that the synchro-
nisation process only entails generating the corresponding definition entirely.
To illustrate this, suppose that we have a syntax definition D in SDF [56]: it
contains a context-free part, a lexical part, possibly variable definitions, pri-
ority descriptions, AST constructor annotations and similar details, which are
together enough to parse textual data unambiguously to form a tree correctly
representing its structure in the described language. A Grammar Zoo entry
G extracted from that source, would have less information, because it has un-
dergone through the “extraction through abstraction” process [27] and lost its
idiosyncratic details. Still, if something changes — for instance, a production
rule is removed from the extracted grammar G, we can automatically detect
which rule needs to be removed from D if we wish them synchronised. If we
represent the bidirectional transformation classically as a relation and two up-
date functions, then the pair of D and G will be an element of this relation and
two functions would be the extractor and the renderer.

For the sake of simplicity we adopt the simplistic view and consider that a
rendered grammar is generated from scratch from a repository entity and does
not need to matched with its older version and updated. SLPS contains such
simple renderers for exporting grammars in a readable EBNF dialect like the
one displayed in this paper; in the BNF dialect used in the DMS Toolkit [114];
in Graphviz dot format for visualisation purposes; in Rascal as a syntax def-
inition [26]; in SDF [56]; in TXL [61]; in LaTeX for publishing purposes, etc.
Conceptually each one of those is a reverse of an extractor — that is, a pretty-
printer. We will only consider hypertext rendering in detail.

Browsable grammars are not a new idea: in particular, they have been moti-
vated in [38] and [115], and even the bare observation of the abundance of such
grammars being displayed all over the internet, with metasyntax highlighting
and hyperlinked nonterminals, demonstrates practical need for them.

The hypertext rendering of a grammar in the Grammar Zoo, besides the
main part, contains the following additional computed information:

• Number of production rules — the actual number of different definitions
for nonterminals physically present in the grammar;

• Number of top alternatives — the PROD metric from [39], calculated as
the number of top level alternatives in order to account for “horizontal”
definitions (i.e., “X ::= Y | Z;” instead of “X ::= Y; X ::= Y;”);

• Number of defined nonterminal symbols — the number of unique left hand
sides of all production rules;

31

• Root nonterminal symbols — nonterminals explicitly marked as starting
symbols of a grammar;

• Other top nonterminal symbols — defined nonterminals not used any-
where in a grammar and not marked as roots; in [38] it is suggested that
top nonterminals should be examined during grammar recovery and either
elevated to the root status or removed from the grammar;

• Bottom nonterminal symbols — nonterminals forming the difference be-
tween the abovementioned number of defined nonterminal symbols and
the VAR metric from [39]; undefined nonterminals encountered exclusively
within the right hand sides of production rules;

• Number of used terminal symbols — the TERM metric from [39].

The question of how to render a grammar perfectly, is an open one, but
these properties have been quoted as helpful for grammar comprehension: they
help a human engineer to estimate the grammar’s complexity and perform some
superficial analyses like examination and elimination of multiple top nontermi-
nals.

4.9. Illustration: convergence of JLS grammars

The method of grammar convergence is used to reverse engineer true re-
lationships between grammars by transforming them toward equality and ex-
amining the properties of these transformation steps (in particular, preserva-
tion of the assumed semantics). For example, if the only changes between two
grammars concern renaming nonterminals, we conclude that the grammars are
equivalent in the sense of generating or accepting the same string language,
but not equivalent in the sense of XML document types. When the method
of grammar convergence was first proposed in [27], it was demonstrated on a
small case study with six grammars of such a small size that all of them would
fit on one page. Obviously, the next step in demonstrating the viability of the
method was to perform a full scale case study with industrial size grammars
of a mainstream language: Java was chosen as one of the languages having
three published editions of the official language specification, each containing
two formally unrelated alternative grammars for the same language version.

In the Java convergence paper [28], one quarter of it, 11 full pages out of
42 (not counting the bibliography), is dedicated to the extraction and recovery
process. However, the recovery of the six grammars from three editions of the
Java Language Specification is not among the main contributions of the paper,
so the amount of attention it received is due to the sheer complexity of the
process, which entailed:

• tag elimination — source L0 grammars were typed in manually in ill-
formed HTML;

• indentation processing — the input notation relied on indentation to sep-
arate top level choices in production rules;

32

• robust parsing — in order to deal with incorrect markup and unexpected
artefacts;

• matching parentheses — to disambiguate brackets-as-terminals from brackets-
as-metasymbols;

• adjusting symbol roles — incorrect markup and improper context could
lead to metasymbols being treated as terminal symbols or vice versa, or
terminals as nonterminals;

• composing sibling symbols and decomposing compound symbols — to
address the issue of erroneous markup being interjected in the middle of
a token;

• removing duplicates — also those with slightly different typesetting.

If anyone is to replicate the case study and, for instance, to converge several
C# grammars taken from different sources (ECMA standards, ISO standards
and Microsoft language specifications), the whole effort would need to be rein-
vested both in the engineering side of the case study (the actual programming
of an appropriate extractor) and in the description of it (even if only for the
sake of honest report). By saving this kind of information together with the ex-
tracted grammar in a publicly accessible place, we save the space in any future
replication and allow such papers to fully focus on their main contributions.

4.10. Grammar recovery and evolution

All of the tools listed so far in §4.7, did not go beyond simple extraction of
a level 1 grammar: that is, in the presence of an error in the grammar source
used for extraction, they give up after reporting it to the user, which then has
to go back to the source and figure out a way to solve it. Unlike them, the tools
listed below are capable to identify and even resolve some of the commonly
encountered issues.

