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Abstract

Metaprogramming is a well-established methodology of constructing
programs that work on other other programs, analysing, parsing, trans-
forming, compiling, evolving, mutating, transplanting them. Metapro-
grams themselves evolve as well, and there are times when this evolution
means migrating to a different metalanguage. This fairly complicated
scenario is demonstrated here by considering a concrete case of porting
several rewriting systems of grammar extraction from XSLT to Rascal.

Metaprogramming is a well-established methodology of constructing programs that work on other other pro-
grams [8], analysing [1], parsing [15], transforming [2], compiling [3], visualising [7], evolving [4], composing [9],
mutating [5], transplanting [10] them. Metaprograms themselves evolve as well, and there are times when this evo-
lution means migrating to a different metalanguage. For example, a unidirectional chain of grammar/metamodel
transformation steps can be turned into a bidirectional one (e.g., XBGF scripts to ZEBGF scripts [14]) — on the
level of language instances this means turning a migration path (take X, transform into Y, forget X) into an
executable relationship (change X, update Y, change Y, update X, ...). The general problem is too big to handle
at the moment: we have recently successfully considered a much more focused problem of migration between
metasyntaxes for grammars [11]; the focus in this abstract is on migrating grammar-mapping metaprograms.

SLPS [16], of Software Language Processing Suite, was a repository that served as a home for many exper-
imental metaprograms — to be more precise, metagrammarware for grammar recovery, analysis, adaptation,
visualisation, testing. Around 2012, final versions of such tools were reimplemented as components in a li-
brary called GrammarLab [13]: the code written in Haskell, Prolog, Python and other languages, was ported to
Rascal [8], a software language specifically developed for the domain of metaprogramming.

Grammar extraction is a metaprogramming technique which input is a software artefact containing some kind
of grammatical (structural) knowledge — an XML schema, an Ecore metamodel, a parser specification, a typed
library, a piece of documentation — and recover the essence of those structural commitments, typically in a form
of a formal grammar with terminals, nonterminals, labels and production rules [12]. Over the years the SLPS
acquired over a dozen of such extractors, plus a couple of more error-tolerant recovery tools. Several of them were
essentially mappings from various XML representations (XSD, EMF, TXL, etc), implemented — quite naturally
— in XSLT [6].

A fragment of such a grammar extractor mapping is given on Figure 1(a). Readers that can overcome
the overwhelming verbosity of the XML syntax, can see two templates that match elements eLiterals and
eStructuralFeatures correspondingly, and generate output elements by reusing information harvested from
specific places within the matched elements. As a language for metaprogramming and structured mapping in
general, XSLT is pretty straightforward and provides functionality for branching, looping, traversal controls,
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ete, without going too deep into more complex metaprogramming practices such as naturally recursive rewriting
systems or bottom-up traversals. It is also worth noting that XSLT is an untyped software language, so there is
no explicit validation that all constructs matched and all constructs produced are type safe.

If we assume that all the types from the input as well as the output schemata are expressed as Rascal algebraic
data types, and all the named templates invoked in this snippet are successfully mapped to Rascal functions,
then these matched templates will be expressed as pattern-driven dispatched functions in Rascal such as the
ones shown on Figure 1(b).

During the case studies on the existing XSLT-based grammar extractors, we found out that the following
metaprogramming idioms are equally easy to express in XSLT and Rascal:

e matched template and apply-templates — a pattern-dispatched call of the general transform function
e named template and call-template — a call to a dedicated possibly polymorphic function

e choose, when, otherwise, if — pattern-driven dispatch or explicit matching with := if the conditions are
too deep

e for-each — list comprehensions

The following features were hard to match:

e Empty whens: in XSLT, one can easily loop through input elements and in some cases decide to return
nothing by performing <xsl:when test="..." /> — this is realised somewhat awkwardly in Rascal with
the classic FP idiom of a “poor man’s Maybe” (a list which is either empty or a singleton) and inlining.

e Library functions: luckily, early versions of XSLT are quite poor with respect to library functions. However,
since XSLT is not by design a language for metaprogramming, its functions are also suboptimal for that
domain — the conclusion was that finding a close match or writing a wrapper is almost always less preferable
than a manual rewrite of the fragment in question.

e Variables: XSLT is a declarative language which allows fake elements that initialise named variables with
certain values to be used later. Despite being multiparadigmatic, Rascal clearly distinguishes between
Haskell-like straightforward function style and Java-like imperative style.

e Choices: surprisingly, the idiom <xsl:template match="a|b">...</...> was quite prevalent yet had ab-
solutely no close equivalent in Rascal. Finally, the mapping of such matches was realised with an external
function that was called separately for each of the matches.

e XPath: XSLT uses XPath expressions both in matches and access points; Rascal uses different notations for
those two paradigms. It always strictly distinguishes between matches possibly yielding a set/list or a single
element, while XPath always returns a possibly empty set of nodes which is incorporated in XSLT by implicit
looping in some cases and by more unexpected workarounds in others. For example, <xsl:apply-templates
select="a"/>is a loop, but <xsl:value-of select="a"/> is a concatenation — the latter is almost never
the intended result.

Apart from these issues and some type inference for the value-ofs, the mapping from XSLT to Rascal was
quite possible to implement to migrate the bulk of the code and provide the opportunity to finish the job
manually. The real extent of the work and the limitations of this approach in general are not yet studied in
enough detail. One of the interesting remaining open questions is about the nature of the mismatches between
the two metaprogramming platforms — are they intentional? Should the two learn from each other, or from the
migration path itself?



<xsl:template match="eLiterals">
<bgf :expression>
<selectable>
<selector>
<xsl:value-of select="@name"/>
</selector>
<bgf :expression>
<epsilon/>
</bgf :expression>
</selectable>
</bgf :expression>
</xsl:template>
<xsl:template match="eStructuralFeatures">
<xsl:choose>
<xsl:when test="./@xsi:type=’ecore:EReference’">
<xsl:call-template name="mapEReference">
<xsl:with-param name="ref" select="."/>
</xsl:call-template>
</xsl:when>
<xsl:when test="./@xsi:type=’ecore:EClass’">
<xsl:call-template name="mapEClass">
<xsl:with-param name="class" select="."/>
</xsl:call-template>
</xsl:when>
<xsl:when test="./@xsi:type=’ecore:EAttribute’">
<xsl:call-template name="mapEAttribute">
<xsl:with-param name="attr" select="."/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<terminal>
<xsl:text>!!!</xsl:text>
<xsl:value-of select="./@xsi:type"/>
</terminal>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

(a)

GExpr transform(elLiterals(str name)) = label(name,epsilon());

GExpr transform(n:eStructuralFeatures("ecore:EReference")) = mapEReference(n);

GExpr transform(n:eStructuralFeatures("ecore:EClass")) = mapEClass(n);

GExpr transform(n:eStructuralFeatures("ecore:EAttribute")) = mapEAttribute(n);

default GExpr transform(n:eStructuralFeatures(str xsitype)) = terminal("!!!<xsitype>");

(b)

Figure 1: The same fragment of Ecore to BNF-like Grammar Format mapping in (a) XSLT and (b) Rascal.
Besides the apparent shrink in size and the boost to readability linked to it, the latter fragment is strongly typed
and thus can be automatically validated for its grammatical commitments to both the input and the output.
Technically, the second fragment is still imperfect in the sense that it does not implement namespaces as types
(just as substrings), which leaves a small door for bugs open.
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