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Venue

SATToSE is the Seminar Series on Advanced Techniques and Tools for Software
Evolution. Its previous editions has happened in Waulsort (Belgium, 2008), Côte
d’Opale (France, 2009), Montpellier (France, 2010), Koblenz (Germany, 2011,
2012) and Bern (Switzerland, 2013). Its seventh edition took place in L’Aquila
(Italy) on 9–11 July 2014. Each edition of SATToSE witnesses presentations on
software visualisation techniques, tools for coevolving various software artefacts,
their consistency management, runtime adaptability and context-awareness, as
well as empirical results about software evolution.

The goal of SATToSE is to gather both undergraduate and graduate students
to showcase their research, exchange ideas, improve their communication skills,
attend and contribute technology showdown and hackathons.

The highlights of the programme included five invited lectures (given by
Marianne Huchard, Leon Moonen, Alfonso Pierantonio, Alexander Serebrenik,
Tanja Vos), an interactive tutorial (by Anya Helene Bagge) and a hands-on
hackathon (by Alexander Serebrenik). The detailed programme, as well as the
pre-proceedings volume with moderated but not yet reviewed abstracts and
drafts can be found on our website: http://sattose.org/2014.

Selection process

We would like to express our gratitude to the following people (listed in lexico-
graphic order) who provided the reviews for the submissions of this volume:

⇧ Gabriela Arévalo
⇧ Çiğdem Aytekin
⇧ Anya Helene Bagge
⇧ Antonio Cicchetti
⇧ Juri Di Rocco
⇧ Davide Di Ruscio
⇧ Mike Godfrey
⇧ Mathieu Goeminne
⇧ Ammar Hamid
⇧ Michiel Helvensteijn

⇧ Ludovico Iovino
⇧ Andy Kellens
⇧ Xavier Le Pallec
⇧ Angela Lozano
⇧ Mircea Lungu
⇧ Tom Mens
⇧ Oscar Nierstrasz
⇧ Bogdan Vasilescu
⇧ Sylvain Vauttier
⇧ Tanja Vos
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The call for post-proceedings contributions was communicated to all partic-
ipants after the event — only some decided to pursue the finalisation of their
contribution for the post-proceedings, others often solicited more co-authors,
changed the title, included more results. As a result, we have received 12 sub-
missions: one of them was a keynote add-on, one was a tutorial write-up, the
rest were being extended versions of pre-proceedings abstracts.

Each submitted report has been reviewed by at least three different peers.
All submissions with a conflict of interest with one of the editors (co-authored
by them or their colleagues) were handled by the other editor. The emphasis
was put on clear problem definitions and descriptions of advanced aspects of
the techniques contemplated in the solution, as opposed to the finality of the
obtained results. Thus, most submissions are intermediate reports on ongoing
work or summaries of previously developed tools and papers. The authors re-
ceived enough time after the review to take the feedback into account and finalise
their submissions.

Organisation

⇧ General Chair: Davide Di Ruscio (University of L’Aquila)
⇧ Program Chair: Vadim Zaytsev (Universiteit van Amsterdam)
⇧ Hackathon Chair: Alexander Serebrenik (TU Eindhoven)
⇧ Steering Committee Chair Ralf Lämmel (Universität Koblenz)
⇧ Local Committee:

• Romina Eramo (University of L’Aquila)
• Ludovico Iovino (University of L’Aquila)

⇧ Steering Committee:
• Michael W. Godfrey (University of Waterloo)
• Marianne Huchard (Université Montpellier 2)
• Tom Mens (University of Mons)
• Oscar Nierstrasz (University of Bern)
• Coen De Roever (Free University Brussels)
• Vadim Zaytsev (Universiteit van Amsterdam)

⇧ Post-proceedings Editors:
• Davide Di Ruscio (University of L’Aquila)
• Vadim Zaytsev (Universiteit van Amsterdam)



Contents of the volume

⇧ Profiling, Debugging, Testing for the Next Century

The methods of software engineering have improved significantly over half
the century of its existence: we now have advanced languages that help to
shape our thinking about both the problem and the solution; we have com-
pilers and other grammarware that assists us in the most laborious tasks
of translating programs written or drawn in software languages to machine
code; we have various programming paradigms and schools of thought that
allow us to represent our solutions in a concise yet efficient way. Program-
ming environments have also grown, but the author of this contribution
claims that the difference between an old Emacs and a modern Eclipse is
less ground-breaking than the difference between, say, RPG and Swift. This
report focuses on possible advanced techniques of profiling, testing, debug-
ging and visualisation, prototyped in Pharo.

⇧ “What Programmers Do with Inheritance in Java”, Replicated on Source

Code

Inheritance is one of the key techniques of the object-oriented paradigm.
As such, it has been thoroughly researched — this paper replicates one of
such studies, published at ECOOP 2013. The original study found that the
defined inheritance relationships are extensively used in the code, mostly
for subtyping and reuse purposes, and that late-bound self-reference occurs
frequently. This replication confirmed and complemented the results by run-
ning the same experiments on the source code as opposed to the byte code
used in the original paper.

⇧ Explora: Infrastructure for Scaling Up Software Visualisation to Corpora

Software analyses often receives considerable profits from visualisation tech-
niques, which help overcome the intangible nature of software by letting the
user interact with concrete representations of various aspects of it. Some vi-
sualisations are also models which abstract from less important aspects and
focus on the essentials. Yet, software corpora, quite often used in empiri-
cal software analysis — a software reverse engineering domain that requires
useful and scalable visualisations — are not well-supported, as the authors
of this report claim. This contribution presents Explora, an infrastructure
that is specifically targeted at visualising software corpora (at this point, in
Smalltalk and Java).

⇧ Detecting Refactorable Clones by Slicing Program Dependence Graphs

Code duplication is a well-known and well-researched code smell that can
sometimes be linked to increased maintenance costs and creating difficul-
ties in understanding a software system. One of the solutions addressing
the issue involves detecting duplicated code, refactoring it into a separate
function and replacing all the clones with appropriately parametrised calls
to the new function. This report describes a confirmatory replication of a
CodeSurfer-based tool for detecting such refactorable code clones based on
the combination of program dependence graphs and backward program slic-
ing.



⇧ A Critique on Code Critics

Pharo (a Smalltalk IDE) has a recommendation facility called “code critics”
which is used for signalling code controversial and suspicious implementation
choices and for promoting good style language idioms. For instance, they
report code smells and encourage correct use of object orientation. In this
paper, code critics are re-evaluated based on a case study of the code of a
big system with 51 packages (Moose). It was observed that some code critics
tend to occur together and therefore should be grouped in issues of a higher
level of abstraction; others occur only in presence of others up to the point of
being overshadowed by them; some are even triggered by the same patterns
and offer competing solutions. The approach is promising and can be applied
broadly to any quality-driven program analysis.

⇧ User Interface Level Testing with TESTAR

Software testing is exercised at many levels, and if done at the Graphical User
Interface (GUI) level, allows to create very realistic test cases due to close
emulation of user behaviour. This report offers an extension of the TESTAR
tool by the same authors and their collaborators. TESTAR implements a
model-driven approach to test automation which generates test cases based
on a model which is automatically derived from the GUI through the accessi-
bility API. The extension revolves around action ranking and using machine
learning techniques in order to execute sensible and sophisticated sequences
of GUI actions instead of blindly making a random selection of clicks and
keystrokes that are visible and unblocked in each state.

⇧ Qualifying Chains of Transformation with Coverage-based Evaluation Crite-

ria

Development of complex and large model transformations can be optimised
by composition of reusable smaller ones. Yet, composing them is a complex
problem: typically smaller transformations are discovered and selected by
developers from different and heterogeneous sources, and then chained by
composition processes that are semi-automated at best. Without consider-
ing the semantic properties of a transformation, it is difficult for the user
to make the right choice between two possible proposed chains. This report
contains a proposal to classify such chains with respect to the coverage of
the metamodels involved in the transformation.

⇧ Describing the Correlations between Metamodels and Transformations As-

pects

The paper considers two main concepts in MDE: a metamodel as a model
that all regular models in the ecosystem conform to; and a model trans-
formation as a description of changes in models. Surfacing, formalising and
maintaining relations between the artefacts of these two kinds is a big subdo-
main of modelware. This report presents an approach to understand struc-
tural characteristics of metamodels by looking at how model transformations
depend on metamodels of their source and target models.



⇧ A Three-level Formal Model for Software Architecture Evolution

Architecture Description Languages are the focus of this paper: a brief
overview of them is given, and one (Dedal) is explain in full detail. It formally
defines the architecture of a software system on three levels: the abstract
specification, the concrete configuration and the instantiated architecture
assembly. Software evolution is expressed in Dedal in static invariants that
bind descriptions together and in evolution rules that trigger changes at each
level. The running example in the paper is a home automation software that
is used to guide the reader through explanations of evolution in Dedal. The
authors consider integrating the methods presented here, in an IDE platform
to help developers embrace software evolution further.

⇧ Representing Uncertainty in Bidirectional Transformations

Bidirectional transformations (BX) are a largely recognised quickly grow-
ing field of MDE. In BX, we usually deal with both ways of propagating
information between two (or more) software artefacts — such changes are
typically non-univocal in the sense that more than one correct solutions could
be admitted and tolerated. However, most existing BX frameworks do not
represent uncertainty explicitly. In this report, the authors insist that they
should and show that it is quite possible in their framework, by re-explaining
the non-deterministic nature of bidirectionality and presenting a case study
with a family of cohesive models with uncertainty.

⇧ Towards a Taxonomy for Bidirectional Transformation

Software model consistency and synchronisation are often achieved by de-
signing and implementing bidirectional transformations. This report demon-
strates an early attempt to take a step towards a taxonomy of BX by il-
lustrating a set of relevant properties of such mappings. The contribution is
of an analytical nature: existing literature is analysed and characteristics of
existing approaches are put into perspective.

⇧ Languages, Models and Megamodels

Software modelling is considered to be a somewhat difficult or even obscure
subdomain of software engineering, with some of its topics such as meg-
amodelling leaning towards the obscure part. However, it can be explained
in relatively simple terms and given to software evolution researchers, can
prove to be a useful advanced technique of expressing relations between soft-
ware artefacts. During SATToSE 2014, we have held an interactive tutorial
on this topic, which this report tries to summarise and complement.



Profiling, debugging, testing for the next century

Alexandre Bergel

http://bergel.eu

Pleiad Lab, Department of Computer Science (DCC), University of Chile

This paper presents the research line carried out by the author and his
collaborators on programming environments. Most of the experiences and case
studies summarized below have been carried out in Pharo1 – an object-oriented
and dynamically typed programming language.

Programming as a modern activity. When I was in college, I learned pro-
gramming with C and Pascal using a textual and command-line programming
environment. At that time, about 15 years ago, Emacs was popular for its sophis-
ticated text editing capacities. The gdb debugger allows one to manipulate the
control flow including the step-into, step-over, and restart operations. The gprof

code execution profiler indicates the share of execution time for each function, in
addition to the control flow between each method.

Nowadays, object-orientation is compulsory in university curricula and manda-
tory for most software engineering positions. Eclipse is a popular programming
environment that greatly simplifies the programming activity in Java. Eclipse
supports sophisticated options to search and navigate among textual files. De-
bugging object-oriented programs is still focused on the step-into, step-over and
restart options. Profiling still focuses on the method call stack: the JProfiler2

and YourKit3 profilers, the most popular and widely spread profilers in the Java
World, output resource distributions along a tree of methods.

Sending messages is a major improvement over executing functions, which is
the key to polymorphism. Whereas programming languages have significantly
evolved over the last two decades, most of the improvements on programming
environments do not appear to be a breakthrough. Navigating among software
entities often means searching text portions in text files. Profiling is still based
on methods executions, largely discarding the notion of objects. Debugging still
comes with its primitive operations based on stack manipulation; again ignoring
objects. Naturally, some attempts have been made to improve the situation:
Eclipse o↵ers several navigation options; popular (and expensive) code profilers
may rely on code instrumentation to find out more about the underlying objects;
debuggers are beginning to interact with objects [1,2]. However, these attempts
remain largely marginal.

Profiling. Great strides have been made by the software performance community
to make profilers more accurate (i.e., reducing the gap between the actual applica-

1 http://pharo.org
2 http://www.ej-technologies.com/products/jprofiler/overview.html
3 http://www.yourkit.com

http://bergel.eu
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tion execution and the profiler report). Advanced techniques have been proposed
such as variable sampling time [3] and proxies for time execution [4,5]. However,
much less attention has been paid to the visual output of a profile. Consider
JProfiler and YourKit, two popular code profilers for the Java programming
language: profile crawling is largely supported by text searches. We address this
limitation with Inti.

main()

C.run()
init()

A.run()
A.utility()

Baseline

Profiling. A great e↵ort has been made by the software performance community
to make profilers more accurate (i.e., reducing the gap between the actual applica-
tion execution and the profiler report). Advanced techniques have been proposed
such as variable sampling time [?] and proxies for time execution [?,?]. However,
much less attention has been paid to the visual output of a profile. Consider
JProfiler and YourKit, two popular code profilers for the Java programming
language: profile crawling is largely supported by textual search. We contribution
to addressing this limitation with Inti.

Inti is a sunburst-like visualization dedicated to visualize CPU time distribu-
tion. Consider the following Java code:

class A {
public void init() { ... }
public void run() { this.utility(); ... }
public void utility() { ... }

}
class C {

public void run() {
A a = new A();
a.init();
a.run();

}
public static void main(String[] argv) {

new C().run(); } }

Fig. 1: Example of Inti

The contrived example given above is visualized with Inti as shown in Fig-
ure ??. Each method of the Java code given above is represented by an arc in
Figure ??. Method C.main by the disk A, C.run by arc B, A.init by C, A.run by
D and A.utility by E. The baseline represents the starting time of the profile.
The angle of each arc represents the time distribution taken by the method. In
this example, C.main and C.run have an angle of 360 degrees, meaning these two
methods consume 100% of the CPU time. Methods A.init consumes 60% and
A.run 40%. Each method frame is presented as an arc. Distance between an arc
and the center of the visualization (where the A label is located) indicates the

Fig. 1: Sunburst-like visualization

Inti is a sunburst-like visualization dedicated to visualizing CPU time dis-
tribution. Consider the code and arc-based visualization given in Figure 1. The
code indicates a distribution of the computation along five di↵erent methods.
Each method frame is presented as an arc. The baseline represents the starting
time of the profile. The angle of each arc represents the time distribution taken
by the method. In this example, C.main and C.run have an angle of 360 degrees,
meaning that these two methods consume 100% of the CPU time. Methods A.init
consumes 60% and A.run 40% (these are illustrative numbers). The distance
between an arc and the center of the visualization indicates the depth of the
frame in the method call stack. A nested method call is represented as a stacked
arc.

Inti exploits the sunburst representation in which colors are allocated to
particular portion of the sunburst. For example, colors are picked to designate
particular classes, methods or packages in the computation: the red color indicate
classes belonging to a particular package (e.g., Figure 2).

The benefits of Inti are numerous. Inti is very compact. Considering the
number of physical spaces taken by the visualization, Inti largely outperforms
the classical tree representation: Inti shows a larger part of the control flow and
CPU time distribution in much less space. Details about each stack frame are
accessible via tooltip. Hovering the mouse cursor over an arc triggers a popup
window that indicates the CPU time consumption and the method’s source code.



Fig. 2: Sunburst-like profile

Delta profiling. Understanding the root of a performance drop or improvement
requires analyzing di↵erent program executions at a fine grain level. Such an
analysis involves dedicated profiling and representation techniques. JProfiler
and YourKit both fail at providing adequate metrics and visual representations,
conveying a false sense of the root cause of the performance variation.

A

B

C

Color

Δ # executions

Δ time

A

B

A invokes B

D E

Fig. 3: Performance evolution blueprint

We have proposed performance evolution blueprint, a visual tool to precisely
compare multiple software executions [6]. The performance evolution blueprint is
summarized in Figure 3. A blueprint is obtained after running two executions.
Each box is a method. Edges are invocations between methods (a calling method
is above the called methods). The height of a method is the di↵erence of execution
time between the two executions. If the di↵erence is positive (i.e., the method
is slower), then the method is shaded in red; if the di↵erence is negative (i.e.,



the method is faster), then the method is green. The width of a method is the
absolute di↵erence in the number of executions, thus always positive. Light red
/ pink color means the method is slower, but its source code has not changed
between the two executions. If red, the method is slower and the source code has
changed. Light green indicates a faster non-modified method. Green indicates a
faster modified method.

Our blueprint accurately indicates roots of performance improvement or
degradation: Figure 3 indicates that method B is likely to be responsible for the
slowdown since the method is slower and has been modified. We developed Rizel,
a code profiler to e�ciently explore performance of a set of benchmarks against
multiple software revisions.

Testing. Testing is an essential activity when developing software. It is widely
acknowledged that a test coverage above 70% is associated with a decrease in
reported failures. After running the unit tests, classical coverage tools output
the list of classes and methods that are not executed. Simply tagging a software
element as covered may convey an incorrect sense of necessity: executing a long
and complex method just once is potentially enough to be reported as 100%
test-covered. As a consequence, a developer may receive an incorrect judgement
as to where to focus testing e↵orts.

Coverage: 40.57% Coverage: 60.60%

M

Fig. 4: Test blueprint

By relating execution and complexity metrics, we have identified essential
patterns to characterize the test coverage of a group of methods [7]. Each pattern
has an associated action to increase the test coverage, and these actions di↵er in
their e↵ectiveness. We empirically determined the optimal sequence of actions to
obtain the highest coverage with a minimum number of tests. We present test

blueprint, a visual tool to help practitioners assess and increase test coverage by



graphically relating execution and complexity metrics. Figure 4 is an example of a
test blueprint, obtained as the result of the test execution. Consider Method M: the
definition of this method is relatively complex, which is indicated by the height
of the box representing it. M is shared in red, meaning it has not been covered
by the unit test execution. Covering this method and reducing its complexity is
therefore a natural action to consider.

Two versions of the same class are represented. Inner small boxes represent
methods. The size of a method indicates its cyclomatic complexity. The taller
a method is, the more complex it is. Edges are invocations between methods,
statically determined. Red color indicates uncovered methods. The figure shows
an evolution of a class in which complex uncovered methods have been broken
down into simpler methods.

Debugging. During the process of developing and maintaining a complex software
system, developers pose detailed questions about the runtime behavior of the
system. Source code views o↵er strictly limited insights, so developers often
turn to tools like debuggers to inspect and interact with the running system.
Traditional debuggers focus on the runtime stack as the key abstraction to support
debugging operations, though the questions developers pose often have more to
do with objects and their interactions [8].

We have proposed object-centric debugging as an alternative approach to
interacting with a running software system [9]. By focusing on objects as the key
abstraction, we show how natural debugging operations can be defined to answer
developer questions related to runtime behavior. We have presented a running
prototype of an object-centric debugger, and demonstrated, with the help of a
series of examples, how object-centric debugging o↵ers more e↵ective support for
many typical developer tasks than a traditional stack-oriented debugger.

Visual programming environment. Visualizing software-related data is of-
ten key in software developments and reengineering activities. As illustrated
above in our tools, interactive visualizations play an important intermediary
layer between the software engineer and the programming environment. General
purpose libraries (e.g., D3, Raphaël) are commonly used to address the need for
visualization and data analytics related to software. Unfortunately, such libraries
o↵er low-level graphic primitives, making the specialization of a visualization
di�cult to carry out.

Roassal is a platform for software and data visualization. Roassal o↵ers
facilities to easily build domain-specific languages to meet specific requirements.
Adaptable and reusable visualizations are then expressed in the Pharo language.
Figure 5 illustrates two visualizations of a software system’s dependencies. Each
class is represented as a circle. On the left side, gray edges are inheritance (the
top superclass is at the center) and blue lines are dependencies between classes.
Each color indicates a component. On the right side, edges are dependencies
between classes, whereas class size and color indicate the size of the class. Roassal



Fig. 5: Visualization of a software system’s dependencies

has been successfully employed in over a dozen software visualization projects
from several research groups and companies.