BNF to LLL. After we have noticed that many ISO standards of program-
ming languages (C, C++, C#) share the same metalanguage, this was
the first tool to be developed. It normalised some lexical singularities and
translated the EBNF dialect used by ISO grammar developers to LLL
used in GDK [72] (for which we have another extractor ready). It should
be noted here that the EBNF used in ISO standards is not the same as
ISO EBNF defined by [80].

PDF to BGF. A grammar copy-pasted from a PDF of an ISO standard of C,
C++, C# or any other that uses the same metalanguage, can be extracted
with some tolerance regarding lexical imperfections. This extractor is
essentially a composition of BNF to LLL and LLL to BGF.

33

Figure 3: A tag cloud showing language and language group names according to the average
sizes of their grammars (made with Wordle). “Cs” denotes C#, “conf” is a collection of
metamodels for the domain of conference organisation. “ODF” is Open Document Format.

HTML to BGF. This advanced extractor had to work on a manually and
loosely hypertext source. It comprised a set of generalised heuristics in a
pattern form that it tried to apply for automated recovery. In the Java
Language Specification case study [28] its use was prolific, the extractor
fixed 669 errors before we started to program the main body of grammar
transformations.

EDD to Rascal. This tool aids semi-automated interactive grammar recov-
ery [1]. It requires a specification of the input metalanguage in a form
of EDD, an EBNF Dialect Definition [30], from which it generates a Ras-
cal plugin that enables manipulation of grammars written in the specified
EBNF dialect with standard means of Eclipse. This method does not auto-
matically solve any problems, but it helps identifying them and facilitates
a grammar engineer in fixing them.

Grammar Hunter. This tool used for notation-parametric grammar recov-
ery [1], requires a specification of the input metalanguage in a form of
EDD, an EBNF Dialect Definition [30]. Then it consumes the input text,
treating it as a grammar text written in the specified EBNF dialect, applies
all appropriate heuristics and delivers a recovered grammar automatically.

XBGF scripts are more or less a standard way of programmable grammar ma-
nipulations in SLPS: they can be generated or manually developed, and
always can be re-executed or pretty-printed for inspection. The XBGF
language is described in detail in [28], [57, §7] and [24, XBGF Manual].
Essentially it allows to use predefined operators for (un)folding nontermi-
nals, factoring choices, renaming symbols, etc.

5. Using the Zoo

Figure 3 visualises the software languages currently represented in the Gram-
mar Zoo. In order to avoid multiple diagrams, we have used a cumulative size

34

www.wordle.net

0

50

100

150

200

0 70 140 210 280 350
0

1500

3000

4500

6000

0 45 90 135 180 225

Figure 4: Sizes of individual extracted grammars in Grammar Zoo, in ascending order (up to
200 on the left, from 200 up on the right).

metric conceptually akin to Halstead vocabulary [116] and calculated as the sum
of the number of unique nonterminal symbols, the number of unique terminal
symbols, the number of unique labels for production rules and top alternatives,
and the number of selector names for grammatical subexpressions. As one can
see from Figure 4, the Grammar Zoo contains grammars of all sizes, so clus-
tering based on this cumulative metric is unfeasible. The outrageously large
outliers on both figures are Open Document Format grammars, all containing
around 1000 nonterminals, around 700 terminals and around 2000 production
rules.

A more detailed summary of the minimum, average and maximum sizes of
grammars per language group, can be found on Figure 5: the smallest grammars
of ODF are those of its Manifest Schema and its Digital Signature Schema, so
a “language” in this context should be understood as a domain, not as a string
language in the formal grammar sense.

Unfortunately, the entire contents of the Grammar Zoo are too long and
too actively changing in order to present them in a paper. They are, however,
always available online at http://slps.github.io/zoo.

Future possible uses for the Grammar Zoo and any other grammar repository
built on the same principles we have proposed in this paper, are diverse and
include, but are not limited to, the following:

• Improving the overall accessibility of the repository by providing gram-
mars in more notations, with better visualisation and filtering strategies.

• Assimilating other grammar collections — for instance, the Grammar Zoo
contains several ANTLR grammars from the ANTLR Grammar List [67],
but not yet all of them.

• Curating the corpus and raising the maturity level [2] of grammars there
for the sake of enabling bulk processing of only connected or only adapted
grammars, in the manner that was performed in [20] with differential
testing of parsers.

• Adding a time dimension: for grammars which source is a repository, all
versions can be extracted and somehow presented in the Grammar Zoo.

35

http://slps.github.io/zoo

SAF
FL

AWK
OCL

API2MoL
Pico
PL/I

XQuery
Dot

BibTeX
Development

XML
Logo

Metasyntax
XSLT

Metamodels
SLPS
UML
Occam
XPath
Formats
Python
TESCOL
JavaScript

C
Assembly

Java
Pascal
Basic

Modula
C++

HTML
Eiffel
PHP
Dart
C#
ABS
Ada

Fortran
Conferences

ODF
0 575 1,150 1,725 2,300 2,875 3,450 4,025 4,600 5,175 5,750

Figure 5: Grammar sizes: minimum, average and maximum — per language group. By
“grammar size” we understand a cumulative metric summing the number of nonterminals,
number of terminals and number of expression labels in a grammar. Such a remarkably small
size for PL/I can be explained by the fact that at the moment we only have one simplified
metamodel of the language.

This has been done as an experiment for some of the DSL grammars
used within SLPS: BGF, a BNF-like grammar format, and LDF, a unified
format for language documentation.

• Mining the corpus for various properties — for example, defining a collec-
tion of micropatterns based on the current content of the Grammar Zoo
has been done in [22].