Future work. Programming is unfortunately filled with repetitive, manual
activities. The work summarized above partially alleviates this situation. Our
current and future research line is about making our tools not only object-centric,
but domain-centric. We foresee that being domain specific is a way to reduce the
cognitive gap between what the tools present to the programmers, and what the
programers expect to see from the tools.
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Abstract. Inheritance is an important mechanism in object-oriented
languages and it has been subject of quite some research. Tempero, Yang
and Noble made a research [Tempero13] about the usage of the inher-
itance in Java open source systems and found that the defined inheri-
tance relationships are also used quite considerably in the code, mostly
for subtyping and reuse. They also found that late-bound self-reference
occurs frequently. They analysed the byte code of the projects. We repli-
cated their study to verify the results by carrying out the same study on
the source code. For most of the metrics introduced in their inheritance
model we found similar results. We found some suspected false positives
in the original study for late-bound self-reference and (external) reuse,
but there are not many of them. Except for these cases, our study verifies
the correctness of the original study results.

1 Introduction

We externally replicated a study done by Tempero et al. [Tempero13] about
inheritance usage. Inheritance is an important mechanism in object-oriented
programming. The majority of the studies about inheritance concentrated on the
declaration of the inheritance relationships. The original study brought a new
perspective on inheritance research. They investigate the usage of inheritance in
their study, in their own words: “having made the decision to use inheritance at
the design level, what benefits follow from the use of inheritance?”

The authors defined an inheritance usage model and analysed the byte code of
93 open source Java projects from Qualitas Corpus, which is a curated collection
of open source Java projects [Tempero10]. Their results show that the defined
inheritance relationships in projects are frequently used, especially for what they
call subtyping and reuse.

Our purpose is to replicate the original study with one major di↵erence:
we analyse the source code and not the byte code. We have chosen for replica-
tion because of two reasons. Firstly, replication plays a very important role in
verification of the results of empirical studies in general. Also in the field of soft-
ware engineering empirical research this is the case. Brooks et al. explain this
in [Brooks08]. Secondly, despite the importance of replication, there are very
few replication studies so far, as also shown by Sjoberg et al. in [Sjoberg05].
Replication studies are answers to this need, and so is ours.



Our analysis results are similar to those of original study. But they are not
the same. For down-call, we report that 27 % late-bound self-reference (original
study reports 34 %) For subtype, we report that at least 61 % of inheritance
relations show this usage, whereas original study reports 69 %. Original study
reports 22 % of external reuse and 2 % of internal reuse, whereas we report 4
% and 20 % respectively. Our results also show that reuse and subtype explain
most of the usages of inheritance and other uses are not significant, just like the
original study

We see the following reasons for the di↵erences between the results: the dif-
ferences between the set-up of two studies, and our limitation about analysing
external methods. Our limitation about external method analysis is explained
in subsection 5.3. However, we also suspect some false positives in the original
study for down-call and external reuse. The reason why we think that there are
some false positives is explained in the discussion section (section 8)

This article starts with introducing some of the empirical studies about in-
heritance. Section 3 contains the definitions of the inheritance model used . In
section 4 the original study is explained. Section 5 presents the replication study.
The Rascal implementation is explained in section 6. The results of the repli-
cation study is presented in section 7. The results are discussed in section 8,
followed by the list of threats to the validity of our work (section 9). Finally we
conclude with section 10.

2 Related Work

A thorough discussion about the notion of inheritance is given by Taivalsaari
in [Taivalsaari96]. Three main usages defined in the original study refer to this
article: subtype usage, reuse and down-call (late-bound self-reference). We will
define these concepts in detail, but here is a brief explanation in advance. Subtype
usage occurs when a child type supplied when parent type is expected, reuse
occurs when a child type uses a field or a method defined in its parent and
down-call occurs when a method call in a class is directed to a type which is
down in the inheritance hierarchy instead of a method in the class itself.

There is a group of empirical studies about inheritance which analyse the
code of projects. Tempero and Noble, this time together with H. Melton, carried
out the study [Tempero08] using an earlier version of Qualitas Corpus. The study
concentrated mainly on how types are defined with respect to inheritance in Java
open source projects. In another study, Nasseri, Counsell and Shepperd investi-
gated the evolution of inheritance in Java open source systems (OSS) [Nasseri08].
Lämmel et al. analysed a corpus of .NET projects for the usage of .NET API in
the source code [Lammel11]. This last study is also about inheritance usage but
from the perspective of API usage.

Another group of empirical studies worked with programmers to observe the
e↵ect of inheritance on software quality. An early study of Mancl and Havanas
from 1990 [Mancl90], focuses on the e↵ects of using C++ programming language
on software maintenance. Similarly, Daly, Brooks, Miller, Roper and Wood also



made an experiment [Daly96] with programmers about the inheritance and in-
vestigated if the programs written with inheritance were more easily maintained
than the programs written without inheritance. Cartwright replicated the study
done by Daly et al., but ended up with opposite results [Cartwright98].

3 Definitions

The authors of the original study proposed a model for inheritance usage. The
most important usages of inheritance in their model are subtype, reuse and down-
call. In addition to these, they also describe other uses of inheritance, which also
occur, but much less frequent than subtype, reuse and down-call.

If a pair of classes has inheritance relationship, it is modelled as an ordered
pair of descendant and ascendant. If there is also a usage between the descendant
and the ascendant, then this pair is given the attribute which qualifies that
certain usage. How often a usage occurs is not taken into consideration here. For
example, if a descendant reuses a piece of code from the ascendant, how many
times this reuse occurs in the code does not matter.

Here are the definitions of system type, external method, user defined at-
tribute, CC, CI and II attributes, the explicit attribute and indirect reuse. These
definitions are important for understanding the scope and the metrics of the orig-
inal study:

– System Type A type (Java class or interface) is a system type if it is defined
in the system under investigation. The rest of the types, which are used in
the system, but are not defined in the systems are called non-system types.
Non-system types are typically defined in the external libraries on which the
system under investigation depends on.

– External method Similar to non-system types, the methods which are
defined outside of the system under investigation are called external methods,
or non-system methods.

– User Defined Attribute: The descendant ascendant pair in an inheritance
relationship has user defined attribute if both of descendant and ascendant
are system types. A system type is created for the system under investigation

– CC, CI and II Attributes: The descendant-ascendant pair in an inheri-
tance relationship in Java can have one of the three attributes: CC (Class
Class), CI (Class Interface) and II (Interface Interface).

– Explicit Attribute The inheritance relationship is described directly in the
code. Inheritance relation between a child and its direct parent is explicit,
whereas a child and its grand parent is not explicit, but implicit.

– Indirect Reuse If the inheritance use occurs between the types in a pair
which has not explicit attribute, this usage gets the indirect attribute. Let us
assume that class GC extends class C and class C extends class P. If an external
reuse occurs between GC and P, all the pairs between GC and P (in this
case <GC,C> and <C,P> ), are counted as having external reuse attribute
(indirect external reuse). This is done for the external reuse and subtype



attributes only. For other inheritance usages like down-call or internal reuse,
this is not done.

The authors count only explicit user defined pairs in their research.
The inheritance usages we most frequently see in the open source Java

projects are subtype, external reuse and internal reuse, which are defined as
follows:

– Subtype: Subtype inheritance usage happens when a child type is supplied
where the parent type is expected. Subtype occurrence can be seen during as-
signment, casting, parameter passing and returning a parameter in a method
declaration in Java. Moreover the enhanced for loop (for each construct) and
ternary operator can also contain subtype usage.

– Internal Reuse: Reuse occurs if an object of child type accesses a field or
calls a method of a parent type. If the reuse happens in the class definition
of the child class, this is called internal reuse.

– External Reuse: If the reuse happens outside of the class definition of the
child class, this is called external reuse.

Down-call is one of the most important concepts of the original study and
one research question is solely about down-call. Here is an illustrative example
of down-call:

class P {
void p() {

q();
}

void q() {}
}

class C extends P {
void q() {}

}

In the example, the p() method of class P, calls method q() which is also
overridden by its child type. If method p() is called on an object of child type,
the q() method of child type is called instead of the one of parent type. The
original study counts the potential down-calls only, in other words, they do not
search for a call of method p() on an object of child type. In the replication
study we did the same, but we find that this approach is open to discussion.

In addition to the most frequent usages, other uses of inheritance are also
defined in the inheritance model. Because these usages do not occur frequently,
we will only give brief definitions of these concepts. Category usage occurs if a
parent type has more than one child and at least one of the children have subtype
relation with the parent. The siblings which has no other usage with the parent
receive category attribute. If an ascendant has only Java constant fields in it, the
descendant-ascendant pairs get the constant attribute. Framework attribute, on
the other hand, is given to the descendant-ascendant pairs where ascendant is a
child of a non-system type.

The generic attribute qualifies a frequently used pattern in raw collections
between an ascendant and a descendant. Marker usage qualifies the pairs for
which ascendants are empty interfaces and descendants implement them for the
reason of conceptual classification. Finally, the super attribute are given to pairs



in which the descendant explicitly issues a super() call to the constructor of
the ascending type.

4 The Original Study

4.1 Research Questions

After introducing an inheritance usage model, the original study concentrates
on four research questions:

1. To what extent is late-bound self-reference (down-call) relied on in the de-
signs of Java Systems? (the ratio of pairs for which down-call is seen to the
total number of class-class inheritance pairs.)

2. To what extent is inheritance used in Java in order to express a subtype
relationship that is necessary to design? For class-class pairs, this is the
ratio of pairs with subtype usage to the total number of used pairs. The
used pairs are the inheritance pairs for which subtype or reuse is seen. The
subtype usage between class-interface and interface-interface pairs are also
measured.

3. To what extent can inheritance be replaced by composition? The inheri-
tance relationships which involve internal or external reuse, but which do
not involve subtype use, are candidates for such a replacement.

4. What other inheritance idioms are in common use in Java systems? (This
is answered by considering the results of various other metrics about other
inheritance usages like category, constant, framework, etc.)

4.2 Implementation

The authors developed a Java byte code analysis tool which is based on SOOT
framework [ValleeRai99]. With this tool they analysed the byte code distri-
butions of 93 Java projects from the 20101126 release of the Qualitas Cor-
pus [Tempero10]. The study is very well documented in the study web site
[Tempero08Web] The article and the study web site have been immensely use-
ful for us when conducting this replication study. When we needed additional
information, we e-mailed the authors and we got detailed answers from the first
author (E. Tempero). These answers improved our understanding and enabled
us to deliver a replication study with better quality.

The original study has some limitations about inheritance model which we
also use. The analysis is limited to classes and interfaces, exceptions, enums and
annotations are excluded. Moreover only the types which are declared in the
project are analysed, and not the third party libraries. Unlike our study, the
original study has also some limitations which originate from byte code analysis.
In a few cases, for example, source code may not map correctly to byte code.



4.3 Results

For the first question, they conclude that down-call plays a significant role -
around a third (median 34 %) of all class-class pairs involve down calls. For
the second question, they saw that least two thirds of all inheritance pairs are
used as subtypes in the program. About replacing inheritance with composition,
the authors found that 22 % or more pairs use external re-use (without subtyp-
ing) and 2 % or more use internal re-use (without subtyping or external reuse)
which signals opportunities to replace inheritance with composition. For the last
question, they report some other uses of Java inheritance (constant, generic,
etc.) however the results show that big majority of inheritance pairs (87 %) in
their Corpus can already be explained with one of the subtype, external re-use,
internal re-use uses and other usages do not occur frequently.

5 Replication Study

5.1 Research Questions

Our research questions directly refer to the four research questions of the original
study. For each question we would like to know how our results di↵er from those
of the original study.

5.2 Di↵erences in the Study Set-up

Our study has some di↵erences from the original study in the study set-up.
When comparing the results, it is necessary to consider these di↵erences:

– Source code versus byte code: The biggest di↵erence between the origi-
nal and replication studies is about the input to analysis work. The authors
analyse the byte code, while we analyse the source code of Java projects.
Before we started the replication study, we have decided to choose for the
source code analysis. There were two reasons for that: firstly, we did not
intend to perform an exact replication, we wanted to answer the same re-
search questions from a di↵erent perspective, namely by analysing the source
code. And secondly, we wanted to use an existing robust tool (or meta-
programming language) for analysis. Rascal is proven to be a robust tool for
Java source code analysis, but it does not support Java byte code analysis
at the moment.

– Di↵erences between the content of the byte code and the source

code: When we analysed the source code and compared the contents of the
source code and byte code distributions, we saw that the set of types which
are contained in both distributions di↵er from each other quite considerably,
even for the same versions of the projects.

– Qualitas Corpus vs. Qualitas.class Corpus: The authors used the Qual-
itas Corpus [Tempero10], we also use the Corpus, but the compiled version
of it, namely Qualitas.class Corpus [Terra13]. In the original study 93 open



source Java projects are analysed. We could not analyse 3 projects because of
errors. From the 90 projects we did analyse, 65 have the same version as the
original study and 25 have di↵erent versions. The meta-language we used to
analyse the source code, Rascal, will analyse the source code correctly when
the source code compiles. Therefore it was important for us that the source
code compiled correctly. We had two alternatives: we could either use the
original corpus and invest time on resolving dependencies of the source code
to external libraries and fixing the compilation problems ourselves, or we
could use the compiled Corpus (Qualitas.class Corpus), for which this work
was already done. We have chosen the second option because of the time
limitations, and this meant that we had to analyse di↵erent versions of 25
projects.

5.3 Limitations of the Replication Study

The di↵erences between the content of the code analysed is a limitation of our
study, as explained in the previous subsection in detail. This di↵erence makes
comparison of the results less straightforward.

Another limitation which has impact on our results is about the analysis of
non-system methods. We have limited information about external methods. We
only analyse the system types, and the external methods are defined in non-
system types, i.e. outside of our analysis boundaries. For external reuse, this
limitation results in fewer number of external reuse cases for indirect external
access (we only mark the child and the immediate parent with external reuse at-
tribute, whereas the original study marks the whole chain between the child and
the ascendant which declares the method). For subtype, this limitation a↵ects
our analysis during parameter passing. When an external method is called, the
parameter types are not totally available for us. We use a very limited heuristic
to analyse these calls and it is highly likely that we miss some subtype cases.

There are some more limitations to our study which we think will not have
major impact on the results. To name a few: Internal reuse attribute is not
analysed for class-interface and interface-interface pairs, for interface-interface
pairs category attribute is not analysed, method parameters that are given as
ternary operators are not analysed for subtype, etc.

6 Implementation of the Replication Study

We have written a Java source code analysis program in Rascal. Rascal is a
meta-programming language which has various features to make (among others)
analysis of Java source code easy. Rascal is fully integrated in Eclipse IDE.

With the following simple Rascal code example, we would like to give an idea
about how Java source code analysis is done by Rascal:

1 public void run() {
2 set[Declaration] pASTs = createAstsFromEclipseProject (| project://cobertura

-1.9.4.1| , true);
3 pM3 = createM3FromEclipseProject (| project://cobertura -1.9.4.1|);



4 for (anAST <- pASTs) {
5 visit (anAST) {
6 case m1:\ methodCall(_, receiver:_, _, _) : {
7 set[loc] defClassSet = {aClass | <aClass , aMethod > <- pM3@containment

, isClass(aClass), aMethod == m1@decl };
8 if (! isEmpty(defClassSet)) {
9 loc definingClass = getOneFrom(defClassSet) ;

10 println("The method <m1@decl > is defined in: <definingClass >" );
11 println("Type of receiver is: <receiver@typ >");
12 }
13 }
14 }
15 }
16 }

Listing 1.1. Sample Rascal code which analyses a method call

createAstsFromEclipseProject() in line 2 is a Rascal method returns all
ASTs (Abstract Syntax Trees) for a given Java project. Rascal also creates the
M3 model for a given project with method createM3FromEclipseProject() as
we see in line 3. M3 model contains information about the project from vari-
ous aspects. This information can be accessed via annotations in Rascal. Some
examples of the annotations are: @extends annotation (which lists the parent
child pairs for classes and interfaces), @implements annotation (similar to ex-
tends, but for class interface pairs), @declarations annotation (which lists the
location where di↵erent items in the project are declared). In our example, we
access to containment annotation of project M3 in line 7 to retrieve the class
in which the method was declared.

The information in M3 are stored as binary relations (ordered pairs), and
Rascal also enables access to binary relations by comprehensions, as we again
see in line 7. Once the ASTs are built, it is also possible to visit each node of
an AST via the Rascal construct visit - line 5 in the example above. The case
statements (line 6) in the visit construct are used for selecting the AST node
we are interested in, in this case a methodCall(). Once we selected the node
we want, it is also possible to retrieve further information about the node itself,
like the name of the method that is called (in our example m1@decl), if it has a
receiver (an object on which the method call was issued - in our case receiver)
and the type of the receiver (receiver@typ).

7 Results

The results of our analysis are, in many cases, similar to the results of the original
study, but they are not the same. For most of the inheritance usage we report
fewer cases:

For down-call: we observed 27 % (median) of the class-class relations involv-
ing potential down-calls whereas the original study reports 34 % median.

For subtype: for class-class pairs, we observed 76 % of subtype usage, just
like the original study. Subtype usage can also be seen in class-interface and
interface-interface pairs, for class-interface pairs we report a median of 61 %
(original study 69 %) and for interface-interface pairs our median is 75 %, while
the original median is % 72.



For reuse, we also see that there is opportunity for replacing inheritance with
composition. However, we report significantly fewer cases of external reuse, and
also significantly more cases of internal reuse. For class-class pairs, our external
reuse median is 4 % (original study : 22 %) and our internal reuse median is 20
% (original study 2 %).

For other inheritance cases, we also found some usage, and we also observed
that these usages are not significant when compared to subtype and reuse.

Despite not being part of a research question, the perCCUsed (percentage of
class-class pairs which have subtype or reuse attribute) is an important metric.
For this metric, we have a median of 88 %, while the original study reports 99
%.

The results of the both studies are summarized in table 1.

Inheritance Usage Replication median (%) Original median (%).

Down-call 27 34
Subtype - class class pairs 76 76
External reuse - no subtype 4 22
Internal reuse only 20 2
Subtype - class interface pairs 61 69
Subtype - interface interface pairs 75 72

Table 1. Comparative Summary of Results

8 Discussion

The fact that the source code distributions are in many cases very di↵erent from
the byte code distributions, has a major impact on our results. Moreover, our
limitation about the analysis of the external method calls is highly likely to
deliver fewer cases in subtype and external reuse. We also did our best to be
able to interpret the inheritance model in a sound way, however, there may still
be misunderstandings from our side about definitions of certain concepts.

Keeping these limitations in mind, we tried to find out some projects which
we could manually investigate to search for reasons for our di↵erences. One
small project which had similar byte and source code contents was cobertura (v.
1.9.4.1). For this project, the original study reported five down-call cases, while
we could not observe any. Here we include one case for which we suspect a false
positive from the byte code analysis. Original study reported a down-call usage
between classes GTToken and Token.

The GTToken class from project cobertura has the following source code:

1 public static class GTToken extends Token
2 {
3 int realKind = JavaParser15Constants.GT;
4 }

An excerpt from the byte code of GTToken is as follows:



1 0: aload_0
2 1: invokespecial #10 // Method
3 // net/sourceforge/cobertura/javancss/parser/java15/Token."<init >":()V
4 4: aload_0
5 5: bipush 126
6 7: putfield #12 // Field realKind:I
7 10: return

The definition of down-call makes it necessary that child class GTToken overrides
at least one method. In this case, however, we do not see any methods defined
by GTToken. GTToken defines only one field. When we look at the byte code,
however, we see the command invokespecial. We wondered if this was causing
the down-call report in the original study. We have e-mailed the authors, and
they also could not bring an explanation about this particular case.

From our manual investigation, we also found one more down-call case which
is di↵erent from the case explained above, for which we also suspect a false pos-
itive. For this case, we also mailed the authors and we suspect an interpretation
di↵erence for down-call definition between two studies.

We also did a manual investigation for other cases of inheritance usage and
we also suspect some false positives for the external reuse, however we did not
have enough time to discuss this via e-mail with the authors.

To summarize, we suspect some false positives for down-call and external
reuse cases of the original study. We also think that this may be introduced due
to the analysis of byte code, in some cases byte code may be misleading. However,
because of the limitations of our study, we can not give an exact percentage of
false positives, but we do not expect a high percentage of false positives.

9 Threats to Validity

The major threat to validity to our replication is the input we are using. The
fact that our input is very di↵erent from the original study poses a threat to
validity when comparing the results of two studies.

Furthermore, we have a limitation when analysing the external method calls.
We know that this causes fewer cases to be counted for subtype and external
reuse, but we can not give an exact percentage. This also constitutes a threat
for the validity during comparison of subtype and external reuse percentages.