• Performing comparative studies on grammar-based techniques.

• Empirical studies of grammar improvement: user studies or genetic algo-
rithms.

• Developing methods of inferring notation specifications.

• Adding interactive on demand grammar export instead of providing a
static collection of predefined notations.

• Bridging technological spaces by investigating grammars from them, meg-
amodelling the corpus itself and grammars in it.

• Improving interoperability of metagrammarware.

36

6. Conclusion

Many claims about design of software languages and their descriptions (gram-
mars in a broad sense, per [3, 57]) can be found in existing literature [6, 7, 8, 9,
10, 11, 12, 13, 14, 15, et al.], all backed up by case studies and expert opinions.
In order to support, challenge or generalise them, one could collect relevant
statistical evidence, based on a sufficiently large corpus of diverse language defi-
nitions. Such a corpus, referred to as the Grammar Zoo, was proposed in this
paper. This corpus will support replicability across grammar-based experiments
(by providing open access to its grammars to the public), support aggregation
of findings (by annotating the grammars extensively), reduce the cost of con-
trolled experiments (by shifting the focus of future research from obtaining the
grammars for case studies to newly proposed techniques), aid to obtain sample
representativeness (by making the grammarbase large and versatile) and help to
isolate the effects of individual factors (by metadata-based filtering). The Gram-
mar Zoo initiative is modelled after successful projects like Qualitas Corpus [4]
in source code analysis and Atlantic Metamodel Zoo [5] in modelware.

By relying on previous experiences in grammar extraction and grammar re-
covery [44, 37, 45, 38, 43, 48, 27, 28, 1, 30], we provide methods and tools for
relatively semi-automatic easy extraction of grammars in a broad sense from var-
ious software artefacts: syntax specifications, type definitions, data schemata,
etc. These methods and tools rely on systematic manipulation of syntactic no-
tations, on reproducible specification of grammar evolution steps, on advanced
IDE support, as well as on some other less recently developed technologies. A
unified data model for systematic accumulation of grammar knowledge has been
designed, presented and exemplified.

The Grammar Zoo, publicly available as http://slps.github.io/zoo, is a
collection of big grammars of mainstream languages such as Ada, C, C++, C#,
Dart, Modula, Fortran, as well as small grammars used for various purposes,
mostly for demonstrating certain software language engineering techniques on
a proof-of-concept scale. Its name stems from the activity known as “grammar
hunting” [1] or “grammar stealing” [45] and hints at the fact that the result of
a hunt is not cooked, eaten and gone, but rather carefully put on display. The
Grammar Zoo at the time of submission has 1710 fetched grammars and 500+
grammars of extracted level and higher, and it continues growing.

References

[1] V. Zaytsev, Notation-Parametric Grammar Recovery, in: A. Sloane, S. Andova (Eds.),
Post-proceedings of the 12th International Workshop on Language Descriptions, Tools,
and Applications (LDTA 2012), ACM Digital Library, 2012, pp. 9:1–9:8. doi:10.1145/
2427048.2427057.

[2] V. Zaytsev, Grammar Maturity Model, in: A. Pierantonio, D. Tamzalit, B. Schätz
(Eds.), Ninth Workshop on Models and Evolution (ME’14), CEUR, 2014.

[3] P. Klint, R. Lämmel, C. Verhoef, Toward an Engineering Discipline for Grammarware,
ACM Transactions on Software Engineering Methodology (TOSEM) 14 (3) (2005) 331–
380.

37

http://slps.github.io/zoo
http://dx.doi.org/10.1145/2427048.2427057
http://dx.doi.org/10.1145/2427048.2427057

[4] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, J. Noble,
Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies, in: Asia
Pacific Software Engineering Conference (APSEC 2010), 2010, pp. 336–345.

[5] J. Cabot, M. Tisi, H. Brunelière, et al., AtlantEcore Metamodel Zoo, http://www.emn.
fr/z-info/atlanmod/index.php/Ecore (2003).

[6] A. van Wijngaarden, Generalized ALGOL, in: R. Goodman (Ed.), Annual Review in
Automatic Programming 3, Pergamon Press, 1963, pp. 17–26.

[7] N. Wirth, On the Design of Programming Languages, in: IFIP Congress, 1974, pp.
386–393.

[8] C. A. R. Hoare, Hints on Programming Language Design, Tech. rep., Stanford Univer-
sity, Stanford, CA, USA (1973).

[9] M. Mernik, J. Heering, A. M. Sloane, When and How to Develop Domain-Specific
Languages, ACM Computing Surveys 37 (4) (2005) 316–344. doi:10.1145/1118890.

1118892.

[10] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats, E. Visser,
G. Wachsmuth, DSL Engineering: Designing, Implementing and Using Domain-Specific
Languages, dslbook.org, 2013.

[11] N. Chomsky, Syntactic Structures, Mouton, 1957.

[12] M. Erwig, E. Walkingshaw, Semantics First!, in: Proceedings of the Fourth International
Conference on Software Language Engineering, SLE’11, Springer, 2012, pp. 243–262.
doi:10.1007/978-3-642-28830-2_14.

[13] L. Tratt, Evolving a DSL Implementation, in: Generative and Transformational Tech-
niques in Software Engineering, Vol. 5235 of LNCS, Springer, 2008, pp. 425–441.
doi:10.1007/978-3-540-88643-3_11.

[14] M. Herrmannsdörfer, S. D. Vermolen, G. Wachsmuth, An Extensive Catalog of Opera-
tors for the Coupled Evolution of Metamodels and Models, in: Proceedings of the Third
International Conference on Software Language Engineering, SLE’10, Springer, 2011,
pp. 163–182.