We did our best to understand the inheritance model proposed by the au-
thors. However, there can still be some interpretation di↵erences about the inher-
itance usage definitions, and this may also pose a threat to our analysis results.

Our minor limitations, which were briefly discussed in section 5.3, will also
a↵ect our results and should also be mentioned as, however minor, possible
threats to validity.

10 Conclusion

Our conclusions for the research questions are similar to the original study, but
they are not the same.



For the first question (about down-call), original study reports about one
third of the inheritance relations involving such a case, while we found about
one fourth.

For the second research question, we found about 60 % of all inheritance
cases involve subtype relationship. The authors also report a higher percentage
(66 %) about subtype usage.

About research question three (replacement of inheritance with composition),
the pairs without subtype but with reuse attribute are taken into account. Au-
thors found a significant percentage of reuse (median 22 % for external and 2
% for internal reuse). We also report a similar percentage, but the division be-
tween internal and external uses is very di↵erent in our case (median of 4 % for
external reuse and 20 % for internal reuse).

For the last research question, which is about the other uses of inheritance
in Java, the authors found out that these occur in many systems, but their use
is not generally significant. Although our percentages are not exactly the same
with the original study for various other uses of inheritance, our results also
agree with this conclusion.

When we investigate the possible reasons for the di↵erences, we see that
especially the di↵erences in our study set up play a role here. In addition to this,
for the subtype and external reuse, it is highly probable that we report fewer
cases because of our limitation of external method analysis. We also conclude
that the analysis of byte code can result in false positives in some particular
occasions for down-call and external reuse..

As future work for the original study, one can discuss the proposed inheri-
tance model and the metrics and consider some alternatives for detecting and
counting various inheritance usages. Especially, how down-call usage is detected
and the role of indirect usage in subtype and external reuse, according to us,
present some opportunities for further discussion.
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Abstract. Visualisation provides good support for software analysis. It
copes with the intangible nature of software by providing concrete repre-
sentations of it. By reducing the complexity of software, visualisations are
especially useful when dealing with large amounts of code. One domain
that usually deals with large amounts of source code data is empirical
analysis. Although there are many tools for analysis and visualisation,
they do not cope well software corpora. In this paper we present Explora,
an infrastructure that is specifically targeted at visualising corpora. We
report on early results when conducting a sample analysis on Smalltalk
and Java corpora.

1 Introduction

A software corpus is a curated catalogue of software systems intended to be
used for empirical studies of code artefacts. The advantage of doing research on
corpora is that it encourages repeatable analyses. Corpus analysis is especially
used in the context of empirical software engineering, where results should be
repeatable [9, 15, 16]. Visualisation is especially useful for dealing with large
amounts of source code, since it provides software a concrete representation
making complex data easier to understand. However, most visualisation tools
are not designed for corpora.

Imagine Edgar, an empirical software engineering researcher, who wants to
assess the prevalence of reuse of software in di↵erent languages. To begin, he
chooses to study reuse through inheritance and invocation in one of the oldest
object-oriented languages, Smalltalk and one of the most popular, Java. To gain
an initial insight into the data, he must carry out explorative data analysis,
including visualisation.

To set up the environment for the analysis, he needs to overcome several prob-
lems: 1) visualising one system at a time (as most visualisation systems allow)
prevents patterns from being recognized at the corpus level; 2) the lack of means
for real-time data manipulation (such as sorting, filtering, searching, inspecting)
discourages experimentation; and 3) two technical issues, memory consumption
and performance, complicate fetching and manipulating corpus data.

In this paper we introduce our approach, Explora, which copes with these
issues.

http://scg.unibe.ch/
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2 Analysis Example

Edgar wants to target Smalltalk and Java corpora. He has a fair experience
implementing and maintaining systems in both languages. He realises that in
his experience Smalltalk systems have deeper hierarchies than Java ones, so he
wants to explore whether increased specialisation in Smalltalk systems correlates
with less reuse of their classes. Thus, he wants to answer the following research
question:

RQ: “How di↵erent is reuse by inheritance and invocation in Smalltalk and
Java systems?”

He believes that metrics are a suitable way for tackling this research question.
He chooses four metrics from a catalogue of metrics proposed by Lanza and
Marinescu to characterise two types of reuse: reuse via inheritance and reuse via
invocation [12].

1) Average Hierarchy Height (AHH): the average depth of the inheritance trees
of a system is one of the two metrics that characterise inheritance.

2) Depth of Inheritance Tree (DIT): the maximum length of the path of each
class to the root class in a hierarchy; a measure of the system can be obtained
by aggregating this metric for each of the classes.

3) Fan-In: this quantifies the dependent classes (access and invocation relation-
ships) of a class.

4) Fan-Out: the outgoing coupling, which characterises communication.

Edgar decides to start his analysis by visualising these metrics on all the sys-
tems in both corpora. He decides to use Explora for his analysis. He downloads
the models of the systems in the two corpora following the installation instruc-
tions of Pangea1 locally and places them in a dedicated folder called the model
workspace. To query corpora, Explora uses a so-called interactive Playground
implemented on top of the Moldable Inspector infrastructure [3] of Moose [8].

Step 1: Computing the Metrics Figure 1 shows a screenshot of the Play-
ground in which:

1) As the user modifies the query in the Mapper pane, the right pane is updated.
The Mapper pane shows a query written in plain Smalltalk for collecting AHH
(line 3), and the aggregated maximum value of DIT (line 7), Fan-In (line 9)
and Fan-Out (line 11) from every system in the two studied corpora. The
query defines an inline array of associations, where each association is linked
to a di↵erent metric. The query uses the bound variable eachModel to refer
to the FAMIX meta-model of each system. The model enables code such as
“eachModel allModelClasses” and “c superclassHierarchy”.

1
http://scg.unibe.ch/research/pangea

http://scg.unibe.ch/research/pangea
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Fig. 1. Collecting metrics from Smalltalk and Java corpora.

The user can evaluate metrics defined in the system model, as is the case of
AHH, Fan-In and Fan-Out, or compute custom ones such as the one specified
for DIT. The query is sent to all the models of the systems in the model
workspace

2) The right pane shows the result of the query, which is always a collection of
objects retrieved from the queried system models by executing the query in
the Mapper pane. The objects in this collection can be further manipulated
(i.e. sorted, filtered, further queried, visualised).

Each pane of the Playground is linked to an object. By using the bound
variable self the user can manipulate the object. The Playground supports nav-
igation using the Miller column technique2 on which the evaluation of a script
in a pane adds a new pane to the right that is linked with the returned object.
The Mapper is a special pane (since it is the first) that uses a di↵erent bound
variable (eachModel) for referencing specifically system models.

Step 2: Generating an Initial Visualisation A special type of manipula-
tion supported in right pane of the Playground uses the result object (i.e. the
collection of dictionaries) as input for a visualisation. To use this feature, Edgar
switches from the list view of the result to the Raw tab, which allows him to
write a visualisation script. For instance, Figure 2 shows in the left pane an im-
plementation of a lightweight visualisation using the Mondrian DSL. The result
object is referred to in this script as “self” (see lines 4, 5, 11 and 12).

The right pane shows the generated visualisation. Each box represents a
system, Smalltalk ones being grouped at the bottom while Java systems are
at the top. The width of each box is mapped to AHH and the height to DIT.
Edgar mapped the metrics in this way so that boxes with a larger area will
indicate systems with many deep hierarchies. Furthermore, the darker the green

2
http://en.wikipedia.org/wiki/Miller_columns

http://en.wikipedia.org/wiki/Miller_columns
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Fig. 2. Visualising AHH and maximum values of DIT and Fan-In among Java
and Smalltalk systems.

of the box the higher the value of Fan-In. At a first glance, the analysis of the
visualisation seems to reveal a pattern. Smalltalk systems are landscape oriented
in lighter colour and Java ones have a portrait orientation with a darker colour.
Since he took the maximum values of Fan-In and DIT, Edgar realises that in
general the Java corpus contains the most invoked class (highest Fan-In), and
the deepest hierarchy (highest AHH and DIT). This suggests that Java systems
exhibit more reuse than Smalltalk ones. This can be a misleading result due to
the decision of aggregating DIT and Fan-In using maximum values, since they
do not provide Edgar insight into a general tendency.

Step 3: Exploring alternative Visualisations In consequence, Edgar de-
cides to find out if this pattern still prevails when values are aggregated using
the median. He modifies the implementation accordingly, by aggregating the
values of DIT and Fan-In using the median. Without leaving the environment,
he goes to the left pane shown in Figure 1 and changes lines 9 and 11 accord-
ingly (collecting median instead of maximum values). The Playground recallsl
the implementation of the previous visualisation generating a new one automat-
ically (Figure 3). Edgar notes the di↵erence between system Chronos in Figure
2 and in Figure 3. The analysis shows that even though it has neither the most
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Fig. 3. Visualising AHH and median values of DIT and Fan-In among Java and
Smalltalk systems.

invoked class in the two corpora (light green in Figure 2), nor the deepest hier-
archy (lower height in Figure 2), in general its classes are the most invoked and
have deep hierarchies (large and dark box in Figure 3). Figure 3 shows that most
systems of the Smalltalk corpus exhibit more reuse by having larger, deeper and
more invoked hierarchies.

Diving Into an Individual System Figure 4 shows a detailed visualisation
of Chronos which is a library for manipulating dates and times.3 Classes are
represented by circles. The darker the circle, the more invoked the class (higher
Fan-In). The size of the circle is mapped to Fan-Out allowing the user to com-
pare classes that behave as clients and providers in invocation relationships. Blue
edges between classes show inheritance relationships and grey edges represent
invocations. For a better analysis, only invocations of highly invoked classes are
shown (Fan-In greater than 90). From the visualisation Edgar can distinguish
main provider classes that are highly invoked (dark circles), even though some of
them are clients as well (darker and larger circles). Most notably, there is a hier-
archy in Figure 4-A that includes many highly invoked classes (ChronosObject).

3
http://smalltalkhub.com/#!/

~

Chronos/Chronos

http://smalltalkhub.com/#!/~Chronos/Chronos
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Fig. 4. Drilling-down in the Chronos system. Large and dark nodes represent
classes with high fan-out and respectively high fan-in

Besides, there are two classes in Figure 4-B TimeZoneAnnualTransitionPoli-
cyFactory and DateSpec that without being part of a hierarchy attract many
invocations. Finally in Figure 4-C Edgar notes a small hierarchy of chained in-
vocations.

The top-down exploration starting from the visualisation at the corpora level
enabled Edgar to decide what systems to focus on. It gave him an overall assess-
ment of reuse between the two corpora as well as a detailed vision of the reuse
in a system, when he drilled down into Chronos. He learned that the greater
specialisation of Smalltalk systems seems not to a↵ect reuse. Indeed he found
deep hierarchies in the Chronos system but he also found that those hierarchies
are heavily reused.

3 Technical Infrastructure

When designing Explora we combined several tools for accomplishing the analysis
task. Explora is inspired by Pangea [2], and uses the Moose [8] platform for
analysing FAMIX [20] models of software systems. It reuses Object Model Snap-
shots (OMS) from Pangea’s data model. An OMS is a custom Moose image
containing a single FAMIX model of a system. The model currently includes
OMSs of two corpora: 1) Qualitas Corpus [19] and 2) SqueakSource-100 [2].

Explora is written in Pharo, an open-source Smalltalk dialect. The Pharo
live programming environment allows users to explore and navigate data in a
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dynamic fashion. Explora uses a Playground built on top of the Moldable inspec-
tor [3] of Pharo for querying the model, and manipulating results. The Roassal
visualisation engine [1] provides a comprehensive API for visualising data in
an agile fashion. Roassal provides several Domain-Specific Languages including
Mondrian and Grapher.

Workflow

1) The user defines and triggers a query for collecting data from the corpora.
2) A main process looks for OMSs available in a local folder called the source

workspace, and evaluates the query in each of them (there are sequential and
parallel modes). An OMS is used as a cache holding a live version of the
system model that can be awakened, queried, and put back to sleep again.

3) The independent result returned by each OMS is serialised using Fuel [7].
4) These partial results are aggregated to be returned to the user.
5) The user decides whether to go back to 1) or continue with the following step.
6) The user can manipulate the results by filtering, sorting, inspecting or using

them as input for a visualisation.

Although the architecture scales up by adding more OMSs horizontally, it
is still constrained to the memory available in the Pharo 32 bit environment
for materialising objects. A workaround for this issue is to collect less data by
including into each OMS only essential information.

Example’s Benchmark Table 1 shows a benchmark with the performance
results and memory consumption at each step when we run the example analysis.
The data were collected by: 1) calling the garbage collector; 2) measuring the
memory used (average among 10000 times); 3) executing the step; 4) measuring
the memory used (average among 10000 times); and 5) calculating the di↵erence
between 4) and 2).

Note that during the execution of the step 1 (Computing the Metrics) new
processes are created (in parallel or sequentially) using more memory, however
this is released after the execution.

Step Description Performance (Secs.) Memory (MB)

1 Computing the Metrics 39.108 4.3
2 Generating an Initial Visualisation 0.238 2.1
3 Exploring Alternative Visualisation 0.238 2.3
4 Diving into an Individual System 0.212 6.3

Table 1. Performance and memory consumption
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4 Future Work

Automatic Visualisation Although Roassal provides a number of expressive
DSLs for di↵erent tasks, it requires expertise to generate useful visualisations.
We envision an approach that exploits expertise of proven well-designed visual-
isations automatically visualise results. Users without expertise should be able
to profit from such visualisations. Lately we are studying how experts visualise
software. We have been classifying their visualisations into several dimensions
such as goal, domain, granularity. We are working to develop an approach that
makes use of this classification to provide automatic visualisation.

Automatic Visualisation Assessment Knowledgeable users who can imple-
ment data visualisations would benefit from Automatic Visualisation Assessment
AVA. While users are implementing visualisations, AVA would give them feed-
back about visual design guidelines that are violated, and suggest how to resolve
them. Our idea is to develop a model of visual design constraints covering the
main pitfalls that developers encounter when visualising data, such as visual
cluttering, layout selection, and colour conflict.

Expanding the Corpora There are a few systems in Qualitas Corpus that do
not fit into an OMS. This will be solved with a 64-bit version of Pharo. We also
realise that SqueakSource-100 should be expanded to more systems to provide
more interesting results. Finally, we think that adding more corpora from other
languages would be an advantage for experimental analysis.

5 Related Work

Explora expands related work by scaling up software visualisation to corpora.
Explora’s design is based on three pillars: 1) liveness of the Pharo environment
which enables interactive exploration; 2) ready-to-use software corpora models
which encourage repeatable analyses; and 3) agile visualisation to provide sup-
port for data analysis. Figure 5 shows how related work and Explora cover these
concepts.

5.1 Visualisation Tools

To the best of our knowledge there is no visualisation tool that provides support
for software corpora. Some of them allow users to load into memory several
models of systems, but they cannot visualise systems together. Only one of these
systems o↵ers liveness.

CodeCrawler [6] is a visualisation tool based on Moose and FAMIX models.
It includes many built-in views covering several common software analysis tasks.
Views can be partially customised by assigning a specific mapping between the
built-in metrics with the visual properties of the representation. CodeCrawler
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Fig. 5. Explora and related work

was superseded by Mondrian [14], a high-level DSL for specifying visualisations.
Both of them are meant for analysis of single model systems.

SHriMP [18] visualises software using nested graph views for structural en-
tities such as packages, classes and methods. Edges between artefacts represent
dependencies such as inheritance, composition and association relationships. The
tool is meant to explore software structure and to navigate source code. Hyper-
links are used ease navigation through source code. SHriMP targets developers
analysing their own code or legacy one but always coping with single systems.

jGrasp [4] is a lightweight development environment implemented in Java.
Traditional data structures, such as stacks, queues and linked lists, can be easily
identified in the visualisation. It is intended to support Java teaching through
program visualisation. It only allows the user to visualise an isolated project.

JIVE [10] stands for Java Interactive Visualisation Environment and is mainly
used for debugging, maintenance and learning. It provides interactive visualisa-
tions of the runtime state and call history of a program. It is integrated in the
Eclipse IDE, allowing users to visualise a single project.

Softwarenaut [13] is an analysis tool written in Smalltalk and which profits
from its liveness. It visualises software using hierarchical views. It includes three
complementary perspectives which allow the user to explore and navigate data.
The tool includes pre-packaged metrics that can be mapped to visual properties.
Although Softwarenaut allows users to load several model systems into memory,
it can only visualise one at a time.

5.2 Data Analysis Tools

Rascal [11] is a Domain Specific Language for source code analysis and manipu-
lation. It is implemented as a plug-in for Eclipse, and consequently benefits from
other tools installed in the environment, and exploits Eclipse to obtain software
models cheaply. It can only visualise the systems currently loaded in the Eclipse
workspace.

Bauhaus [17] is a tool suite written in Ada that supports multi-language
program understanding and reverse engineering for maintenance and evolution.
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It provides tools to extract, analyse, query and visualise software artefacts. It
provides support for analysis and visualisation of single systems.

Pangea [2] is an environment for static analysis of multi-language software
corpora. Based on Moose it provides an expressive scripting language. However,
since it is implemented as a bash script, it o↵ers neither liveness, nor visualisa-
tion. Pangea’s output is normally a text file while in Explora it is a live object.

Large-Scale Data Analysis MapReduce [5] is a programming model and im-
plementation for processing large datasets. The model is based on the disag-
gregation of a large dataset into smaller pieces that can be handled by di↵erent
servers in parallel. The query sent by a client is computed independently by each
server. Afterwards, the result of the computation of a server is aggregated. Ex-
plora is inspired by MapReduce. In Explora, the corpora are disaggregated into
system models which compute queries independently. Explora is not distributed
over a network but runs locally.

6 Conclusion

In conclusion, although there are many tools for software analysis and visuali-
sation most of them do not scale to software corpora. Data analysis tools that
do scale to corpora are not live. On the other hand, visualisation tools that do
o↵er liveness do not scale to corpora. In this paper we presented Explora, an
infrastructure for scaling up software visualisation to corpora. We presented an
example of analysis stressing its strengths, showing how visualisation can help
one to explore and understand software. However, we acknowledge that useful
visualisations are di�cult to achieve. In consequence, in the future we want
to tackle this issue by automatically visualising software by mapping queries
to suitable, proven visualisations. We also think that users with the knowledge
for visualising software can profit from automatic visualisation assessment, a
dynamic evaluation of the visualisation that provides feedback concerning vio-
lations of visual design rules and guidelines.
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Abstract. Code duplication in a program can make understanding and
maintenance di�cult. The problem can be reduced by detecting dupli-
cated code, refactoring it into a separate procedure, and replacing all the
clones by appropriate calls to the new procedure. In this paper, we re-
port on a confirmatory replication of a tool that was used to detect such
refactorable clones based on program dependence graphs and program
slicing.

1 Motivation

With the discussion about the extent to which code clones are harmful for soft-
ware readability, maintainability and ultimately quality, still ongoing, there is
still significant evidence on cost increases being caused by code duplication in
at least some scenarios [5,18]. For simplicity, we intend to adopt that view and
look a step further. Once clones are identified, ideally we would like to provide
advanced support for programmers or maintenance engineers to remove them
— that is, to use refactorings [4] to “de-clone” source code by merging identical
code fragments and parametrising similar ones [17].

The sheer number of code clone detection techniques and tools is immensely
overwhelming [15,16,13]. In section 2, we will give a very brief overview of the
field and explain terminology needed to understand the rest of the paper. One
of the promising family of methods which is not too complex for a final Master’s
project yet also not too much of a beaten track in code clone research, is graph-
based. Given two programs, we automatically build a graph-like structure with
known properties, employ some slicing and/or matching and based on that can
diagnose them with duplication.

Eventually we have converged to a relatively well-known paper of Ragha-
van Komondoor and Susan Horwitz [8] and dedicated ourselves to replicating it.
Some details about that project can be found in section 3, but in general they
propose to use program dependence graphs [11] (PDG) and program slicing [19].
The authors of the original study were able to find isomorphic subgraphs of
the PDG by implementing a program slicing technique using a combination of
backward slicing and forward slicing. Basically they search for sets of syntacti-
cally equivalent node pairs and perform backward slicing from each pair with a

mailto:ammarhamid84@gmail.com
mailto:vadim@grammarware.net


single forward slicing pass for matching predicates nodes. The theoretical foun-
dation behind this method mostly lies in plan calculus [14] and an advanced
graph partitioning algorithm [6,7] and essentially allows to detect clones seman-
tically, regardless of various refactorings that may have been applied to some of
the copies but not to others. This leads to reporting only those clones that can
indeed be refactored — as we show on Table 1.