[15] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical Assessment of
MDE in Industry, in: Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, ACM, 2011, pp. 471–480. doi:10.1145/1985793.1985858.

[16] H. Do, S. Elbaum, G. Rothermel, Supporting Controlled Experimentation with Testing
Techniques: An Infrastructure and its Potential Impact, Journal of Empirical Software
Engineering 10 (4) (2005) 405–435.

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimenta-
tion in Software Engineering: an Introduction, Kluwer Academic Publishers, Norwell,
MA, USA, 2000.

[18] V. R. Basili, F. Shull, F. Lanubile, Building Knowledge through Families of Experiments,
IEEE Transactions on Software Engineering 25 (4) (1999) 456–473.

[19] L. M. Pickard, B. A. Kitchenham, P. W. Jones, Combining Empirical Results in Software
Engineering, Journal of Information and Software Technology 40 (14) (1998) 811–821.

[20] B. Fischer, R. Lämmel, V. Zaytsev, Comparison of Context-free Grammars Based on
Parsing Generated Test Data, in: U. Aßmann, A. Sloane (Eds.), Post-proceedings of the
Fourth International Conference on Software Language Engineering (SLE 2011), Vol.
6940 of LNCS, Springer, 2012, pp. 324–343. doi:10.1007/978-3-642-28830-2_18.

38

http://www.emn.fr/z-info/atlanmod/index.php/Ecore
http://www.emn.fr/z-info/atlanmod/index.php/Ecore
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/978-3-642-28830-2_14
http://dx.doi.org/10.1007/978-3-540-88643-3_11
http://dx.doi.org/10.1145/1985793.1985858
http://dx.doi.org/10.1007/978-3-642-28830-2_18

[21] J. Gil, I. Maman, Micro Patterns in Java Code, in: Proceedings of OOPSLA’05, ACM,
2005, pp. 97–116.

[22] V. Zaytsev, Micropatterns in Grammars, in: M. Erwig, R. F. Paige, E. V. Wyk
(Eds.), Proceedings of the Sixth International Conference on Software Language En-
gineering (SLE 2013), Vol. 8225 of LNCS, Springer, 2013, pp. 117–136. doi:10.1007/

978-3-319-02654-1_7.

[23] A. Johnstone, P. D. Mosses, E. Scott, An Agile Approach to Language Modelling and
Development, Innovations in Systems and Software Engineering 6 (1-2) (2010) 145–153.
doi:10.1007/s11334-009-0111-6.

[24] V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli, R. Hahn, G. Wachsmuth, Software
Language Processing Suite11, http://slps.github.io. Contains, among other works:
Grammar Zoo (V. Zaytsev, 2009–2014), http://slps.github.io/zoo. (2008–2014).

[25] V. Zaytsev, GrammarLab, http://grammarware.github.io/lab (2013–2014).

[26] P. Klint, T. van der Storm, J. Vinju, EASY Meta-programming with Rascal, in: J. M.
Fernandes, R. Lämmel, J. Visser, J. Saraiva (Eds.), Post-proceedings of the Third In-
ternational Summer School on Generative and Transformational Techniques in Software
Engineering (GTTSE 2009), Vol. 6491 of LNCS, Springer, 2011, pp. 222–289.

[27] R. Lämmel, V. Zaytsev, An Introduction to Grammar Convergence, in: M. Leuschel,
H. Wehrheim (Eds.), Proceedings of the Seventh International Conference on Integrated
Formal Methods (iFM 2009), Vol. 5423 of LNCS, Springer, 2009, pp. 246–260. doi:

10.1007/978-3-642-00255-7_17.

[28] R. Lämmel, V. Zaytsev, Recovering Grammar Relationships for the Java Language
Specification, Software Quality Journal (SQJ) 19 (2) (2011) 333–378. doi:10.1007/

s11219-010-9116-5.

[29] V. Zaytsev, Software Language Engineering by Intentional Rewriting, Electronic Com-
munications of the European Association of Software Science and Technology (EC-
EASST); Software Quality and Maintainability 65.
URL http://journal.ub.tu-berlin.de/eceasst/article/view/903

[30] V. Zaytsev, BNF WAS HERE: What Have We Done About the Unnecessary Diversity
of Notation for Syntactic Definitions, in: S. Ossowski, P. Lecca (Eds.), Programming
Languages Track, Volume II of the Proceedings of the 27th ACM Symposium on Applied
Computing (SAC 2012), ACM, Riva del Garda, Trento, Italy, 2012, pp. 1910–1915.
doi:10.1145/2245276.2232090.

[31] V. Zaytsev, R. Lämmel, A Unified Format for Language Documents, in: B. A. Malloy,
S. Staab, M. G. J. van den Brand (Eds.), Post-proceedings of the Third International
Conference on Software Language Engineering (SLE 2010), Vol. 6563 of LNCS, Springer,
2011, pp. 206–225. doi:10.1007/978-3-642-19440-5_13.

[32] V. Zaytsev, Language Evolution, Metasyntactically, Electronic Communications of the
European Association of Software Science and Technology (EC-EASST) 49.
URL http://journal.ub.tu-berlin.de/eceasst/article/view/708

[33] J. Bézivin, F. Jouault, P. Valduriez, On the Need for Megamodels, OOPSLA & GPCE,
Workshop on best MDSD practices, 2004.

11The authors are given according to the list of contributors at http://github.com/

grammarware/slps/graphs/contributors.