We modified the original study in several ways: some were forced upon us by
technicalities, for others we had our own reasons — all explained in section 4.
We report our results, compare them to the original study and try to explain
the di↵erences in section 5 and conclude the paper with section 6.

2 Background

Several studies show that 7–23% of the source code for large programs is du-
plicated code [2,9]. Within a project, code duplication will increase code size,
and make maintenance di�cult. Fixing a bug within a project with a lot of du-
plicated code is becoming a challenge because it is necessary to make sure that
the fix is applied to all of the duplicated instances. Lague et al [10] studied the
development of a large software system over multiple releases and found that
programmers often missed some copies of the duplicated code when performing
modification. Similar results have been observed by Geiger et al [5] and Thum-
malapenta et al [18] who observe the already expected negative impact of clone
co-evolution on software maintenance e↵ort.

In code duplication studies we usually distinguish among the following types
of clones [13,15]:

– Exact clones (type 1) — identical duplicates with some variations allowed
in whitespace and comments;

– Parametrised clones (type 2) — variations are allowed in identifier names,
literals, even variable types;

– Near miss clones (type 3) — statements are allowed to be changed, added
or removed up to some extent;

– Semantic clones (type 4) — same computation with a di↵erent syntax and
possibly even di↵erent algorithms;

– Structural clones —higher level similarities, conceptually bottom-up-detected
implementation patterns;

– Artefact clones — function clones and file clones;
– Model clones — duplicates over artefacts other than code;
– Contextual clones — code fragments deemed duplicate due to their usage

patterns.

Out of these, type 2 and type 3 are the most well-researched ones, with model
clones quickly getting more and more attention every year.

Techniques and tools can be roughly classified into these groups [13,16] (in
the parenthesis we show a software artefact category in the terms of parsing-in-
a-broad-sense megamodel [20]):



Procedure 1 Rewritten Procedure 1

int foo(void) { int foo(void) {

++ int i = 1; bool w = false;

bool z = true; int t = 10;

int t = 10; ** return new_procedure_bar();

++ int j = i + 1; }

++ int n;

++ for (n=0; n<10; n++) {

++ j = j + 5;

}

++ int k = i + j - 1;

return k;

}

Procedure 2 Rewritten Procedure 2

int bar(void) { int bar(void) {

++ int i = 1; bool w = false;

bool w = false; int t = 10;

int t = 10; ** return new_procedure_bar();

++ int s; }

++ int b = a + 1;

++ for (s=0; s<10; s++) {

++ b = b + 5;

}

++ int c = a + b - 1;

return c;

}

Newly extracted procedure:

int new_procedure_bar(void) {

++ int i = 1;

++ int j = i + 1;

++ int n;

++ for (n=0; n<10; n++) {

++ j = j + 5;

}

++ int k = i + j - 1;

return k;

}

Table 1. Two functions with duplicated code and a refactoring result. In the left col-
umn, the duplicated code is marked with ++; in the right column clones are replaced
with calls to a newly extracted function. This example demonstrates that not every-
thing that has the same structure or the same syntax is reported as clones (e.g. int t

= 10; which has no shared predecessor).



– Text based (Str) such as Simian — blazingly fast methods usually looking for
exact clones, quite often in a language-independent, -parametric or -agnostic
manner;

– Token based (TTk, Lex) such as CCFinder — somewhat more sophisticated
lexical tools;

– Tree based (Ptr, Cst, Ast) such as Deckard — looking for clones in parse
trees, su�x trees or abstract syntax trees;

– Graph based (Ast, Dia) such as Duplix — making decisions based on control
flow graphs, data dependency graphs, program dependence graphs or partite
sets and vertices;

– Model based (Dia) such as ConQAT — metamodel-specific representation,
usually graph-like;

– Metrics based such as Covet — using metrics, fingerprinting and/or clus-
tering to work on text or ASTs;

– Hybrid such asCloneMiner— independent component analysis, some vari-
ants of semantic indexing and longest subsequence methods that require
reasoning over trees, memory states, vector spaces, etc.

Following the original paper [8], we use CodeSurfer3, a commercial tool that
can be used to generate program dependence graphs (PDGs) from C programs.
It provides an API that can be used from Scheme programs [1]. In general, PDG
nodes represent program statements and predicates, while PDG edges repre-
sent data and control dependencies. PDG provides an abstraction that ignores
arbitrary sequencing choices made by a programmer, and instead captures the
important dependences among program components. Essentially, a program de-
pendence graph is built starting from a control flow graph (CFG) with statements
as nodes and possible transitions among them as edges, which is then analysed
for dominance to form an acyclic post-dominator graph — the two are merged
into a control dependence graph. A program dependence graph is formed from
the control dependence graph by enhancing it with additional edges for all data
dependencies, an example is given on Figure 1. The resulting complex struc-
ture is graph-like with nodes of several kinds (regions, statements, entry/exit
points) and edges of several kinds (data/control dominance, possibly labelled)
— there are algorithmic variations which are not important for understanding
the current paper. Such a PDG is remarkable in a sense that it captures many
structural aspects of a program and still allows to abstract from concrete details
such as variable names and precise positioning of the code. For a larger/smaller
scale, related methods are used such as system dependence graphs (SDGs) or
execution dependence graphs (EDGs) [12].

The last bit of background needed for understanding this paper is program
slicing [19,3], which is a well-known technique for obtaining a “view” of a pro-
gram with only those statements that are relevant for the chosen variable. In
terms of PDG we can have two query types in program slicing [7]. Backward
slicing from node x means finding all the nodes that influence the value of node

3 CodeSurfer, http://www.grammatech.com/research/technologies/codesurfer.

http://www.grammatech.com/research/technologies/codesurfer


Fig. 1. A tiny code fragment demonstrating the concept of a program dependence
graph: the listing on the left; the corresponding PDG fragment on the right (only
data dependencies for sum are shown, the complete graph is much bigger and more
cluttered) [21].

x. Forward slicing from node y means finding all the nodes that are influenced
by node y. This is an important technique to filter out any statements that are
irrelevant for clone detection.

3 Original study

The main research question asked by Komondoor and Horwitz is the following:
can we find code clones of type 3 (non-contiguous, reordered, intertwined), which
are refactorable into new procedures? [8]

3.1 Approach

To detect clones in a program, we represent each procedure using its PDG. In
PDG, vertex represents program statement or predicate, and edge represents
data or control dependences. The algorithm performs four steps (described in
the following subsections):

– Step 1: Find relevant procedures
– Step 2: Find pair of vertices with equivalent syntactic structure
– Step 3: Find clones
– Step 4: Group clones



Find relevant procedures. We are only interested in finding clones for
procedures that are reachable from the main program execution. Only then we
can safely remove unreachable procedures from our program and just not detect
clones of them. We do this by getting a system initialisation vertex and forward-
slicing with data and control flow. This will return all PDGs (including user
defined and system PDGs) that are reachable from the main program execution.
From that result, we further filter those PDGs to find only the user defined ones,
ignoring system libraries.

Find pairs of vertices with equivalent syntactic structure. We scan
all PDGs from the previous step to find vertices that have the type expression
(e.g. int a = b + 1). From those expression vertices, we try to match their
syntactic structure with each other. To find two expressions with equivalent
syntactic structures, we make use of Abstract Syntax Tree (AST). This way,
we ignore variable names, literal values, and focus only on the structure, e.g.
int a = b + 1 is equivalent with int k = l + 1, where both expression has
the same type, which is int).

Find clones. From a pair of equivalent structure expressions, we back-slice to
find their predecessors and compare them with each other. If the AST structures
of their predecessors are the same then we store it in the collection of clones
found. Because of this step, we can find non-contiguous, reordered, intertwined
and refactorable clones. Refactorable clones in this case mean that the found
clones are meaningful and it should be possible to move it into a new procedure
without changing their semantic.

Group clones. This is the step where we make sense of the found clones
before displaying them. For example, when using CodeSurfer, the vertex for a
while-loop doesn’t really show that it is a while loop but rather showing its
predicate, e.g. while(i<10) will show as a control-point vertex i<10. Therefore,
it is important that the found clones are mapped back to the actual program
text representation and grouped together before displaying them. It is important
that the programmer can understand and take action on the reported clones.

Experimental setup. The authors of the original paper used CodeSurfer
version 1.8 to generate PDGs and wrote Scheme program of 6123 lines that
access CodeSurfer API to work with the generated PDGs. They also had to
have a C implementation of 4380 lines to do the processing of those PDG to
actually find clones.

They were able to find isomorphic subgraphs of the PDG by implementing
a program slicing technique that used a combination of backward slicing and
forward slicing. They applied it to some open-source software written in C (tail,
sort, bison) and demonstrated the capability of slicing to detect non-contagious
code clones. We will show the actual numbers later when we compare the results
with the replication.



4 Changes to the original study

The motivation of this replication study is to be able to validate algorithm and
results of the original study. Once validated, we would like to publish our code
and intermediate results into a public repository so that it is easier for any future
researchers to either re-validate our results or to extend our program.

We had to use CodeSurfer 2.3 instead of 1.8 used in the original study: just
to get it running was already a challenge impossible to overcome — we would
eventually need to do a sandboxing of some 2001 version of OS, which would
then need to be properly licensed (CodeSurfer is not open source, but we have
applied for the academic license and got both 1.8 and 2.3 to experiment with).

Porting the existing code (kindly provided to use by Raghavan Komondoor)
to the new version of CodeSurfer was also ruled out as a viable option: the API
changed too much, and actually covered many things with standard calls that
needed to be programmed in full when working with version 1.8. In the end, we
reimplemented the algorithm from scratch, using both the original paper and the
code behind it as guides. Our implementation has 536 LOC of Scheme, which is
huge improvement against the 6123 LOC of the original study. The improvement
is mostly not ours to claim, but CodeSurfer API’s. For post-processing of clones,
we wrote a Ruby script, which was again shorter: 161 LOC versus the original
4380 LOC, partly due to the improved API, but partly also due to the language
choice (the original post-processing was done in C++). Actually, given a bit
more time, it should have been possible to avoid post-processing entirely, or
rather to implement in all in Scheme. The code is available online for anybody
to do this — http://github.com/ammarhamid/clone-detection — we accept
pull requests.

There are several other important changes from the original paper that we
need to explain. As mentioned above, we only detect clones within the reachable
procedures, excluding any unused procedures that are not reachable from main
execution. This makes the result more accurate, since dead code is out of our
consideration.

Furthermore, we only use backward slicing and no forward slicing to detect
clones. Let us have a look at the example on Table 2. According to the original
paper, only statements indicated by ++ will be reported as clones while statement
marked with ** is excluded. The main argument according to the original paper
is that fp3 is used inside a loop but the loop predicate itself is not matching
(for loop and the first while loop predicate doesn’t match) – or a so called cross
loop [8].

However, we argue that we should still report the statement marked with **

as a clone together with the fact that their loop predicate doesn’t match. For a
software developer it would mean one could still refactor this into two separate
procedures, instead of a single procedure proposed by the original paper (Table 3
and Table 4). Therefore, we consider that forward slicing is only necessary to
define refactoring strategy and not for detecting the clone itself.

http://github.com/ammarhamid/clone-detection


Fragment 1 Fragment 2

... ...

** fp3 = lookaheadset + tokensetsize; ** fp3 = base + tokensetsize;

for(i = lookaheads(state); ...

i < k; i++) { if(rp) {

++ fp1 = LA + i * tokensetsize; while((j = *rp++) > 0) {

++ fp2 = lookaheadset; ...

++ while (fp2 < fp3) { ++ fp1 = base;

++ *fp2++ |= *fp1++; ++ fp2 = F + j * tokensetsize;

} ++ while(fp1 < fp3) {

} ++ *fp1++ |= *fp2++;

}

}

Table 2. Two clones from bison that illustrates the necessity to have a forward slicing
according to the original paper [8]

The new fragment 1 The new fragment 2

... ...

fp3 = location(lookaheadset, fp3 = location(base, tokensetsize);

tokensetsize); ...

... if(rp) {

for(i = lookaheads(state); while((j = *rp++) > 0) {

i < k; i++) { ...

compute(LA, lookaheadset, compute(F, base,

i, tokensetsize, fp3); j, tokensetsize, fp3);

} }

}

Table 3. The new fragments after refactoring (without forward slicing)

The extracted procedures

int location(int base, int size) { return base + size; }

void compute(int cons, int base, int index, int size, int loc) {

fp1 = cons + index * size;

fp2 = base;

while (fp2 < loc) { *fp2++ |= *fp1++; } }

Table 4. The new refactored procedures. In this case, procedure location has only
one statement which probably unnecessary to create a new procedure for it. But the
point is if we use forward slicing in clone detection phase, we might hide this statement
prematurely from the programmers, who at least should be aware of the situation
before proceeding with refactoring.



Study Program LOC PDG nodes Elapsed time, minutes:seconds
Scheme C++ Ruby

Original tail 1569 2580 00:40 00:03 —
Replication tail 1668 3052 00:05 — 00:01
Original sort 2445 5820 10:00 00:07 —
Replication sort 2499 6891 00:30 — 00:01
Original bison 11540 28548 93:00 01:05 —
Replication bison 10550 33820 126:00 — 00:42

Table 5. Comparison on program size, number of nodes, implementation and time.

5 Results

To be as close to the original paper as possible, we used the GNU git repositories4

to locate versions that were released around 2001: CoreUtils 4.5.2 (for tail and
sort) and Bison 1.29 (for bison).

Table 5 shows the comparison of the sizes of the three programs (in number of
LOC and in number of nodes), and the running times for the algorithm between
the original and replication study. Figure 2 shows the comparison of the result
in details between the original and replication study.

We do not have a solid explanation for the di↵erences observed, but we can
hypothesise on some issues:

Altered algorithm. We did use a slightly di↵erent algorithm (only reach-
able code; no forward slicing) to detect clones. However, we have also tried
running it exactly as it was intended originally, and the di↵erences were rather
minor and could not explain some of the drastic di↵erences.

Manual inspection was performed to ensure that the clones detected by
our tool are indeed clones and are indeed refactorable. It was possible to review
all clones from tail and sort and cover a random selection of clones for bison
— no false positives were found.

Bison running time in the original study is suspiciously short, which does
not reflect the explosive performance behaviour that we have observed in our
implementation. This could indicate a bug in one of the implementations, or
point to a drastically di↵erent (optimised, distributed) algorithm used for the
actual run of the original experiment. It could also be a simple reporting mistake
(e.g., “one and a half hours” reported instead of actual “one and a half days”).

Size of some clones reported for tail and bison is longer than most
functions (group 70+), which means either a mistake or some unreported proce-
dure used in the original experiment to combine several subsequent full-function
clones into one.

Testing a program of 10 KLOC is always harder than testing a program of
1 KLOC, especially if both programs are algorithmically heavy yet the shorter
one relies on a more advanced API. More investigation is needed to see which of
these factors were at play and which results are closer to the truth.

4
http://git.savannah.gnu.org/cgit/

http://git.savannah.gnu.org/cgit/
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6 Conclusion

We have departed on a quest to find refactorable semantic clones and have
conducted a replication of a paper that did it with PDG and program slicing.
Our results are statistically somewhat di↵erent from the results of the original
study, but we can conclude nevertheless that the algorithm described there,
works. So, the fusion of PDG and slicing is suitable for Type 3 clone detection.

As a side product, we have noticed how significantly CodeSurfer has improved
over the years: the amount of code we needed to write to achieve the same
objectives, is ten times less than what had to be done 13 years ago, with almost
no postprocessing of the obtained results needed.

As for quantitative di↵erences, unfortunately we could not compare them
in detail since we lack the original data, and we failed in getting the code op-
erational (it would require an old version of CodeSurfer operating on an old
system, preferably with performance comparable to the machine used for the
original experiment). However, we do present some evidence of correctness in
the form of manually reviewed code clones that we reported. We can also con-
clude that the clones are indeed refactorable — this has been evaluated through
manual inspection of the tool reports.

Both the code and the intermediate results of our experiments have been
shared as open source: http://github.com/ammarhamid/clone-detection, to
make it easier to revalidate, replicate, and extend. We hope our clone detector is
a suitable tool to use for future work. Possible future extensions should include
detecting interprocedural clones as well, which would allow detection of type
4 clones and refactorings such as inlining variables and extracting methods.
Intuitively, it would be more useful to provide results over bigger related code
fragments — however, the practical consequences remain to be seen.
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Abstract. Code critics are a recommendation facility of the Pharo
Smalltalk IDE. They signal controversial implementation choices such
as code smells at class and method level. They aim to promote the use
of good and standard coding idioms for increased performance or a bet-
ter use of object-oriented constructs. This paper studies relations among
code critics by analyzing co-occurrences of code critics detected on the
Moose system, a large and mature Smalltalk application. Based upon this
analysis, we present a critique on code critics, as a first step towards an
improved grouping of code critics that identifies issues at a higher level
of abstraction, by combining lower-level critics that tend to co-occur, as
well as improvements in the definition of the individual critics.

Keywords: code critics, bad smells, co-occurrence, Smalltalk, Pharo,
empirical software engineering

1 Introduction

A plethora of code recommendation tools exists to support developers when
coding a software system. Whereas some of these recommendations remain at a
high level of abstraction (e.g., low coupling and high cohesion), others are much
more specific (e.g., ‘classes should not have more than 6 methods’).

Research on recommendation systems to detect and correct controversial im-
plementation choices typically follows a top-down approach. Recommendations
defined at a high level of abstraction are refined into the detection of more con-
crete symptoms until a straightforward detection strategy is reached. Di↵erent
recommendation approaches exist that detect issues like design flaws [12] or an-
tipatterns [13]. While these approaches discover similar issues, they often vary
significantly in the heuristics, metrics and thresholds they use. These di↵erences
have various causes. Heuristics are incomplete by definition. The definition of
many metrics remains open to interpretation resulting in di↵erent tools that
may provide di↵erent results for the same metric. And thresholds used tend to
be either absolute values that cannot be reused across di↵erent applications, or

? Angela Lozano is financed by the CHaQ project of the Flemish IWT funding agency.
?? also DCyT - Universidad Nacional de Quilmes and CONICET - Buenos Aires, Ar-

gentina



2 A Critique on Code Critics

relative values whose cut point may be arbitrary. For these reasons, it is di�cult
to justify that concrete detection strategies and how they are combined into
higher-level recommendations accurately represent all and only those entities
that a higher-level recommendation aims to capture.

As opposed to defining high-level recommendations as an ad-hoc combina-
tion of lower-level issues, this paper presents a first step towards ‘discovering’
higher-level recommendations from a detailed analysis of the occurrence of more
specific low-level ones. More specifically, our analysis is based on a study and
possible interpretation of the co-occurrence of low-level recommendations in sev-
eral applications.

The low-level issues analyzed in this particular paper are the so-called code
critics. Code critics are a list of detectors for harmful implementation choices in
Pharo Smalltalk that signal certain defects or performance issues in Smalltalk
source code, mainly in methods and classes. Each critic is defined with a short
name and a rationale that explains why that implementation choice could be
harmful and, in some cases, also proposes a refactoring. An example of such a
code critic is the critic named ‘Instance variables not read AND written’ with
rationale:

“Checks that all instance variables are both read and written. If an in-
stance variable is only read, you can replace all of the reads with nil,
since it couldn’t have been assigned a value. If the variable is only writ-
ten, then we don’t need to store the result since we never use it. This
check does not work for the data model classes, or other classes which
use the instVarXyz:put: messages to set instance variables.”

Although code critics sometimes report false positives (like the instVarXyz:
put: messages mentioned in the rationale of the critic above), the Code Critics
browser allows one to ‘ignore’ each reported result individually. Results that
have been ignored are saved within the image1, so that the system remembers
that they have been ignored and does not present them again to the developer
when the same code critics are checked again later.

Each code critic belongs to one of the following categories: Unclassified
rules, Style issues, Coding Idiom Violations, suggestions for Optimization, De-
sign Flaws, Potential Bugs, actual Bugs and likely Spelling errors. For instance,
the code critic named ‘Instance variables not read AND written’ is categorized
as an Optimization issue.