39

http://dx.doi.org/10.1007/978-3-319-02654-1_7
http://dx.doi.org/10.1007/978-3-319-02654-1_7
http://dx.doi.org/10.1007/s11334-009-0111-6
http://slps.github.io
http://slps.github.io/zoo
http://grammarware.github.io/lab
http://dx.doi.org/10.1007/978-3-642-00255-7_17
http://dx.doi.org/10.1007/978-3-642-00255-7_17
http://dx.doi.org/10.1007/s11219-010-9116-5
http://dx.doi.org/10.1007/s11219-010-9116-5
http://journal.ub.tu-berlin.de/eceasst/article/view/903
http://journal.ub.tu-berlin.de/eceasst/article/view/903
http://dx.doi.org/10.1145/2245276.2232090
http://dx.doi.org/10.1007/978-3-642-19440-5_13
http://journal.ub.tu-berlin.de/eceasst/article/view/708
http://journal.ub.tu-berlin.de/eceasst/article/view/708
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors

[34] J.-M. Favre, R. Lämmel, A. Varanovich, Modeling the Linguistic Architecture of Soft-
ware Products, in: Proceedings of the 15th international conference on Model Driven
Engineering Languages and Systems (MoDELS), LNCS, Springer, 2012, pp. 151–167.

[35] V. Zaytsev, Renarrating Linguistic Architecture: A Case Study, in: C. Hardebolle,
E. Syriani, J. Sprinkle, T. Mészáros (Eds.), Post-proceedings of the Sixth International
Workshop on Multi-Paradigm Modeling (MPM 2012), ACM Digital Library, 2012, pp.
61–66. doi:10.1145/2508443.2508454.

[36] R. Lämmel, V. Zaytsev, Language Support for Megamodel Renarration, in: J. De Lara,
D. Di Ruscio, A. Pierantonio (Eds.), Post-proceedings of the Second Workshop on Ex-
treme Modeling (XM 2013), Vol. 1089 of CEUR Workshop Proceedings, CEUR-WS.org,
2013, pp. 36–45.
URL http://ceur-ws.org/Vol-1089/5.pdf

[37] M. G. J. van den Brand, M. P. A. Sellink, C. Verhoef, Obtaining a COBOL Grammar
from Legacy Code for Reengineering Purposes, in: M. P. A. Sellink (Ed.), Proceed-
ings of the Second International Workshop on the Theory and Practice of Algebraic
Specifications, Springer, 1997, pp. 6–17.

[38] R. Lämmel, C. Verhoef, Semi-automatic Grammar Recovery, Software—Practice &
Experience 31 (15) (2001) 1395–1438.

[39] J. F. Power, B. A. Malloy, A Metrics Suite for Grammar-based Software, Journal of
Software Maintenance and Evolution: Research and Practice 16 (2004) 405–426.

[40] C. Julien, M. Črepinšek, R. Forax, T. Kosar, M. Mernik, G. Roussel, On Defining
Quality Based Grammar Metrics, in: Proceedings of the International Multiconference
on Computer Science and Information Technology, IMCSIT 2009, 2009, pp. 651–658.

[41] R. Lämmel, W. Schulte, Controllable Combinatorial Coverage in Grammar-Based Test-
ing, in: Proceedings of the 18th IFIP TC6/WG6.1 International Conference on Testing
of Communicating Systems (TestCom’06), Vol. 3964 of LNCS, Springer, 2006, pp. 19–
38.

[42] P. I. Manuel, ANSI Cobol III in SDF + an ASF Definition of a Y2K Tool, Master’s
thesis, Universiteit van Amsterdam, The Netherlands (Nov. 1996).

[43] R. Lämmel, C. Verhoef, Browsable grammars, http://www.cs.vu.nl/grammarware/

browsable, contains: VS COBOL II grammar Version 1.0.4 (Lämmel, Verhoef, 1999–
2003), http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii; COBOL grammar
Version 0.1.1 (Lämmel, Verhoef, 1999), http://www.cs.vu.nl/grammarware/browsable/
cobol; OS PL/I V2R3 grammar Version 0.1 (Lämmel, Verhoef, 1999), http://www.cs.
vu.nl/grammarware/browsable/os-pli-v2r3; Browsable Ada 95 Grammar (Lämmel,
Verhoef, 2000), http://www.cs.vu.nl/grammarware/browsable/ada; C# Grammar Re-
covered (Zaytsev, 2005), http://www.cs.vu.nl/grammarware/browsable/CSharp (1999).

[44] M. P. A. Sellink, C. Verhoef, Development, Assessment, and Reengineering of Language
Descriptions, in: J. Ebert, C. Verhoef (Eds.), Proceedings of the Fourth European
Conference on Software Maintenance and Reengineering (CSMR 2000), IEEE Computer
Society, 2000, pp. 151–160.

[45] R. Lämmel, C. Verhoef, Cracking the 500-Language Problem, IEEE Software (2001)
78–88.

[46] IBM Library, SX26-3721-05: VS COBOL II Application Programming Reference Sum-
mary, Release 4 (1987).
URL http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101

40

http://dx.doi.org/10.1145/2508443.2508454
http://ceur-ws.org/Vol-1089/5.pdf
http://ceur-ws.org/Vol-1089/5.pdf
http://www.cs.vu.nl/grammarware/browsable
http://www.cs.vu.nl/grammarware/browsable
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii
http://www.cs.vu.nl/grammarware/browsable/cobol
http://www.cs.vu.nl/grammarware/browsable/cobol
http://www.cs.vu.nl/grammarware/browsable/os-pli-v2r3
http://www.cs.vu.nl/grammarware/browsable/os-pli-v2r3
http://www.cs.vu.nl/grammarware/browsable/ada
http://www.cs.vu.nl/grammarware/browsable/CSharp
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101

[47] Standard ECMA-334, C# Language Specification, 4th Edition, available at http://

ecma-international.org/publications/standards/Ecma-334.htm (June 2006).

[48] V. Zaytsev, Correct C# Grammar too Sharp for ISO, in: Participants Workshop, Part
II of the Pre-proceedings of the International Summer School on Generative and Trans-
formational Techniques in Software Engineering (GTTSE 2005), Technical Report, TR-
CCTC/DI-36, Universidade do Minho, Braga, Portugal, 2005, pp. 154–155, extended
abstract.

[49] J. Gosling, B. Joy, G. L. Steele, The Java Language Specification, Addison-Wesley,
1996, available at http://java.sun.com/docs/books/jls.

[50] J. Gosling, B. Joy, G. L. Steele, G. Bracha, The Java Language Specification, 2nd
Edition, Addison-Wesley, 2000, available at http://java.sun.com/docs/books/jls.

[51] J. Gosling, B. Joy, G. L. Steele, G. Bracha, The Java Language Specification, 3rd
Edition, Addison-Wesley, 2005, available at http://java.sun.com/docs/books/jls.

[52] V. Zaytsev, MediaWiki Grammar Recovery, Computing Research Repository (CoRR)
1107.4661 (2011) 1–47.

[53] V. Zaytsev, The Grammar Hammer of 2012, Computing Research Repository (CoRR)
1212.4446 (2012) 1–32.

[54] N. Wirth, What Can We Do about the Unnecessary Diversity of Notation for Syntactic
Definitions?, Communications of the ACM 20 (11) (1977) 822–823.

[55] A. Stevenson, J. R. Cordy, A Survey of Grammatical Inference in Software Engineering,
Science of Computer ProgrammingIn print.

[56] J. Heering, P. R. H. Hendriks, P. Klint, J. Rekers, The Syntax Definition Formalism
SDF—Reference Manual, ACM SIGPLAN Notices 24 (11) (1989) 43–75.

[57] V. Zaytsev, Recovery, Convergence and Documentation of Languages, Ph.D. thesis,
Vrije Universiteit (Oct. 2010).

[58] E. Visser, Syntax Definition for Language Prototyping, Ph.D. thesis, University of Am-
sterdam (Sep. 1997).

[59] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages, 1st
Edition, Pragmatic Programmers, Pragmatic Bookshelf, 2007.

[60] F. Pereira, D. Warren, Definite Clause Grammars for Language Analysis, in: B. J.
Grosz, K. Sparck-Jones, B. L. Webber (Eds.), Readings in Natural Language Processing,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986, pp. 101–124.

[61] T. R. Dean, J. R. Cordy, A. J. Malton, K. A. Schneider, Grammar Programming in
TXL, in: Proceedings of the Second IEEE International Conference on Source Code
Analysis and Manipulation (SCAM 2002), IEEE, 2002, pp. 93–102.

[62] S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, N. Mendelsohn, D. Beech, M. Mal-
oney, W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, W3C
Candidate Recommendation.
URL http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430

[63] O. Nierstrasz, M. Kobel, T. Gı̂rba, M. Lanza, H. Bunke, Example-Driven Reconstruction
of Software Models, in: R. Krikhaar, C. Verhoef, G. D. Lucca (Eds.), Proceedings of the
11th European Conference on Software Maintenance and Reengineering (CSMR 2007),
IEEE Computer Society, 2007, pp. 275–284.

41

http://ecma-international.org/publications/standards/Ecma-334.htm
http://ecma-international.org/publications/standards/Ecma-334.htm
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jls
http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430
http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430

[64] M. Herrmannsdörfer, D. Ratiu, M. Kögel, Metamodel Usage Analysis for Identifying
Metamodel Improvements, in: B. A. Malloy, S. Staab, M. G. J. van den Brand (Eds.),
Post-proceedings of the Third International Conference on Software Language Engi-
neering (SLE 2010), Vol. 6563 of LNCS, Springer, 2011, pp. 62–81.

[65] M. Lungu, M. Lanza, O. Nierstrasz, Evolutionary and Collaborative Software Architec-
ture Recovery with Softwarenaut, Science of Computer Programming; WASDeTT 2010
Special Issue (EST 4) 79 (2014) 204–223. doi:http://dx.doi.org/10.1016/j.scico.

2012.04.007.

[66] M. Črepinšek, M. Mernik, F. Javed, B. R. Bryant, A. Sprague, Extracting Grammar
from Programs: Evolutionary Approach, SIGPLAN Notices 40 (4) (2005) 39–46.

[67] T. Parr, et al., ANTLR Grammar List, http://www.antlr.org/grammar/list (2003).

[68] J. R. Cordy, et al., TXL World: Grammars, http://www.txl.ca/nresources.html

(2003).

[69] R. Bosworth, Syntax specification (section 18) is inconsistent with other sections, http:
//bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525 (2006).

[70] R. Lämmel, G. Wachsmuth, Transformation of SDF Syntax Definitions in the ASF+SDF
Meta-Environment, Electronic Notes in Theoretical Computer Science 44 (2) (2001) 9–
33.

[71] R. Lämmel, Grammar Adaptation, in: Proceedings of the International Symposium of
Formal Methods Europe on Formal Methods for Increasing Software Productivity, Vol.
2021 of LNCS, Springer, 2001, pp. 550–570.