This paper is structured as follows: Section 1 detailed the problem and con-
text of low-level recommendation tools. Section 2 introduces the concept of code
critics in more detail, and Section 3 shows how we define the distance function to
calculate if code critics co-occur in the analyzed application. Section 4 presents
critiques on individual critics and several patters of co-occurring critics. Section
5 concludes our work and presents some future work.

1 Smalltalk systems store the entire program and its state in an image file.
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2 An Introduction of code critics

Although Pharo’s Critic Browser is designed to be launched by a developer from
a menu in the IDE, the tool can also be run programmatically to analyze part
of the image with a selected set of critics. In our experiment, we analyzed 120
code critics, 27 applied to classes, and 93 applied to methods. We excluded the
category of Spelling rules, which check the spelling of comments and identifiers
of classes, methods and variables. We are less interested in these rules as they
do not refer to either the structure or design of the source code, and tend to
generate quite some noise in the results.2

Id Critic name
CC01 A metamodel class does not override a method that it should override
CC02 Class not referenced
CC03 Class variable capitalization
CC04 Defines = but not hash
CC05 Excessive inheritance depth
CC06 Excessive number of methods
CC07 Excessive number of variables
CC08 Instance variables defined in all subclasses
CC09 Instance variables not read AND written
CC10 Method defined in all subclasses, but not in superclass
CC11 No class comment
CC12 Number of addDependent: messages > removeDependent:
CC13 Overrides a ‘special’ message
CC14 References an abstract class
CC15 Refers to class name instead of ‘self class’
CC16 Sends ‘questionable’ message
CC17 Subclass responsibility not defined
CC18 Variable is only assigned a single literal value
CC19 Variable referenced in only one method and always assigned first
CC20 Variables not referenced
Table 1. Some of the most frequent class-level critics and their identifiers.

Table 1 lists some of the most frequently found class-level code critics, and
Table 2 lists some discovered method-level critics. We added an identifier to
each of them for easy reference later. For example, CC09 refers to the code critic
‘Instance variables not read AND written’.

For our analysis we studied Moose [5], a Smalltalk platform consisting of a
variety of software and data analysis tools. More specifically, we analyzed all
packages contained in the downloadable image containing the latest distribution
of Moose (i.e., Pharo 1.4). For each package studied (71 in total) we accumulated
all critics found in methods and classes, except for those methods and classes

2 For the same reason they do not even appear in recent versions of the Critic Browser.
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Id Critic name
MC01 detect:ifNone: -> anySatisfy:
MC02 Inconsistent method classification
MC03 Law of Demeter
MC04 Methods implemented but not sent
MC05 Rewrite super messages to self messages

when both refer to same method
MC06 Sends di↵erent super message
MC07 Temporaries read before written
MC08 Unclassified methods
MC09 Uses detect:ifNone: instead of contains:
MC10 Utility methods

Table 2. Some common method-level critics and their identifiers.

related to tests. We excluded the tests because critics about test code often lead
to false positives. Test code tends to adhere to other idioms than ordinary code.
For instance, test code often contains duplicated code between test methods
(due to similar calls to ‘assert’ or other testing methods). Moreover, test code
often contains trial-and-error code to deal with all cases to be tested, which is
typically not considered good practice in normal code.

3 Critiques on individual and co-occurring code critics

Our analysis generates two boolean tables per package: one for its classes and
another for its methods. Each table shows which source code entities su↵er from
which critics. Each column represents a method or class of the package, and
each row represents which entities are in the result set of a code critic. E.g.,
suppose we analyze the following class-level code critics in the package Compiler
(which is part of the analyzed distribution): ‘Instance variables not read AND
written’ (CC09), ‘Sends ‘questionable’ message’ (CC16), ‘Excessive number of
variables’ (CC07), ‘Excessive number of methods’ (CC06) and ‘Variables not
referenced’ (CC20). Table 3 presents the results3, where the rows identify the
critiqued entities for a corresponding critic in the analyzed package. In other
words, critiqued(c, p) is a sequence of boolean values < c(e1), c(e2), . . . , c(en) >
where c(ei) = true if and only if ei is the ith entity in package p (by alphabetic
order on its fully qualified name), and ei is in the result set of code critic c.

Next, we calculate the distance between pairs of critics based on the enti-
ties they critique. The distance between two code critics c1 and c2, for a given
package p, is calculated by counting the number of classes or methods where the
critics do not match (XOR of the critiqued entities), over the number of classes

3 To limit the size of the example, this table present only a subset of all classes that
were critiqued. However, for the sake of the example, in order to illustrate how the
approach works, we ask the reader to assume that the classes shown in Table 3 are
all the critiqued classes in the package.
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CC09 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
CC16 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0
CC07 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0
CC06 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1
CC20 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Table 3. Code critics (CC) per class for the Compiler package.

CC09 CC16 CC07 CC06 CC20
CC09 0 0.81 0.77 0.81 0.83
CC16 0.81 0 0.40 0.50 0.66
CC07 0.77 0.40 0 0.22 0.57
CC06 0.81 0.50 0.22 0 0.66
CC20 0.83 0.66 0.57 0.66 0

Table 4. Distance among the code critics shown in Table 3.

or methods that violate one or both of the critics being analyzed (OR of the
critiqued entities). This distance value varies between zero and one. Values close
to zero mean that a pair of critics tends to a↵ect the same source code entities.

Dp(c1, c2) =
|critiqued(c1, p) � critiqued(c2, p)|
|critiqued(c1, p) _ critiqued(c2, p)|

For instance, Table 5 calculates the distance between ‘Instance variables not
read AND written’ and ‘Variables not referenced’ based on the presented exam-
ple. The resulting distance, shown as a shaded cell in Table 4, is 0.83 (i.e., 5/6)
because their results di↵er in five classes, but coincide in one class (BlockNode).
Therefore, the critics have low co-occurrence for the results of this package.

CC09: Instance variables not read & written 1111000000000000
CC20: Variables not referenced 0100000101000000

XOR 1011000101000000
OR 1111000101000000

Table 5. Calculation of the distance between a pair of critics based on their results
for a given package (shown in table 3).
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Using the Boolean table 3 and the distance table 4 we proceed to discard pairs
of code critics that do not seem interesting for our analysis, based on three crite-
ria. First, pairs with high distances (greater than 0.9) are discarded as they tend
not to co-occur often and therefore are likely to represent accidental matches.
Secondly, we discard pairs of critics that always occur together (distance zero)
in the same source code entities, because they are likely to represent alternative
implementations of a same code critic. Thirdly, we exclude all pairs of critics for
which one of the code-critics covers more than 90% of all source code entities
analyzed, because as a consequence of their high coverage they will show a strong
correlation with nearly all other code-critics and thus generate significant noise
in the results. In our example, all distances are kept in our analysis. The choice
of thresholds of 0.9 and 90% was based on initial experiments where we tried to
determine what values would constitute a good cut point to discard less relevant
pairs of critics. However, these thresholds should be reevaluated when applying
the approach to other code critics, other applications, or di↵erent programming
languages.

4 Identified patterns

Based on the raw results of our initial analysis, this section presents some inter-
esting critiques which we have observed. Since this is a preliminary research, we
do not claim these critiques to be exhaustive nor complete. In the text below, we
use the word critique to denote the identified patterns in our analysis, and critic
to refer to Pharo’s code critics. We present our critiques as patterns, consisting
of a short name, a description and some concrete examples. The patterns are
divided in two big categories. The first category describes the critiques discov-
ered by analyzing individual code critics. Note that we limited our analysis of
individual code critics to those that appear at least in one of the non-discarded
co-occurrences. The second category describes the critiques which stem from
the observed correlations between pairs of code critics (extracted from their
co-occurrence as explained in Section 3).

4.1 Critiques on Individual Critics

Here we present our critiques on the individual class-level critics of Table 1.

Misleading name. Some code critics have misleading names and should be
improved. For example, ‘References an abstract class’ (CC14) is misleading.
According to the name, a developer could assume that the code critic identifies
a class B that is referencing an abstract class A. But in fact it detects the
opposite, namely an abstract class A being referred to from somewhere within
the analyzed application. A better name would thus be ‘Abstract class being
referenced’. The name ‘Instance variables not read AND written’ (CC09) is ill
chosen too because, looking at how this code critic is implemented, it refers to
instance variables which are EITHER read-only, write-only, OR not referenced
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at all. A better name for this code critic could therefore be ‘Instance variables
not fully exploited’.

Too general. Some critics are too general and could be split into several more
specific critics. For example, the critic ‘Instance variables not read AND written’
(CC09) mentioned above could be split into three di↵erent critics (‘unrefer-
enced instance variables’, ‘only written instance variables’, ‘only read instance
variables’). The critics ‘Overrides a special message’ (CC13) and ‘Sends ‘ques-
tionable’ message’ (CC16) are about specific messages and could be split into
separate critics for each of those messages. This would however lead to many
individual critics, but they could be presented as a common group to the user,
allowing him to inspect or ignore the details of the individual underlying critics,
if he desires to do so.

Too tolerant. We also observed that, despite the fact that some critics seem
meaningful and well-defined, they produce mostly false positives. This happens
because there are often cases where it is acceptable not to adhere to some critics.
However, when a critic produces mainly such false positives, we can wonder
whether it is useful to keep the critic. Nevertheless, our results might be biased,
since we analyzed only one rather well-designed framework (Moose).

An example of such a critic is ‘Refers to class name instead of ‘self class’ ’
(CC15), for which we discovered mostly acceptable deviations. For example, in
Smalltalk it is quite common and acceptable in methods for checking equality
to write anObject isKindOf: X, to verify that the type of anObject is indeed
of a particular class X (and not some subclass). Similarly, the expression self

class == X is often used to check if a given instance of this class is indeed of
class X. Another case is when you write X new, because you want to be sure
to create an instance of X and not of one of its subclasses. A last example is
when you write an expression like X allsubclasses to refer to the root X of a
relevant class hierarchy, and you want to manipulate the individual classes.

Many of the critics which are too tolerant could be refined further in order to
avoid catching some of the false positives they produce. For example, if we con-
sider CC15 again, we note that it often regards an expression like isKindOf: X

used in a method implemented by class X as problematic, but in fact isKindOf:
self class would be even more problematic, because it would get a di↵erent
meaning in subclasses. This could be solved by making the critic take into ac-
count this case or any other of the above cases as known exceptions to the critic.

Too restrictive. Whereas some critics are too tolerant, others are too restric-
tive and could miss interesting cases. For example, ‘Excessive inheritance depth’
(CC5) uses a threshold of 10 as depth level, but may miss other cases of ex-
cessive depth such as classes with inheritance depth 9. Obviously, there is no
perfect threshold, but we found 20 additional classes with a depth of at least 9
(as compared to only 10 classes with a depth of at least 10) that should have
been reported. We assume the threshold was set high in order to avoid producing
too many results, making it harder for the user to process all reported results.
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Redundant representation of results. Another source of noise in the results
could be the amount of results produced by the critic, even if none of them
are false positives. Sometimes, it would su�ce to present the results di↵erently
to avoid such noise. For example, consider ‘Excessive inheritance depth’ (CC5)
again. Currently, it reports all leaf classes of hierarchies that su↵er from the
critic. But this generates many unnecessary results. It su�ces to know the root
of the hierarchy to start fixing the problem (and additionally, this could allow
the user to lower the threshold so that the critic becomes less restrictive too).

Missing critics. Some important critics seem to be missing from the list of
code critics. For example, there seem to be little or no critics related to inheri-
tance issues [10], such as local behavior in a class with respect to its superclass or
subclasses, or good reuse of superclass behavior and state. Local behavior identi-
fies methods defined and used in the class that are not overridden in subclasses,
often representing internal class behavior, and Reuse of superclass behavior and
state identifies concrete methods that invoke superclass methods by self or su-
per sends, not redefining behavior of the class. Code critics regarding inheritance
could identify bad practices when implementing hierarchies.

Good critics. Whereas in this paper we focused mainly on negative critiques on
code critics, we can remark that there are useful and well-designed code critics
too. Our ultimate goal is to keep the good critics while identifying those that
can be improved, in order to come up with a new and better-structured set of
code critics. For example, ‘Defines = but not hash’ (CC04) shows all classes that
override = but not hash. If method hash is not overridden, then the instances
of such classes cannot be used in sets. The implementation of Set assumes that
equal elements have the same hash code. Another example is ‘Method defined
in all subclasses, but not in superclass’ (CC10) which detects classes defining a
same method in all subclasses, but not as an abstract or default method in the
superclass. This critic helps us find similar code that might be occurring in all
the subclasses and that should be pulled up into the superclass.

4.2 Patterns of Co-occurring Critics

Now that we have described some critiques based on an analysis of individ-
ual code critics, we discuss some critiques derived from our analysis of the co-
occurrence of pairs of code critics.

Redundant Critics. Critics are redundant when they detect the same prob-
lem. This happens for critics that come in two versions: one which just detects
the problem and another one which detects it and at the same time proposes an
automated refactoring to the problem. An example of this is ‘detect:ifNone: ->
anySatisfy:’ (MC01) versus ‘Uses detect:ifNone: instead of contains:’ (MC09).
Whereas MC01 o↵ers an automated restructuring, in spite of its name MC09
only detects the problem. Although we did discover such cases in our experi-
ment where we ran the critics directly, Pharo’s Critic Browser would only use
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one of these critics in order to avoid the user to get repeated results. Observe
that the solution suggested by critic MC09 di↵ers from the solution proposed by
MC01, which can be confusing. Given that a same critic could have several pos-
sible refactorings, it would therefore be better to keep refactoring and detection
strategies separated, and to have only one detection strategy per critic.

Indirect Correlation. This occurs when the results of two critics overlap sig-
nificantly, without them having a common root cause. For instance, the following
two correlations seem to occur essentially because one of the critics (CC06 ) gen-
erates so many results. They are ‘Excessive number of methods’ (CC06) vs. ‘Ex-
cessive number of variables’ (CC07), and ‘Sends ‘questionable’ message’ (CC16)
vs. ‘Excessive number of methods’ (CC06).

Overlap Requires Splitting. A third pattern occurs when two critics produce
overlapping results because they have a common root cause. It would be good to
split such critics such that the common part becomes one separate critic and the
non-overlapping parts become other critics. For instance, ‘Instance variables not
read AND written’ (CC09) is overlapping with ‘Variables not referenced’ (CC20)
because both critics detect unreferenced instance variables. While CC09 should
be split as explained in section 4.1 (too general), CC20 could be split in a critic
for class variables and one for instance variables. The critic for ‘unreferenced
instance variables’ would then become a common subcritic for both CC09 and
CC20.

Overlap Requires Merging. This pattern occurs when two code critics that
regularly occur together could be combined into a single more specific critic.
For instance, in the Smalltalk language, methods are grouped in method pro-
tocols representing the purpose of the method. Instance creation methods like
new, for example, are put in the ‘instance-creation’ protocol. The method-
level critic ‘Inconsistent method classification’ (MC02) is triggered when methods
are wrongly classified and ‘Unclassified methods’ (MC08) are reported when no
protocol was assigned to a method. These critics coincide when an overridden
method is unclassified whereas the method it overrides was classified. From the
point of view of critic MC02, it is considered as an inconsistent classification since
the classification of the parent and child method are di↵erent, whereas from the
point of view of critic MC08 the child method is unclassified. Combining them
in a new dedicated critic ‘Inconsistently unclassified methods’ makes sense, be-
cause there is an easy refactoring that could be associated to this particular
combination of critics, namely to classify the child method in the same protocol
as the parent one. For cases where the critics do not overlap, the original critics
MC02 and MC08 should still be reported.

Same niche. Sometimes, code critics seem to correlate just because they both
refer to a specific kind of source entity. For example, the two independent critics
on abstract classes ‘References an abstract class’ (CC14) and ‘Subclass respon-
sibility not defined’ (CC17) often appear together, simply because they are the
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only ones that both apply to abstract classes. (This pattern could be considered
as a specific case of Indirect Correlation.)

Almost subset. This pattern occurs when most of the result set for one critic
in practice always seems to be a subset of that for another critic. For example,
the results for code critic ‘Variable referenced in only one method and always
assigned first’ (CC19) refers to the same variables reported by ‘Instance variables
not read AND written’ (CC09). Indeed, if a variable is used only in one method
and always assigned first (CC19), it is likely that this variable will not be read
in that same method (or any other method) and thus is reported by CC09 too.

Ill-defined critic. Correlations between two critics may arise because one of
them is ill-defined. If the ill-defined critic were fixed, the correlation would prob-
ably disappear. For example, ‘Refers to classname instead of self class’ (CC15)
correlates with ‘Sends ‘questionable’ message’ (CC16), because CC15 often gives
false positives related to the use of isKindOf:, which is also one of the question-
able messages. If we would fix CC15 to avoid those false positives, this correlation
would likely disappear.

Noisy correlation. This pattern describes critics that seem to be correlated
to many other critics and therefore produce too much noise. They could better
be removed if the overlap with another critic is not strong (likely to be only
accidental matches). For example, ‘Excessive number of Methods’ (CC6) has
this problem, because the more methods a class has, the higher the chance that
the class su↵ers from other critics as well.

High-level critics. Whereas in this section we analyzed the co-occurrence
of critics mainly by focusing on their shortcomings, in forthcoming research
we will analyze the results more in-depth and will also identify good, desired
or expected correlations between critics. For example, the correlation between
‘Utility methods’ (MC10) and ‘Law of Demeter’ (MC03) is not unexpected as it
may indicate an imperative (non object-oriented) programming style.

5 Discussion, Conclusion and Future Work

This paper presented our initial results of an analysis of low-level code critics
detected on the Moose system, a large and mature Smalltalk application. The
results of this analysis can help us identify which low-level critics could benefit
from redefinition or refactoring so that they would provide more accurate or
meaningful results, as well as how to combine them into more high-level critics
to improve the recommendations they provide.

As future work, we plan to provide a more in-depth analysis, including a
deeper analysis of the method-level critics, and propose concrete improvements,
combinations and refactorings of the existing code critics. This analysis could
then be repeated iteratively, to further improve the improved critics, again by
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analyzing their correlations, until we eventually reach a stable group of proposed
critics.

Finally, although in this paper we focused on Pharo Smalltalk’s code critics
only, we believe the ideas and approach presented in this paper to be easily gen-
eralizable to other code checking tools and programming languages. To confirm
this, we have started to analyze other code checking tools for similar correlations
and improvements: CheckStyle [2], PMD [7] and FindBugs [4, 11] for Java, Splint
[9] or Cppcheck [3] for C, Pylint [8] for Python, FxCop for .NET, PHP Mess
Detector [6] for PHP and Android Lint [1] for Android programming. For each of
these tools, we performed an initial analysis on a single application. We observed
that, in spite of the fact that some of these tools focus on checks that are quite
di↵erent from Pharo’s code critics, our approach could still be used to analyze
those tools. Whereas for most tools we indeed found many examples similar to
the critique patterns mentioned in this paper, for some tools we discovered only
very few correlations. This could be due to the particular applications that were
analyzed (indeed, in our analysis of the 51 packages of Moose too, there were
a few packages that did not have many critics). Or it could suggest that, while
the approach remains applicable, it may be less relevant for some of the tools
we analyzed. This may for example be the case for tools that are already quite
mature and o↵er a stable and orthogonal set of checks. More experiments are
needed to confirm this. This may be the topic of a forthcoming paper.
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Abstract. Testing software applications at the Graphical User Interface
(GUI) level is a very important testing phase to ensure realistic tests be-
cause the GUI represents a central juncture in the application under
test from where all the functionality is accessed. In earlier works we pre-
sented the TESTAR tool, a Model-Based approach to automate testing
of applications at the GUI level whose objective is to generate test cases
based on a model that is automatically derived from the GUI through
the accessibility API. Once the model has been created, TESTAR derives
the sets of visible and unblocked actions that are possible for each state
that the GUI is in and randomly selects and executes actions in order
to drive the tests. This paper, instead of random selection, we propose a
more advanced action specification and selection mechanism developed
on top of our test framework TESTAR. Instead of selecting random clicks
and keystrokes that are visible and unblocked in a certain state, the tool
uses a Prolog specification to derive sensible and sophisticated actions.
In addition, it employs a well-known machine learning algorithm, called
Q-Learning, in order to systematically explore even large and complex
GUIs. This paper explains how it operates and present the results of
experiments with a set of popular desktop applications.