[72] J. Kort, R. Lämmel, C. Verhoef, The Grammar Deployment Kit. System Demonstra-
tion, Electronic Notes in Theoretical Computer Science 65 (3) (2002) 117–123, Second
Workshop on Language Descriptions, Tools and Applications (LDTA 2002).

[73] J. Kort, Grammar Deployment Kit: Reference Manual, Universiteit Amsterdam (May
2003).
URL http://gdk.sourceforge.net/gdkref.pdf

[74] G. Wachsmuth, Metamodel Adaptation and Model Co-adaptation, in: E. Ernst
(Ed.), Proceedings of the 21st European Conference on Object-Oriented Programming
(ECOOP 2007), Vol. 4609 of LNCS, Springer, 2007, pp. 600–624.

[75] A. Cicchetti, F. Ciccozzi, T. Leveque, A. Pierantonio, On the concurrent versioning of
metamodels and models: challenges and possible solutions, in: Proceedings of the Sec-
ond International Workshop on Model Comparison in Practice (IWMCP 2011), ACM,
New York, NY, USA, 2011, pp. 16–25.

[76] M. Herrmannsdörfer, S. Vermolen, G. Wachsmuth, An Extensive Catalog of Operators
for the Coupled Evolution of Metamodels and Models, in: B. A. Malloy, S. Staab,
M. G. J. van den Brand (Eds.), Post-proceedings of the Third International Conference
on Software Language Engineering (SLE 2010), Vol. 6563 of LNCS, Springer, 2011, pp.
163–182.

[77] R. Lämmel, The Amsterdam Toolkit for Language Archaeology, Electronic Notes in
Theoretical Computer Science 137 (3) (2005) 43–55.

[78] M. van der Graaf, A Specification of Box to HTML in ASF+SDF, Master’s thesis,
Universiteit van Amsterdam, The Netherlands (Aug. 1997).

[79] A. Sellink, C. Verhoef, Generation of Software Renovation Factories from Compilers, in:
Proceedings of 15th International Conference on Software Maintenance (ICSM 1999),
1999, pp. 245–255.

42

http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2012.04.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2012.04.007
http://www.antlr.org/grammar/list
http://www.txl.ca/nresources.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525
http://gdk.sourceforge.net/gdkref.pdf
http://gdk.sourceforge.net/gdkref.pdf

[80] ISO/IEC 14977:1996(E), Information Technology—Syntactic Metalanguage—Extended
BNF, available at http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf.

[81] A. Kelemenová, Grammatical Levels of the Position Restricted Grammars, in: Proceed-
ings on Mathematical Foundations of Computer Science, Springer, 1981, pp. 347–359.

[82] F. Coste, J. Nicolas, Regular Inference as a Graph Coloring Problem, in: Workshop on
Grammar Inference, Automata Induction, and Language Acquisition, 1997, pp. 9–17.
doi:10.1.1.34.4048.

[83] A. Okhotin, Boolean Grammars, Information and Computation 194 (1) (2004) 19–48.
doi:10.1016/j.ic.2004.03.006.
URL http://users.utu.fi/aleokh/papers/boolean_grammars_ic.pdf

[84] N. Chomsky, On Certain Formal Properties of Grammars, Information and Control
2 (2) (1959) 137–167.

[85] H. P. Barendregt, Introduction to Generalized Type Systems, Journal of Functional
Programming 1 (2) (1991) 125–154.

[86] S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata, Automata
Studies (1956) 3–42.

[87] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, E. Visser, Disambiguation Filters
for Scannerless Generalized LR Parsers, in: N. Horspool (Ed.), Compiler Construction
2002 (CC 2002), 2002, pp. 143–158.

[88] P. Purdom, A Sentence Generator for Testing Parsers, BIT 12 (3) (1972) 366–375.

[89] J. Levine, flex & bison, O’Reilly Media, 2009.

[90] T. Copeland, Generating Parsers with JavaCC: An Easy to Use Guide for Programmers,
Centennial Books, 2007.

[91] A. M. Sloane, L. C. Kats, E. Visser, A Pure Embedding of Attribute Grammars, Science
of Computer Programming (2011) 18 pages. In press. Available online since 29 November
2011.

[92] P. Klint, J. J. Vinju, A. Lankamp, A. Izmaylova, D. Landman, T. van der Storm,
A. van der Ploeg, M. Hills, B. Lisser, E. Balland, A. Shahi, A. H. Bagge, M. Stein-
dorfer, W. Venema, J. van den Bos, V. Zaytsev, J. Timmer, B. Basten, J. Peeters,
C. Berghuizen, D. Meers, P. I. Valdera, R. van Rozen, J. Stoel, M. Bierlee, T. Hooper,
K. van der Vlist, J. van der Woning, P. Hijma, Rascal Language Library12, http://

github.com/cwi-swat/rascal, the src/org/rascalmpl/library/lang directory (2010–
2014).

[93] J. Vinju, M. van den Brand, T. van der Storm, M. Bravenboer, SDF Library13, http:
//github.com/cwi-swat/meta-environment, the sdf-library directory (1996–2012).

[94] S. C. Johnson, YACC—Yet Another Compiler Compiler, Computer Science Technical
Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey, 1975.

[95] F. Jouault, J. Bézivin, KM3: A DSL for Metamodel Specification, in: R. Gorrieri,
H. Wehrheim (Eds.), Proceedings of the International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS 2006), Vol. 4037 of LNCS,
Springer, 2006, pp. 171–185.

12The authors are given according to the list of contributors at http://github.com/

cwi-swat/rascal/graphs/contributors.
13The authors are given according to the AUTHORS file provided in the distribution.