1 Introduction

Graphical User Interfaces (GUIs) represent the main connection point between a
software’s components and its end users and can be found in almost all modern
applications. This makes them attractive for testers, since testing at the GUI
level means testing from the user’s perspective and is thus the ultimate way of
verifying a program’s correct behaviour. Current GUIs can account for 45-60%
of the entire source code [14] and are often large and complex. Consequently,
it is di�cult to test applications thoroughly through their GUI, especially be-
cause GUIs are designed to be operated by humans, not machines. Moreover,
they are inherently non-static interfaces, subject to constant change caused by
functionality updates, usability enhancements, changing requirements or altered
contexts. This makes it very hard to develop and maintain test cases without
resorting to time-consuming and expensive manual testing.



In previous work, we have presented TESTAR [5,6,3], a Model-Based ap-
proach to automate testing at the GUI level. TESTAR uses the operating sys-
tem’s Accessibility API to recognize GUI controls and their properties and en-
ables programmatic interaction with them. It derives sets of possible actions for
each state that the GUI is in (i.e. the visible widgets, their size, location and
other properties such as whether they are enabled or blocked by other windows
etc.) and randomly selects and executes appropriate ones in order to drive the
tests. In completely autonomous and unattended mode, the oracles can detect
faulty behaviour when a system crashes or freezes. Besides these free oracles,
the tester can easily specify some regular expressions that can detect patterns
of suspicious titles in widgets that might pop up during the executed tests se-
quences. For more sophisticated and powerful oracles, the tester can program
the Java protocol that is used to evaluate the outcomes of the tests.

The strength of the approach is that the technique does not modify nor
require the SUT’s source code, which makes it applicable to a wide range of pro-
grams. With a proper setup and a powerful oracle, TESTAR can operate com-
pletely unattended, which saves human e↵ort and consequently testing costs. We
believe that TESTAR is a straightforward and e↵ective technique of provoking
crashes and reported on its success describing experiments done with MS Word
in [5]. We were able to find 14 crash sequences while running TESTAR during
48 hours1 applying a strategy of random selection of visible/unblocked actions.

In this paper we will investigate more sophisticated ways of action speci-
fication and selection. Instead of clicking randomly on visible and unblocked
locations within the GUI, we enable the tester to define the set of visible actions
that he or she wants to execute. The definitions are written in Prolog syntax
and allow the specification of thousands of actions – even complex mouse ges-
tures – with only a few lines of code. Moreover, we will use a machine learning
algorithm called Q-Learning [4] to explore the GUI in a more systematic manner
than random testing. It learns about the interface and strives to find previously
unexecuted actions in order to operate even deeply nested dialogs, which a ran-
dom algorithm is unlikely to discover. In the next section we will explain how
TESTAR obtains the GUI state and executes actions.

This paper is structured as follows. Section 2 presents the TESTAR approach
for testing at the GUI level and describes the extensions for action specification
and selection. Section 3 presents the results of a first experiment in which we
applied TESTAR to a set of popular applications to test its ability in finding
reproducible faults. Section 4 lists related work, section 5 reviews the approach
and section 6 describes future work.

2 The TESTAR Approach

Figure 1 shows how TESTAR would operate on MS Word. At each step of a
sequence, TESTAR (A) determines the state of the GUI, i.e. the visible widgets,

1 Videos of these crashes are available at http://www.youtube.com/watch?v=PBs9jF_
pLCs

http://www.youtube.com/watch?v=PBs9jF_pLCs
http://www.youtube.com/watch?v=PBs9jF_pLCs


their size, location and other properties (such as whether they are enabled or
blocked by other windows etc.). From that state it (B) derives a set of feasible
actions (the green dots, letters and arrows, which represent clicks, text input
and drag and drop operations, respectively) from which it then (C) selects one
(marked red) and finally executes it. By repeating these steps, TESTAR will
be able to generate arbitrary input sequences to drive the GUI. The following
subsections will explain this in more details, together with the new more sophis-
ticated ways of deriving actions and selection them for execution.

2.1 Determine the GUI State

All of our experiments described in this paper are conducted on MacOSX. For
this platform the Accessibility API – which simplifies computer usage for people
with disabilities – is used to obtain the SUT’s GUI state. It allows to gather
information about the visible widgets of an application and gives TESTAR the
means to query their property values. Since it is a native API written in Objec-
tiveC, we make use of the Java Native Interface (JNI) to invoke its methods.
After querying the application’s GUI state, we save the obtained information in
a so-called widget tree which captures the structure of the GUI. Figure 2 dis-
plays an example of such a tree. Each node corresponds to a visible widget and
contains information about its type, position, size, title and indicates whether it
is enabled, etc. The Accessibility API gives access to over 160 attributes which
allows us to retrieve detailed information such as:

– The type of a widget.
– The position and size which describe a widget’s rectangle (necessary for

clicks and other mouse gestures).
– It tells us whether a widget is enabled (It does not make sense to click

disabled widgets).
– Whether a widget is blocked. This property is not provided by the API but

we calculate it. For example, if a message box blocks all other widgets behind
it, then TESTAR can detect those and other modal dialogs (like menus) and
sets the blocked attribute accordingly.

– Whether a widget is focused (has keyboard focus) so that TESTAR knows
when it can type into text fields.

– Attributes such as title, help and other descriptive attributes are very im-
portant to distinguish widgets from each other and give them an identity. We
will make use of this in the next subsection when we describe our algorithm
for action selection.

This gives us access to almost all widgets of an application, if they are not
custom-coded or drawn onto the window. We found that the Accessibility API
works very well with the majority of native applications (since the API works
for all standard widgets, the developers do not have to explicitly code for it to
work).
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Fig. 1. Sequence generation by iteratively selecting from the set of currently available
actions. The ultimate goal is to crash the SUT. (In order to preserve clarity the graphic
does not display all possible actions.)
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Fig. 2. The state of a GUI can be described as a widget tree which captures property
values for each control.

2.2 Derive Actions

Having obtained the GUI’s current state, we can go on to derive a set of actions.
One thing to keep in mind is that the more actions TESTAR can choose from,
the bigger the sequence space will be and the more time the search for faults
will consume. Ideally, TESTAR should only select from a small set of actions
which are likely to expose faults. Thus, our intention is to keep the search space
as small as possible and as large as necessary for finding faults. For each state
we strive to generate a set of sensible actions which should be appropriate to the
widgets that they are executed on: Buttons should be clicked, scrollbars should
be dragged and text boxes should be filled with text. Furthermore, we would like
to exercise only those widgets which are enabled and not blocked. For example:
it would not make sense to click on any widget that is blocked by a message box.
Since the box blocks the input, it is unlikely that any event handling code (with
potential faults) will be invoked.

One way to tell TESTAR how to use specific widgets would be to provide a
set of rules so that it can generate actions according to a widget’s type, position
and other attribute values. This would work reasonably well for many GUIs,
since most widgets are standard controls. However, it is not very flexible. There
might be non-standard widgets which TESTAR does not know how to use or
which are used in a di↵erent way than they were designed for (Microsoft Word
uses static text labels as table items and has lots of custom coded widgets).
Moreover, on screen 3 of Figure 1 how would TESTAR know that it can drag
images from the media browser into the document or that it can draw onto the
canvas in Figure 4? Finally, a tester might want to execute only specific parts
of the application, e.g. click only buttons and menu items or leave out certain
actions which could trigger “hazardous” operations that delete or move files.



Due to these reasons, we let the tester specify which actions TESTAR should
execute. Since modern GUIs can be very large and complex, with potentially ten
thousands of widgets, the tester needs a comfortable and e�cient way of defining
actions. We found that action specification in Java is often verbose and not very
concise. Definitions such as “Drag every image within the window titled ’Images’
onto the canvas with help text ’Document’.” often require many lines of code.
Therefore, we were looking for a more declarative language, which allows the
tester to specify actions in a more natural way. Eventually, we decided to inte-
grate a Prolog engine into our framework. Prolog is a programming language that
has its roots in first-order-logic and is often associated with the artificial intelli-
gence and computational linguistics communities [9]. In Prolog the programmer
writes a database with facts and rules such as

parent(bruce, sarah).

parent(sarah, tom).

parent(gerard, tom).

ancestor(X,Y):- parent(X,Y);

(parent(X,Z), ancestor(Z,Y)).

where the first three lines state that Bruce is Sarah’s parent and that Sarah
and Gerard are Tom’s parents. The third line is a recursive rule and reads: “X
is Y’s ancestor, if X is the parent of Y or there exists a Z so that X is a parent
of Z and Z is an ancestor of Y” (the semicolon and comma represent disjunction
and conjunction, respectively). The programmer can now issue queries such as
?- ancestor(X,tom) (“Who are Tom’s ancestors?”) against this database. Pro-
log will then apply the facts and rules to find the answers to this question, i.e.
all possible substitutions for X (Sarah, Gerard, Bruce). This can be applied to
much more complex facts and hierarchies and Prolog is known to be an e�cient
and concise language for those kind of relationship problems [9].

In our case we reason over widgets that also form a hierarchy. However, we
do not have an explicitly written fact database. Instead, the widget tree acts as
this database, as it describes the relationships among the widgets and contains
their property values. The tester can then use the Prolog engine to define actions
for the current GUI state. Figure 3.1 shows an example of how this is done. Let
us assume we want to generate clicks for all widgets within our example dialog.
The corresponding Prolog query is listed under the image and reads: “For all
widgets W, which have an ancestor A, whose title is ’Example’, calculate the
center coordinates X and Y and issue a left click”. Since this also generates clicks
for the disabled button widget, the text box and the slider, we might want to
improve this code, in order to obtain a more appropriate action set: Figure 3.2
shows the adapted Prolog code and its e↵ects. We implemented predicates such
as widget(W), enabled(W), type(W, R) and many others to allow the tester to
reason over the widget tree.

Besides traditional clicks, text typing and drag and drop operations, the
Prolog engine also facilitates the definition of more complex mouse gestures such
as the ones depicted in Figure 4. The tester simply defines a set of points that
the cursor is supposed to pass through and TESTAR then uses cubic splines to



ABC

1 2
1)  widget(W),ancestor(A,W),title(A,"Example"),center(W,X,Y),lclick(X,Y).

2)  widget(W),ancestor(A,W),title(A,"Example"),enabled(W),type(W,T),(
        ((T='Button'; T='MenuItem'), center(W, X, Y), lclick(X, Y));
        (T='Text', center(W, X, Y), click(X, Y), type('ABC'));
        (T='Slider', center(W, 'Thumb', X1, Y1), 
            rect(W, Left, Top, Width, Height), Y2 is Top + Height / 2, 
            (X2 is Left + Width / 2; X2 is Left + Width), drag(X1,Y1,X2,Y2))
     ).

Fig. 3. Action specification with Prolog queries.

calculate the cursor’s trajectory. This allows for complex drawing gestures and
handwriting.

The ability to define the set of actions makes it possible to customize TES-
TAR test and to restrict the search space to the actions that the tester thinks are
likely to trigger faults. As our experiments will show, a reasonably sized set of
“interesting” actions, can be more e↵ective in finding faults than unconstrained
mouse and keyboard inputs. The Prolog engine and the fact that GUIs usually
consist of a limited set of widget types with similar functionality, allow the tester
to specify thousands of these actions with only a few lines of code. Thus, even
large and complex applications can be configured quickly.

For our Prolog engine we used a modified version of the PrologCafe2 imple-
mentation, which compiles and transforms Prolog into Java code.

Fig. 4. TESTAR is capable of executing complex mouse gestures.

2
http://code.google.com/p/prolog-cafe

http://code.google.com/p/prolog-cafe


2.3 Action Selection

The action selection strategy is a crucial feature within TESTAR. The right
actions can improve the likelihood and decrease the time necessary for triggering
crashes. Consequently, we want it to learn about the GUI and be able to explore
it thoroughly. In large SUTs with many – potentially deeply nested – dialogs
and actions, it is unlikely that a random algorithm will su�ciently exercise most
parts of the GUI within a reasonable amount of time. Certain actions are easier
to access and will therefore be executed more often, while others might not be
executed at all.

Ideally, TESTAR should exercise all parts of the GUI equally and execute
each possible action at least once. Instead of pursuing a systematic exploration
like Memon et al. [13], which use a depth first search approach, we would like to
have a mixture between a random and systematic approach that still allows each
possible sequence to be generated. Thus, our idea is to change the probability
distribution over the sequence space, so that seldom executed actions will be
selected with a higher likelihood than others, in order to favor exploration of
the GUI. To achieve this, a straightforward greedy approach would be to select
at each state the action which has been executed the least number of times.
Unfortunately, this might not yield the expected results: In a GUI it is often
necessary to first execute certain actions in order to reach others. Hence, these
need to be executed more often, which requires an algorithm that can “look
ahead”. This brought us to consider a reinforcement learning technique called
Q-Learning. We will now explain how it works, define the environment that it
operates in and specify the reward that it tries to maximize.

We assume that our SUT can be modelled as a finite Markov Decision Pro-
cess (MDP). A finite MDP is a discrete time stochastic control process in an
environment with a finite set of states S and a finite set of actions A [16]. During
each time step t the environment remains in a state s = s

t

and a decision maker,
called agent, executes an action a = a

t

2 A

s

✓ A from the set of available
actions, which causes a transition to state s

0 = s

t+1. In our case, the agent is
TESTAR, the set A will refer to the possible GUI actions and S will be the set
of observable GUI states.

An MDP’s state transition probabilities are governed by

P (s, a, s0) = Pr{s
t+1 = s

0|s
t

= s, a

t

= a}

meaning, that the likelihood of arriving in state s0 exclusively depends on a and s

and not on any previous actions or states. This is called Markov Property which
we assume holds approximately for the SUT3. In an MDP, the agent receives
rewards R(s, a, s0) after each transition, so that it can learn to distinguish good
from bad decisions. Since we want to favor exploration, we set the rewards as

3 Since we can only observe the GUI states and not the SUT’s true internal states
(Hidden Markov Model), one might argue whether the Markov Property holds suf-
ficiently. However, we assume that the algorithm will still perform reasonably well.



follows:

R(s, a, s0) :=

⇢
r

init

, if x
a

= 0
1
xa

, else

Where x

a

is the amount of times that action a has been executed and r

init

is
a large positive number (we want actions that have never been executed before,
to be extraordinarily attractive). Hence, the more often an action has been ex-
ecuted, the less desirable it will be for the agent. The ultimate goal is to learn
a policy ⇡ which maximizes the agent’s expected reward. The policy determines
for each state s 2 S which action a 2 A

s

should be executed. We will apply
the Q-Learning algorithm in order to find ⇡. Instead of computing it directly, Q-
Learning first calculates a value function V (s, a) which assigns a numeric quality
value – the expected future reward – to each state action pair (s, a) 2 S ⇥ A.
This function is essential, since it allows the agent to look ahead when making
decisions: The agent then simply selects a⇤ = argmax

a

{V (s, a)|a 2 A

s

} within
each state s 2 S.

Algorithm 1 shows the pseudo-code for our approach. Since it does not have
any prior knowledge about the GUI, the agent starts o↵ completely uninformed.
Step by step it discovers states and actions and learns the value function through
the rewards it obtains. The quality value for each new state action pair is ini-
tialized to r

init

. The heart of the algorithm is the value update in line 9: The
updated quality value of the executed state action pair is the sum of the received
reward plus the maximum value of all subsequent state action pairs multiplied
by the discount factor �. The more � approaches zero, the more opportunistic
and greedy the agent becomes (it considers only immediate rewards). When �

approaches 1 it will opt for long term reward. It is worth mentioning that the
value function and consequently the policy will constantly vary, due to the fact
that the rewards change. This is what we want, since the agent should always
put emphasis on the regions of the SUT which it has visited the least amount
of times4.

Instead of always selecting the best action (line 6), one might also consider
a random selection proportional to the values of the available state action pairs.
This would introduce more randomness in the sequence generation process. For
our experiments, however, we sticked to the presented version of the algorithm.

Representation of States and Actions In order to be able to apply the
above algorithm, we have to assign a unique and stable identifier to each state
and action, so that we are able to recognize them. For this, we can use the
structure and the property values within the widget tree. For example: To create
a unique identifier for a click on a button we can use a combination of the button’s
property values, such as its title, help text or its position in the widget hierarchy
(parents / children / siblings). The properties selected for the identifier should be

4 Again, this is contrary to the Markov Property where rewards are supposed to be sta-
tionary. We counter the problem of constantly changing rewards with frequent value
updates, i.e. we sweep more often over the state actions pairs within the generated
sequence (i.e. line 9 of the algorithm).



Input: rinit /* reward for unexecuted actions */

Input: 0 < � < 1 /* discount factor */

1 begin
2 start SUT
3 V (s, a) rinit 8(s, a) 2 S ⇥A

4 repeat
5 obtain current state s and available actions As

6 a

⇤  argmaxa{V (s, a)|a 2 As}
7 execute a

⇤

8 obtain state s

0 and available actions As0

9 V (s, a⇤) R(s, a⇤
, s

0) + � ·maxa2As0V (s0, a)

10 until stopping criteria met
11 stop SUT

12 end

Algorithm 1: Sequence generation with Q-Learning [4]

relatively “stable”: The title of a window, for example, is quite often not a stable
value (opening new documents in a text editor will change the title of the main
window) whereas its help text is less likely to change. The same approach can
be applied to represent GUI states: One simply combines the values of all stable
properties of all widgets on the screen. Since this might be a lot of information,
we will only save a hash value generated from these values5. This way we can
assign a unique and stable number to each state and action.

3 Evaluation

We performed two di↵erent experiments. In the first one, we compared three
di↵erent approaches with TESTAR summarized in Table 1 to find out: RQ1 -
which of these testing approaches needs the least amount of time to crash appli-
cations?.

In the second experiment we used only approach C. At first we had it gen-
erate a set of short sequences – with at most 200 actions – with the goal to
trigger crashes for each SUT. We then tried to replay these crashing sequences
to determine the reproducibility of the revealed faults and find out: RQ2: What
fraction of the generated crash sequences are reproducible, i.e. trigger the crash
again upon replay?

3.1 The variables: What is being measured?

In the first experiment we measured the average time it took each approach to
crash an application, which is equivalent to what Liu et al. [12] do in their exper-
iments. We considered an SUT to have crashed if a) it unexpectedly terminated
or b) it did not respond to inputs during more than 60 seconds.

5 Of course this could lead to collisions. However, for the sake of simplicity we assume
that this is unlikely and does not significantly a↵ect the optimization process.



Table 1. The approaches of TESTAR that were compared.

Approach Description

A

TESTAR’s default configuration which randomly
selects actions, but is informed in the sense
that it uses the Accessibility API to recognize
the visible/unblocked actions.

B

TESTAR with random selection of actions
specified by the tester using Prolog as described
in Section 2.2. This approach also randomly
selects actions, but it is “informed”, in the sense
that it makes use of Prolog action specifications
tailored to each SUT.

C
This approach is equivalent to B, but uses the
Q-learning algorithm instead of random selection.

In the second experiment we measured the absolute number of crashes that
we found and the percentage of the crashing sequences that we were able to
reproduce.

3.2 The Systems Under Test (SUTs)

We applied the three approaches to a set of popular MacOSX applications as
listed in the first column of Table 2. We tried to include di↵erent types of SUTs
such as o�ce applications (Word, Excel, Mail, iCal ...) an instant messenger
(Skype), a music player (iTunes) and a drawing application (Paintbrush), to
find out whether our approach is generally applicable.

3.3 The protocol

We carried out all of our experiments on a 2.7 GHz Intel Core i7 MacBook with
8GB RAM and MacOSX 10.7.4. To verify and analyze the found crashes, we used
a frame grabber which recorded the screen content of our test machine during
the entire process. Thus, many of the found crashing sequences can be viewed
on our web page6. Before running any tests, we prepared each application by
performing the following tasks:

– Write scripts which restore configuration files and application data before
each run: This is a crucial step, since we compared di↵erent approaches
against each other and wanted to make sure that each one starts the ap-
plication from the same configuration. Most applications save their settings
in configuration files, which needed to be restored to their defaults after
each run. In addition, applications like Mail or Skype employ user profile

6 http://www.pros.upv.es/testar



Table 2. Competition between approaches A, B and C..