43

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://dx.doi.org/10.1.1.34.4048
http://users.utu.fi/aleokh/papers/boolean_grammars_ic.pdf
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://users.utu.fi/aleokh/papers/boolean_grammars_ic.pdf
http://github.com/cwi-swat/rascal
http://github.com/cwi-swat/rascal
http://github.com/cwi-swat/meta-environment
http://github.com/cwi-swat/meta-environment
http://github.com/cwi-swat/rascal/graphs/contributors
http://github.com/cwi-swat/rascal/graphs/contributors

[96] Microsoft Corporation, The Microsoft code name ”M” Modeling Language Specification,
http://msdn.microsoft.com/en-us/library/dd285271.aspx, obsolete.

[97] M. Fogus, C. Houser, The Joy of Clojure, Manning, 2010.

[98] Object Management Group, Semantics Of Business Vocabulary And Business Rules,
v1.0 Edition (2008).
URL http://www.omg.org/spec/SBVR/1.0

[99] Object Management Group, Unified Modeling Language, 2nd Edition (2007).
URL http://schema.omg.org/spec/UML/2.1.1

[100] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M. S. Marshall, Graphml progress
report: Structural layer proposal, in: P. Mutzel, M. Jnger, S. Leipert (Eds.), Revised
Papers of the 9th International Symposium on Graph Drawing (GD 2001), Vol. 2265 of
LNCS, Springer, 2001, pp. 501–512.

[101] D. L. McGuinness, F. van Harmelen, OWL: Web Ontology Language. Overview, W3C
Recommendation. .
URL http://www.w3.org/TR/owl-features

[102] Object Management Group, Meta-Object Facility (MOFTM) Core Specification, 2nd
Edition (Jan. 2006).
URL http://www.omg.org/spec/MOF/2.0

[103] É. M. Gagnon, L. J. Hendren, SableCC, an Object-Oriented Compiler Framework, in:
TOOLS 1998: 26th International Conference on Technology of Object-Oriented Lan-
guages and Systems, 3-7 August 1998, Santa Barbara, CA, USA, IEEE Computer So-
ciety, 1998, pp. 140–154. doi:10.1109/TOOLS.1998.711009.

[104] Eclipse, Eclipse Modeling Framework Project (EMF 2.4), http://www.eclipse.org/

modeling/emf/ (2008).

[105] F. Jouault, J. Bézivin, I. Kurtev, TCS: a DSL for the Specification of Textual Concrete
Syntaxes in Model Engineering, in: S. Jarzabek, D. C. Schmidt, T. L. Veldhuizen
(Eds.), Proceedings of the Fifth International Conference on Generative Programming
and Component Engineering (GPCE), ACM, 2006, pp. 249–254.

[106] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, C. Wende, Derivation and Refinement
of Textual Syntax for Models, in: R. F. Paige, A. Hartman, A. Rensink (Eds.), Model
Driven Architecture — Foundations and Applications, Vol. 5562 of LNCS, Springer,
2009, pp. 114–129. doi:10.1007/978-3-642-02674-4_9.

[107] J. Clark, M. Murata, RELAX NG Specification, OASIS Committee SpecificationAvail-
able at http://relaxng.org/spec-20011203.html, also being standardised by ISO as
multiple parts of ISO/IEC 19757.

[108] V. Zaytsev, Guided Grammar Convergence, JOT. In print (2014).

[109] T. Parr, ANTLR v3 — ANother Tool for Language Recognition, http://antlr3.org

(2008).

[110] R. B. France, J. M. Bieman, S. P. Mandalaparty, B. H. C. Cheng, A. C. Jensen, Repos-
itory for model driven development (remodd), in: M. Glinz, G. C. Murphy, M. Pezzè
(Eds.), 34th International Conference on Software Engineering (ICSE), IEEE, 2012, pp.
1471–1472.

[111] M. Murata, RELAX NG Schemas, http://relaxng.org/#schemas (2013).

44

http://msdn.microsoft.com/en-us/library/dd285271.aspx
http://www.omg.org/spec/SBVR/1.0
http://www.omg.org/spec/SBVR/1.0
http://schema.omg.org/spec/UML/2.1.1
http://schema.omg.org/spec/UML/2.1.1
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-features
http://www.omg.org/spec/MOF/2.0
http://www.omg.org/spec/MOF/2.0
http://dx.doi.org/10.1109/TOOLS.1998.711009
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1007/978-3-642-02674-4_9
http://relaxng.org/spec-20011203.html
http://antlr3.org
http://relaxng.org/#schemas

[112] K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, J. Terwilliger, Bidirectional
Transformations: A Cross-Discipline Perspective, in: R. Paige (Ed.), Theory and Prac-
tice of Model Transformations, Vol. 5563 of LNCS, Springer, 2009, pp. 260–283.

[113] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt, Combinators
for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update
Problem, ACM Transactions on Programming Languages and Systems (TOPLAS) 29.

[114] I. D. Baxter, C. Pidgeon, M. Mehlich, Dms: Program transformations for practical
scalable software evolution, in: Proceedings of the 26th International Conference on
Software Engineering, ICSE ’04, IEEE Computer Society, Washington, DC, USA, 2004,
pp. 625–634.

[115] S. Klusener, V. Zaytsev, Language Standardization Needs Grammarware, JTC1/SC22
Document N3977, ISO/IEC (2005).
URL http://www.open-std.org/jtc1/sc22/open/n3977.pdf

[116] M. H. Halstead, Elements of Software Science, Elsevier Science Inc., New York, NY,
USA, 1977.

45

http://www.open-std.org/jtc1/sc22/open/n3977.pdf
http://www.open-std.org/jtc1/sc22/open/n3977.pdf