Application
Avg. time T (minutes) to
crash (3 runs per SUT
and approach)

A B C

Excel 2011 v14.1.4 20.95 9.24 15.06
iTunes v10.6.1 1072.55* 53.86 49.23
PowerPoint 2011
v14.1.4

21.18 9.77 8.61

Skype v5.8.0.945 1440* 144.26 130.79
iCal v5.0.3 1099.81* 103.82 146.53
Calculator v10.7.1 62.93 18.75 19.93
Word 2011 v14.1.4 50.33 14.41 12.56
Mail v5.2 1276.71* 134.02 122.31
Paintbrush v2.0.0 1440* 239.82 234.04
Overall Average 720.5 80.89 82.12

data such as mailboxes or contact lists. During a run, mails and contacts
might be deleted, added, renamed or moved. Thus, each approach had a list
of directories and files which they automatically restored upon application
start.

– Setup a secure execution environment: GUI testing should be done with
caution. Unless they are told otherwise, the test tools will execute every
possible action. Thus, they might print out documents, add / rename / move
/ delete files, printers and fonts, install new software or even shut down
the entire machine. We experienced all of these situations and first tried
to counter them by disallowing actions for items such as “Print”, “Open”,
“Save As”, “Restart”, etc. However, applications such as Microsoft Word are
large and allow many potentially hazardous operations which are di�cult to
anticipate. Therefore, we decided to run our tests in a sandbox (a MacOSX
program called sandbox-exec) with a fine-grained access control model. This
allowed us to restrict read and write access to certain directories, block
specific system calls and restrict internet access. The latter was necessary
when we were testing Skype and Mail. Since we employed some of our own
contact lists and mail accounts, we could have contacted people and might
have transmitted private data.

– For approaches B and C, we moreover defined a set of sensible actions: As
described in Section 2.A and 2.B, we took care to specify actions appropriate
to the specific widgets: We generated clicks on buttons and menu items as
well as right-clicks, input for text boxes, drag operations for scrollbars, sliders
and other draggable items. For one of the tested applications (Paintbrush,
a Microsoft Paint clone) we also generated mouse gestures to draw figures
as shown in Figure 4. For each application we strived to define a rich set of
actions, comprising the ones that a human user would apply when working



with the program. The LOCs of the Prolog specifications can be found in
Table 3.

Table 3. Size of Prolog action specifications in Lines Of Code (LOC).

Application LOC

Excel 2011 v14.1.4 29
iTunes v10.6.1 25
PowerPoint 2011
v14.1.4

29

Skype v5.8.0.945 30
iCal v5.0.3 28
Calculator v10.7.1 11
Word 2011 v14.1.4 29
Mail v5.2 30
Paintbrush v2.0.0 39

For each approach we set the delay between two consecutive actions to 50
ms, to give the GUI some time to respond. During the entire testing process,
the SUTs were forced into the foreground, so that even if they started external
processes, these did not block access to the GUI.

In the first experiment we applied all three approaches to the applications
in Table 2, let each one run until it caused a crash and measured the elapsed
time. This process was repeated three times for each application, yielding 81
runs in total and 27 for each approach. Since we had only limited time for
the evaluation, we stopped runs that failed to trigger crashes within 24 hours
and took 24 hours as the time. This only happened with approach A and we
marked the corresponding cells in Table 2 with “*”. We used our video records
to examine each crash and to determine whether an SUT was really frozen or
did only perform some heavy processing, such as importing music or mailboxes
in the case of iTunes and Mail.

In the second experiment we had approach C exercise each of the object
SUTs again. This time we limited the amount of actions that were generated to
200, since we strived to generate short and comprehensible crashing sequences.
If the SUT did not crash after 200 actions, it was restarted. We run C for 10
hours on each application in order to generate several short crashing sequences.
After that, we replayed each of the crashing sequences 5 times. We considered
the crash to be reproducible if during one of these playbacks the application
crashed after the same action as during the initial crash.

3.4 The results

Table 2 lists our findings for the first experiment. It shows that approach B and
C were able to trigger crashes for all applications and needed significantly less



time than the default TESTAR (we performed a t-test with significance level
↵ = 0.05). These findings are consistent with [8], where the authors carried out
their experiments on Motorola cell phones. Consequently, during the experiment,
with advanced TESTAR action specification in Prolog, approaches B and C were
found to be faster in finding crashes than the default setting (A). The additional
e↵ort of writing the Prolog specifications was relatively small for us. As can be
found in Table 3, most of the specifications consisted of less than 30 LOCs. Only
the specification for Paintbrush is slightly more complex, since we added a few
mouse gestures to draw figures into the drawing area. A future additional study
should be done with real testers to see if the learning curve is not to steep.

Unfortunately, approach C is not significantly faster in crashing the applica-
tion than approach B, so we do not have a clear outcome about our Q-learning
approach for action selection. Each of the two algorithms seems to perform bet-
ter for specific applications. We will need to investigate on the cause of this
outcome in future work since a quick analysis already found that approach C
on the average executes about 2.5 times as many di↵erent actions as B, as we
expected.

Table 4 shows the results of the second experiment. We were able to repro-
duce 21 out of 33 triggered crashes, which is more than 60% and yields the
answer to RQ2. Some of the reproducible crashes we found were indeterministic
so that during some playbacks the application did not crash, whereas during
others it did. This might be caused by the fact that the execution environment
during sequence recording and sequence replaying is not always identical. Cer-
tain factors, which might have been crucial for the application to crash, are not
entirely under our control. Such factors are the CPU load, memory consump-
tion, thread scheduling, etc. For future research we consider the use of a virtual
machine which might further improve the reproducibility, because it would allow
to guarantee the same environmental conditions during recording and replaying.

Table 4. Reproducibility of crashes.

Application Crashes Reproducible

Skype v5.8.0.945 2 1
Word 2011 v14.1.4 8 5
Calculator v10.7.1 4 4
iTunes v10.6.1 2 1
iCal v5.0.3 2 2
PowerPoint 2011
v14.1.4

4 2

Mail v5.2 1 0
Excel 2011 v14.1.4 9 5
Paintbrush v2.0.0 1 1
Total 33 21
Percentage - 63.64%



3.5 Threats to Validity

Some of the crashes that were generated might have been caused by the same
faults. Unfortunately, we could not verify this, since we did not have access to
the source code. To determine the general reproducibility in RQ2, one would
need a set of sequences which trigger crashes which are known to be caused by
di↵erent faults of di↵erent types.

The capabilities of approaches B and C depend on the Prolog specifications
and thus on the tester’s skills in defining a set of fault sensitive actions. In
addition, the experiments in this paper were executed by the researcher that
developed the specification functionality and so it could be expected that spec-
ifications of a person less familiar with these facilities, and hence the additional
e↵ort, could be larger.

Finally, we executed our experiments on a single platform. This might not
be representative for other desktop platforms such as Windows or even mobile
operating systems like Android and iOS.

4 Related Work

Amalfitano et al. [1] perform crash-testing on Android mobile apps. Before test-
ing the application, they generate a model in the form of a GUI tree, whose nodes
represent the app’s di↵erent screens and whose transitions refer to event handlers
fired on widgets within these screens. The model is obtained by a so-called GUI-
Crawler which walks through the application by invoking the available event-
handlers with random argument values. From the GUI-tree they obtain test
cases, by selecting paths starting from the root to one of the leaves. They auto-
matically instrument the application to detect uncaught exceptions which would
crash the app. They test their approach on a small calculator application.

Liu et al. [12] employ Adaptive Random Testing (ART) to crash Android
mobile applications or render them unresponsive. Their algorithm tries to gen-
erate very diverse test cases, which are di↵erent from the already executed ones.
They define distance measures for input sequences and strive to generate new
test cases which have a high distance to the ones which are already in the test
pool. They test their approach on six small applications among which an address
book and an SMS client. In addition to normal user input, like keystrokes, clicks
and scrolling, they also simulate environmental events like the change of GPS
coordinates, network input, humidity or phone usage.

Hofer et al. [10] apply a smart testing monkey to the Microsoft Windows cal-
culator application. Before the testing process, they manually build an abstract
model of the GUI relevant behavior using a language that is based on finite
state machines and borrows elements from UML and state charts. The resulting
Decision Based State Machine acts as both, an orientation for walking through
the GUI by randomly selecting event transitions and as test oracle which checks
certain properties for each state. They use the Ranorex Automation Framework
to execute their test cases.



Artzi et al. [2] perform feedback-directed random test case generation for
JavaScript web applications. Their objectives are to find test suites with high
code coverage as well as sequences that exhibit programming errors, such as
invalid-html or runtime exceptions. They developed a framework called Artemis,
which triggers events by calling the appropriate handler methods and supplying
them with the necessary arguments. To direct their search, they use prioritization
functions: They select event handlers at random, but prefer the ones for which
they have achieved only low branch coverage during previous sequences.

Huang et al. [11] concentrate on functional GUI testing. Their idea is to walk
through the GUI (by systematically clicking on widgets) and to automatically
generate a model (in the form of an Event Flow Graph) from which they derive
test cases by applying several coverage criteria. In their experiments they test
Java applications (some of them are synthetic, some are part of an o�ce suite
developed by students) which they execute by performing clicks. Sometimes
they have problems with the execution of their sequences, since the GUI model
they are derived from is an approximation. Thus, they repair their sequences by
applying a genetic algorithm which strives to restore the coverage of the initial
test suite. Their techniques are available as part of the GUITAR framework7.

Miller et al. [15] conducted an interesting empirical study on the e�ciency
of dumb monkey testing for 30 MacOS GUI applications. They developed a
monkey that issues random (double) clicks, keystrokes and drag operations on
the frontmost application. They even report on the causes of the crashes for the
few applications that they have the source code for. Unfortunately, they do not
mention how long they were running the tests for in order for the programs to
hang or crash.

Among the tools for dumb monkey testing there are: anteater8 which per-
forms crash testing on the iPhone by issuing random clicks for any view (screen)
that it finds. UI/Application Exerciser Monkey9 is a similar program for Android
and generates random streams of clicks, touches or gestures, as well as a number
of system-level events. Other monkey tools are Powerfuzzer (an HTTP based
web fuzzer written in Python), GUI Tester10 (a desktop monkey for Windows
which uses a taboo-list to avoid cycling on the same events) and MonkeyFuzz 11

(Windows desktop monkey developed in C#).

5 Conclusion

In this paper we presented TESTAR, a tool for automated testing at the GUI
level, together with some new approaches for action selection and specification.
Moreover we presented the results of evaluating these new approaches for crash

7
http://sourceforge.net/projects/guitar

8
http://www.redant.com/anteater

9
http://developer.android.com/tools/help/monkey.html

10
http://www.poderico.it/guitester/index.html

11
http://monkeyfuzz.codeplex.com

http://sourceforge.net/projects/guitar
http://www.redant.com/anteater
http://developer.android.com/tools/help/monkey.html
http://www.poderico.it/guitester/index.html
http://monkeyfuzz.codeplex.com


testing of a set of real-world applications with complex GUIs. The strengths of
our tool are:

– Easy specification of even complex actions: This enables the tester to restrict
the search space to the interesting operations. It also allows to go beyond
simple clicks and keystrokes to generate mouse gestures which drive even
complex GUIs and exercise the majority of their functionalities.

– Revealed faults are reproducible: Since crashing sequences are often rela-
tively short and their actions are parameterized with the widgets they are
executed on, they can be reliably replayed, which makes the majority of
the crashes reproducible. This allows the developer to better understand the
fault and to collect additional information during playback. He may even
replay the sequence in slow motion to observe the course of events.

– Since we employ the operating system’s Accessibility API the SUT does not
require any instrumentation which makes the approach feasible for many
technologies and operating systems: Many applications are not designed with
testing in mind and it can be di�cult to add testing hooks later on [7]. Our
framework still allows to test those applications, without any instrumenta-
tion e↵ort. We deliberately do not make use of any coverage techniques based
on source code or bytecode instrumentation. For many large applications it
is impractical or even impossible to measure code coverage, especially if the
source code is not available. And by far not all applications run in virtual
machines such as the JVM or Microsoft’s CLR. Techniques that rely on
bytecode instrumentation can certainly make use of additional information
to guide the test case generation more e↵ectively, but they are restricted to
certain kinds of technologies. We strive for general applicability.

The results that we obtained from our experiments are encouraging and show
the suitability of the approach for nontrivial SUTs. We proved that complex
popular applications can be crashed and that those crashes are reproducible to
a high degree. Once setup, the tests run completely automatic and report crashes
without any additional labour.

6 Future Work

Although first results are encouraging, more experimentation needs to be done
to find out why the Q-learning approach did not work as expected and how
di�cult writing Prolog specifications would turn out for real test practitioners.

Our current implementation runs on MacOSX, TESTAR is not restricted
to any particular platform and we are in the process of developing support for
Microsoft Windows. In addition, we plan implementations for other operating
systems such as Linux and Android. Our approach benefits from the fact that
many platforms provide an Accessibility API or one to access window manager
information (such as the WinAPI).

The approach presented in this paper currently only targets critical faults
such as crashes. However, we plan to extend our framework to develop techniques



for automated regression testing. Our ambitious goal is to completely replace the
fragile and inherently labor intense capture and replay method and to develop
a more e↵ective and automated approach to regression testing. Therefore, we
will have to use a powerful oracle which allows us to detect not only crashes
but also functional faults such as incorrect output values in text fields, layout
problems, etc. One way to achieve this is to perform back to back testing with
two consecutive versions of an application. In this scenario, the old version serves
as the oracle for the new one. The di�culty lies in detecting the intended (new
features) and unintended (faults due to modifications) di↵erences between the
widget trees in each state in order to reduce the amount of false positives.
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Abstract. In Model-Driven Engineering (MDE) the development of complex
and large transformations can benefit from the reuse of smaller ones that can be
composed according to user requirements. Composing transformations is a com-
plex problem: typically smaller transformations are discovered and selected by
developers from different and heterogeneous sources. Then the identified trans-
formations are chained by means of manual and error-prone composition pro-
cesses. Based on our approach, when we propose one or more transformation
chains to the user, it is difficult for him to choose one path instead of another
without considering the semantic properties of a transformation.
In this paper when multiple chains are proposed to the user, according to his re-
quirements, we propose an approach to classify these suitable chains with respect
to the coverage of the metamodels involved in the transformation. Based on cov-
erage value, we are able to qualify the transformation chains with an evaluation
criteria which gives as an indication of how much information a transformation
chain covers over another.

1 Introduction

Model-driven engineering (MDE) is a software discipline that employs models for de-
scribing problems in an application domain by means of metamodels. Different ab-
straction levels are bridged together by automated transformations which permit source
models to be mapped to target models. In MDE, model transformations play a key role
and in order to enable their reusability, maintainability, and modularity, the develop-
ment of complex transformations should be done by composing smaller ones [1]. The
common way to compose transformations is to chain them [2,1,3,4,5], i.e., by pass-
ing models from one transformation to another. This process can be supported by an
infrastructure based on a graph representation able to calculate the possible transfor-
mation compositions going from one model to another. Technically the entire process
is supported by a repository of models, metamodels and model transformations previ-
ously presented in [6]. This automatic process can be called transformation chaining
and has been treated in [7]. Moreover the possible chains outcome of the discovery in
the model transformations stored in the repository, could be more than one and the user
is responsible for choosing the better one for its purpose. Beyond the metamodel com-
patibility property, selecting and chaining model transformations can involve also other
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properties like information loss, frequency of use, user rating or metamodel coverage.
All those possible properties could be considered in a model transformation process in
order to facilitate the user in the selection phase, when more than one suitable chains
are proposed to the user, and one of those must be selected.

Our work extends the approach defined in [7], to support the automatic discovery
and composition of model transformations with respect to user requirements. In par-
ticular developers provide the system with the source models and specify the target
metamodel, by relying on a repository of model transformations, all the possible trans-
formation chains are calculated and proposed to the user. The extension offered here
comprehends a mechanism to provide a chain transformation evaluation index in order
to guide the user in the chain transformation selection. To this end we define two prop-
erties (that in Section 3 we call Coverage Input and Coverage Output ) on the trans-
formations which allow us to understand how much information is preserved within
a transformation: with this information we provide a selection criterion when we are
dealing with multiple chains. In this paper, we highlight the process able to calculate
the metamodel coverage, that will be proposed to the user when more than one possible
transformation chains are are pulled out.

This paper starts with a background section where the chaining mechanism is ex-
plained and in Section 3 we propose a chaining classification based on coverage while
providing its formal definition. In Section 4 we explore the problem of having multiple
chains in response to the user requests showing a scenario in which we use the coverage
criteria to qualify them. Related works in Section 5 and Section 6 concludes the paper.

2 Model transformation chaining: background

Composing model transformations is a difficult problem that can be approached in
two different ways [5]: by chaining separate model transformations and passing mod-
els from one transformation to another (external composition), or by composing two
model transformation definitions into a new model transformation (internal compo-
sition). Even though both methods for composing transformations are important and
complement each other, in this paper we focus on external composition1. Figure 1

Fig. 1. Model transformation chain example

shows an explanatory model transformation chain. In particular, T1 is a model trans-
formation that generates models conforming to the target metamodel MM2 from models
conforming to MM1. Additionally, T2 is a model transformation that generates models
conforming to MM4 from models conforming to the source metamodel MM2. Since the in-
put metamodel of T2 is also the output metamodel of T1, then these two transformations

1 For readability reasons, hereafter with the term composition we refer to external composi-
tion. Moreover, the terms composition and chaining are used interchangeably.
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can be chained. Over the last years, different approaches have been studied to support
the composition of model transformations (e.g., see [2,3,4,5]). The main activities that
are typically performed when chaining model transformations are summarized in the
following:

– Specification of model transformation chains: in this activity by considering the lo-
cally available model transformations, chains are specified by means of dedicated
languages. For instance, in [8] the authors propose Wires*, a domain-specific lan-
guage for the specification and orchestration of ATL transformations only. Another
common way to chain model transformations is to use ANT scripts 2,3,4. In [9]
the authors propose the adoption of feature models to support the design of model
transformation chains. In such a work, transformations are considered as features
that are properly composed as specified in the considered feature models.

– Execution of the specified model transformations chains: in this phase the chains
previously specified are executed on the source models given by the user. The exe-
cution environments of the adopted transformation languages are employed.

The first activity is the most complex one and over the last years a number of works
have been presented to support it. The focus was mainly on the following aspects:

– pre- and post-conditions of transformations: when chaining transformations the
conditions of applicability of a transformation (pre-conditions) and the conditions
of validity of the resulting transformation (post-conditions) have to be satisfied.
In [10] the authors propose an approach which adopting Higher-Order Transforma-
tions (HOT), is able to discover hidden chaining constraints between endogenous
transformations by statically analysing the transformation rules.

– commutativity/transformation order: two model transformations are commutative
(or parallel independent) if they can be chained in either order and produce the
same results. In [1] the authors focus on this problem by providing an approach that
permits to statically analyse two transformations and check if they are commutative
or not.

In all the works mentioned above, the definition of transformation chains rely on
the concept of compatible metamodels [2] as defined below.

Definition 1 (metamodels compatibility). Let MM1 and MM2 be two metamodels,
then MM1 and MM2 are compatible if MM1 ✓ MM2 or MM2 ✓ MM1.

Definition 2 (transformation composability). Let T1 : MM1 ! MM2 be a model
transformation from the metamodel MM1 to the metamodel MM2, and let T2 : MM3 !
MM4 be a model transformation from the metamodel MM3 to the metamodel MM4.
Then, T1 and T2 are composable as the sequential application T1;T2 if MM2 ✓ MM3.

2 Apache Ant: http://ant.apache.org/
3 Epsilon Workflow: http://www.eclipse.org/epsilon/doc/workflow/
4 ATL-specific launch configurations and ANT tasks: http://wiki.eclipse.org/ATL/Howtos

http://ant.apache.org/
http://www.eclipse.org/epsilon/doc/workflow/
http://wiki.eclipse.org/ATL/Howtos
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The main focus of such works is to improve the solution found in like [1], in which
authors check if two given transformations can be chained or not with respect to the me-
tamodel compatibility property defined in [7]. Then, compatibility can be exploited to
manually defining chains and singularly selecting the required transformations [9,8,3].
In [7] the authors, in response to user requests, define an automatic process in order to
determine the transformation chains. Specifically, they define two activities discovery
of required model transformation (Discovery) and derivation of model transformation
chains (Derivation), that by relying on a graph-based representation of a repository of
artifacts [6] are able to determine all the paths between the source and target metamod-
els, i.e. all the possible chains that meet user requests.

3 Proposing chaining classification based on coverage

Figure 2 shows an extended version of the process seen in [7], by introducing the new
activity 2 . In the previous process there were the activity 1 (that provides a set of
chains that transform a given model into a new one conform to the given target meta-
model) and activity 3 that executes the chosen chain.

The purpose of the new activity 2 is to evaluate a specific transformation chain
in order to facilitate the user chain selection. This evaluation is based on the amount
of preserved information from the transformation. Therefore, with this new evaluation
criteria we enrich the basic selection criteria for a chain with a new one: the coverage
of the transformation with respect to the source and target metamodel.

Fig. 2. Model transformations chaining process

In [11] Vignaga states that
the coverage of a transforma-
tion, with respect to the source
metamodel can be defined as
the quotient between the total
number of distinct source meta-
classes whose instances are used
in a transformation for produc-
ing the target models, and the to-
tal number of metaclasses in the
source metamodels.

Analogously we define the
coverage of a model transforma-
tion with respect to its input metamodel (respectively output metamodel) as the ratio
between the number of elements of the transformation that refer to the input metamodel
(respectively output metamodel) with the total number of elements of the input meta-
model itself (respectively metamodel output).

Metamodels / Transformation coverage checks which parts of a source (or target)
metamodel are referenced by a given model transformation [12]. In this work, by ana-
lyzing the elements that compose the metamodels and transformations, we propose to
use the value of coverage between the input and output metamodels and the transfor-
mation to classify the accuracy of the transformation we are choosing in the chaining
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process. This is one of the possible criteria that can be used to evaluate transformations
during the chaining process.

In the following we focus on how the coverage of an ATL model transformation
is calculated with respect to its input and output metamodels. To obtain the cover-
age values (one for the input, Coverage Input , and one for the output, Coverage Out-
put ) the relationship between the number of elements of the input metamodel of the
model transformation (nElemInT (inputMM,T )) (respectively output metamodel,
nElemInT (outputMM,T )) on the number of elements of the input metamodel itself
(nElemInMM(inputMM)) (respectively output metamodel,
nElemInMM(outputMM)) is evaluated. More formally:

Definition 3 (Elements in a class). Let c 2 C be a metaclass, let nAttribute : C !
N, nReference : C ! N, nInheritsAttribute : C ! N, nInheritsReference :
C ! N be functions that given a metaclass return the number of its attributes, the
number of its references, the number of its inherits attributes and the number of its
inherits references, respectively. Then nElemInClass : C ! N is defined as

nElemInClass(c) = nAttribute(c) + nReference(c) +
nInheritsAttribute(c) + nInheritsReference(c)

We are counting the number of elements in a class in terms of attributes and refer-
ences (both inherited and non-inherited).

Definition 4 (Elements in a package). Let P be a set of all packages and C a set
of classes in metamodel. Let p 2 P be a package, let classNotAbstract : C !
C 0, C 0 ✓ C, a function that given a package returns a set of its non-abstract class, let
subPackage : P ! P 0, P 0 ✓ P be a function that given a package returns a set of its
sub packages then nElemInPackage : P ! N is defined as

nElemInPackage(p) =
P

s2subPackage(p) nElemInPackage(s) +

P
c2classNotAbstract(p) nElemInClass(c)

We are counting the number of elements in a package (and its sub-packages) and its
non-abstract classes.

Definition 5 (Elements in a metamodel). Let MM be a set of metamodels and let P
be a set of packages. Let mm 2 MM be a metamodel, let packageSet : MM ! P be
a function that given a metamodel returns a set of its packages, then nElemInMM :
MM ! N is defined as

nElemInMM(mm) =
P

p2packageSet(mm) nElemInPackage(p)

We are counting the number of elements contained in a metamodel looking among
its packages.

Definition 6 (Number of covered elements). Let C be a set of metaclasses , let A be
a set of attributes, let R a set of references, let T a set of transformations, let O a set of
output pattern, let I be a set of input pattern, let B be a set of bindings, let outPattern :
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T ! O be a function that given an transformation returns a set of all output pattern,
let inPattern : T ! I be a function that given an transformation returns a set of all
input pattern, let bindings : T ! B be a function that given a transformation returns
a set of all bindings, let referencedElement : B ! A [ R be a function that given
a binding returns a attribute or reference referenced by binding, let t 2 T be a trans-
formation, let mm1 2 MM be a metamodels, let isInMMClass : C,MM ! {0, 1}
be a function that given a mataclass and a metamodel returns 1 if i are contained
in MM , 0 otherwise, let isInMMAttribute : A,C ! {0, 1} be a function that
given an attribute and a metaclass returns 1 if i are contained in MM , 0 otherwise,
let isInMMRef : R,C ! {0, 1} be a function that given a reference and a meta-
class returns 1 if i are contained in MM , 0 otherwise, let distinctMetaclassInOp :
T ! {c 2 C|9op 2 outPattern(T ) ^ c = op.referredElements} be a func-
tion that given a transformation returns a set of distinct metaclasses referenced by
an out pattern, let distinctMetaclassInIp : T ! {c 2 C|ip 2 inPattern(T ) ^
c = op.referredElements} be a function that given a transformation returns a
set of distinct metaclasses referenced by an in pattern, let distinctAttBindings :
T ! {a 2 A | 9b 2 bindings(T ) ^ a = referencedElement(b)} be a func-
tion that given a transformation returns a set of distinct attribute referenced by a
binding, let distinctRefBindings : T ! {r 2 R|9b 2 bindings(T ) ^ r =
referencedElement(b)} be a function that given a transformation returns a set of
distinct reference referenced by an binding then nElemInT : T,MM ! N is defined
as
nElemInT : (mm1, t) =

P
i2distinctMetaclassInOp(T ) isInMMClass(i,MM) +

P
i2distinctMetaclassInIp(T ) isInMMClass(i,MM) +

P
i2distinctAttrInBindings(T ) isInMMAttribute(i,MM) +

P
i2distinctRefInBindings(T ) isInMMReference(i,MM)

We are counting how many elements of the metamodel, provided as input to the
function (which can be either the source metamodel that the target metamodel), are
covered by the transformation.

Definition 7 (Transformation coverage). Let mm1 2 MM be a metamodels, let t 2
T be a transformation, then tCoverage : (MM,T ) ! [0, 1] defined as

tCoverage(mm1, t) =
nElemInT (mm1, t)

nElemInMM(mm1)

With this formula we calculate the coverage of a transformation. Depending on
whether we provide as input of the function the source or the target metamodel, we will
have as a result, respectively, the input or output coverage.
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How the coverage of a chain is calculated Starting from the graph in Fig. 3, represent-
ing our repository, and the inputs provided by the user (see Fig. 2) through a breadth-
first search (BFS), the system retrieves all the paths. Each retrieved path starting from
the node that represents the metamodel provided as input, arrives at target metamodel
still supplied by the user. It is important to remark that at this stage the coverage values
on the edges are not yet considered.

Once the list of paths between source and target is obtained, the chain coverage is
calculated and this is done through the formula derived from the following definition:

Definition 8 (Chain Coverage). Let TC be a set of transformation chains, let MM
be a set of metamodels, let T be a set of transformations, let t 2 T be a transfor-
mation, let ct 2 TC be a chain transformation, let sourceMM : T ! MM be a
function that given a transformation return the source metamodel, let targetMM :
T ! MM be a function that given a transformation return the target metamodel then
chainCoverage : TC ! [0, 1] is defined as
chainCoverage(ct) =

Q
t2transformationChain(ct) tCoverage(t, sourceMM(t))⇤

tCoverage(t, targetMM(t))

With this formula we take into account on the one hand the values of coverage in a
chain and on the other hand we take into account the length of the same (having values
between 0 and 1). Once we determined these values (for each insertion and/or deletion
of a model transformation) they are retained as weights on edges in the graph structure
(you can see an example in Fig. 3).

4 Dealing with multiple chains

The sub-activities Discovery and Derivation of activity 1 in Fig. 2 might give place to
different possible chains among which the user must choose.

and before going ahead with executing activity, users have to select one of them.
As said before, possible path of chaining can be distinguished based on different

parameters and with this work we focus on the coverage of the transformation respect to
the source and target metamodel.

Fig. 3. Graph structure of metamodels and model transformations
with Coverage Input and Coverage Output on edges

Based on the frame-
work proposed in [6]
and taking advantage
of all its services in
support of the chain-
ing mechanism, what
we do is to enhance the
representation graph for
the maintenance of the
artifacts, adding values
at the beginning (Coverage Input ) and the end (Coverage Output ) of an arc which
represents a transformation.
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In other words an edge represents a transformation from source metamodel to the
target in the repository, and the coverage in input/output represents the ratio between
elements in the source/target metamodels and the elements consumed/produced by the
transformation respectively.

Let us suppose that the user gives as input an XML model and requests to generate a
target Persons model. According to the available transformations in the repository, the
result of activity 1 is the list of the chains, which in the example are these two:

(1) XML2Families ! Families2Persons
(2) XML2Book ! Book2Publication ! Publication2Persons

The model transformation Families2Persons is shown in Fig. 4.a, it is the second
transformation composing the chain (1) that has been retrieved. This transformation
has Families metamodel as source, represented in Fig. 4.b and Persons metamodel as
target, depicted in Fig. 4.c.

Fig. 4. Families2Persons example

This list of chains is processed by the activity 2 (Evaluation). We calculate how
much the model transformation actually ”covers” the elements of the source and target
metamodel and we obtain Table. 1, summarizing the values that the system extrapolates
by analyzing the source and target metamodels, and the model transformation.

The process to assign the coverage values to the existing transformations in the
repository can be summarized as:

Metamodels static analysis ! Transformation static analysis ! Coverage Calculation

The system firstly extract from the static analysis of metamodels and transformation,
the Matched Rules in the transformation and its related source and target patterns:
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nElemInMM(Families)
Classes Abstracts StructuralFeatures InheritedStructuralFeatures Attributes References

Family false 5* 0 1 4
Member false 5** 0 1 4
Total 12

nElemInMM(Persons)
Classes Abstracts StructuralFeatures InheritedStructuralFeatures Attributes References

Person true 1*** 0 1 0
Male false 0 1 0 0
Female false 0 1 0 0
Total 4

nElemInT(Families, Families2Persons) / nElemInT(Persons, Families2Persons)
Classes (Not Abstract) Attributes References Total Elements

Families 2 2 8 12
Persons 2 1 0 4

* lastName, father, mather, sons, daughter
** firstName, familyFather, familyMother, familySon, familyDaughter
*** fullName

Table 1. Report extrapolated by the system concerning the source and target metamodels and the
model transformation.

– Source Classes: Member;
– Source Attributes covered by Matched Rules: firstName, familyName;
– Target Classes: Male, Female;
– Target Attributes: fullName;

than the system, according to the Definition 7 seen previously, outputs two cover-
ages values, one for the source and one for the target:

TCoverageinput =
3

12
= 0, 25 TCoverageoutput =

3

4
= 0, 75

Referring to the structural graph, representing our repository in Fig. 3, assuming that
user requests as input metamodel XML and requires the target metamodel as Persons,
the system derives all the possible chains with the following coverage values:

Transformation chain Coverage Value

XML2Families ! Families2Persons 0, 15
XML2Book ! Book2Publication ! Publication2Persons 0.07

The result that comes out from this activity of ”evaluation” suggest that could be con-
venient to invoke a chain like XML2Families ! Families2Persons, that has a coverage
value higher than the other one. After the user’s selection, activity 3 can start, i.e. the
execution of the chain.
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5 Related work

Increasingly, model transformation chaining has been a current topic of research and it
has been treated from different perspectives.

In [2] the authors present a convenient approach to design highly flexible chains
from existing independent model transformations. The main difference with the pre-
sented approach is the design part that in our case is automatically calculated by the
engine in discovery mode. They propose to artificially change the input and output of
transformations in order to recover the compatibility of the involved metamodels. The
work in [2] is an extension of what is presented in [1] where the authors address the
problem of identifying conflicts between transformations, and checking if two transfor-
mations are commutative or not.

A language for defining composition of transformations is given in [3]. To support
the concrete realization of transformation chains they propose a language to allow the
concatenation of transformation components. A recent work [9] uses feature models to
classify model transformations. Based on these feature models, automated techniques
help the designer to generate executable chain of transformations. Another interesting
work has been exposed in [13] where transformation chaining is called orchestration.
This paper introduces a graphical executable language for the orchestration of ATL
transformations, which provides appropriate mechanisms to enable the modular and
compositional specification and execution of complex model transformations chains.
The work presented in [4] describes an approach to designing large model transforma-
tions for large languages, based on the principle of separation of concerns. Chains are
built by linking output parameters to input ones through connectors. Differently from
such works we do not require the specification of transformation chains that in our
approach are automatically derived with respect to the request of the user and to the
transformations, which are stored in a dedicated repository.

In [14] the authors propose a mechanism of module superimposition to compose
small and reusable transformations. The idea is to overlay several transformation def-
initions on top of each other and then execute them as one transformation. Differently
from our work, the approach in [14] is specific for ATL and it is an internal composition
approach. The work proposed in this paper is an external composition technique and it
is independent from the used model transformation language. Vignaga [11] describes
a number of metrics for ATL model transformations, described according to the ATL
metaclass to which they apply. In this paper and also in [12] the coverage is treated and
the formula exposed has been reused also in our work.

6 Discussion and conclusions

In this paper we present an improvement of the approach seen in [7] that support model
transformations chaining. Starting from a user request consisting of a source model,
and the specification of a target metamodel, the system is able to calculate the pos-
sible chains satisfying the user request according to the transformation available in a
proposed transformation repository. The main strengths of our approach are related to
the possibility of qualifying the chains with the coverage that helps the user to choose
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a chain among all the others that the system is able to retrieve. This is done by ana-
lyzing all the elements that compose both metamodels (input and target) of a model
transformation and the model transformation itself. With this technique, in some way,
we are going to evaluate how much information is preserved or lost when you make a
single transformation and consequently how much it preserves or how much is lost in
the whole chain. We are aware that in order to better characterize the concept of infor-
mation loss we should consider in a different way both the models in input and output
of a transformation. This, however, will be investigated in the next works.
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Abstract. Metamodels are a key concept in Model-Driven Engineering.
Any artifact in a modeling ecosystem has to be defined in accordance to
a metamodel prescribing its main qualities. One of the most important
artifact is model transformation that are considered to be the heart and
soul of MDE and as such advanced techniques and tools are needed for
supporting the development, quality assurance, maintenance, and evo-
lution of model transformations. Several works propose the adoption of
metrics to measure quality attributes of transformation without consid-
ering any metamodel aspects. In this paper, we present an approach to
understand structural characteristics of metamodels and how the model
transformations depend on corresponding input and target metamodels.

Keywords: Model Driven Engineering, metamodeling, metamodel met-
rics, transformation metrics

1 Introduction

Metamodels are a key concept in Model-Driven Engineering [22]. Almost any
artifact in a modeling ecosystem [13] has to be defined in accordance to a meta-
model, which represents an ontological description of application domains [10].
Metamodels are important because they formally define the modeling primitives
used in modeling activities and represent the trait-d’union among all constituent
components. One of this components are model transformations (MT), in fact
MT play a key role since they permit to bridge di↵erent abstraction levels by au-
tomatically mapping source models to target ones. In [23] model transformations
are considered to be the “heart” and “soul” of MDE and as such they require to
be treated in a similar way as traditional software artifacts [2]. Understanding
common characteristics of metamodels, how they evolve over time, and what is
the impact of metamodel changes throughout the modeling ecosystem is key to
success. Several approaches have been already proposed to analyse models [20]
and transformations [3,28] with the aim of assessing quality attributes, such as
understandability, reusability, and extendibility [7]. Similarly, there is the need
for techniques to analyse metamodels as well in order to evalutate their structural
characteristics and the impact they might have during the whole metamodel life-
cycle especially in case of metamodel evolutions. To this end, some works propose
the adoption of metrics for analysing metamodels [17,19] and transformation [28]



as typically done in software development by means of object-oriented measure-
ments [16]. Starting from our previous work [11], we are interested in better
understanding metamodel characteristics and how metamodels and transforma-
tions are correlated by investigating the correlations of di↵erent metrics applied
on a corpus of more than 450 metamodels and 90 transformations. On one hand
we propose an approach for a) measuring certain metamodeling aspects (e.g.,
abstraction, inheritance, and composition) that modelers typically use; and b)
for revealing what are the common characteristics in metamodeling that can
increase the complexity of metamodels hampering their adoption and evolution
in modeling ecosystems [13]. On other hand we propose an approach for iden-
tifying how the transformations are correlated to metamodels. The identified
correlations permit to draw interesting considerations e.g. how a model trans-
formation is typically structured depending on the considered metamodels, and
how does the complexity of metamodels has an impact on the overall model
transformations development. Such considerations can be preparatory to further
analysis that are very common in software development [9], e.g., estimating the
e↵ort required to develop model transformations by considering the structural
characteristics of the source and target metamodels.

The paper is structured as follows: Section 2 describes the process we have
conceived and applied to analyze metamodels. Interesting correlations are dis-
cussed in Section 3. Section 4 discusses related work and Section 5 concludes the
paper and draws some research perspectives.

2 The correlation among metamodels and transformations

Software metrics have been proposed to assess and predict software e↵ort and
quality [15] and recent research has proposed the adoption of metrics to mea-
sure transformations. In particular, metrics on transformations have been inves-
tigated [28,3] to support the measurements of model transformations with the
aim of understanding transformations via quantitative evaluations. For instance,
in [28] specific metrics have been conceived to measure ATL transformations, and
in [4] authors define the meaning of several quality attributes in the context of
model transformations and align them to a set of metrics.

The adoption of metrics to measure metamodels has been recently proposed
in [17,19,12]. In particular, in [17] authors apply object-oriented measurements
to understand common structural characteristics of metamodels, whereas [19]
proposes a measuring mechanism for assessing the quality of metamodels. To the
best of our knowledge, none of the existing approaches calculate transformation
metrics with the aim of correlating them.

Fig. 1. Overview of the process for metamodel analysis



Since it is reasonable to claim that the complexity of model transformations
is somehow related to that of the source and target metamodels, in our opinion in
order to have a complete measurement of model transformations, it is necessary
to identify also possible correlations between transformation and metamodel
metrics e.g., to figure out at what extent the number of matched rules of given
ATL transformation depends on the number of metaclasses in the source and/or
target metamodels.

To this end, in this section the measurement process shown in Fig. 1 is
presented. In particular, the first step of the process consists in applying a num-
ber of metrics on a representative corpus of transformations and corresponding
metamodels. Afterwards the calculated metamodel and transformation metrics
are correlated among them by using statistical tools. Finally, the collected data
are analysed in order to cross/link structural characteristics of transformations
and metamodels, e.g., how the di↵erent kinds of ATL rules (i.e., matched, lazy,
and called) are typically used. It is important to remark that in the analysis
step, metamodel metrics are also considered in order to identify possible cor-
relations among transformation and metamodel metrics (e.g., how the number
of metaclasses in the target metamodel impacts the structural characteristics
of transformations in terms of number of matched rules, helpers, etc.). In [12],
we describe the process, shown in 1, we have applied to identify linked struc-
tural characteristics and to understand how they might change depending on the
nature of metamodels. In this work we have extended this process in order to
calculate di↵erent set of metrics from di↵erent artifacts (metamodels and trans-
formations) and to understand how the model transformations are dependent
from corresponding input and target metamodels.

2.1 The proposed measurement process

The first step of the proposed process consists of the application of metrics on
a data set of metamodels and transformations. Concerning the applied metrics
on metamodels we borrowed those in [17] and added new ones by leading to
a set of 28 metrics. Due to space limitations, in the rest of the paper we con-
sider only the metrics shown in Tab. 1 for metamodels and shown in Tab. 2
form transformation. The corpus of the analyzed metamodels and transforma-
tions has been obtained by retrieving artifacts from di↵erent repositories, i.e.,
EMFText Zoo [6], ATLZoo [5], Github, and GoogleCode. To perform such anal-
ysis we have automatize the process for metrics calculation using a eterogenous
repository called MDEForge presented in [8]. The calculated data are exported
in CSV files encoding the values of all the calculated metrics. Generating CSV
files enables the adoption of statistical tools like IBM SPSS, Microsoft Excel, R
and Libreo�ce Calc for subsequent analysis of the generated data.

2.2 Calculation and selection of metrics correlations

Correlation is probably the most widely used statistical method to detect cross-
links and assess potential relationships among observed data. There are di↵erent



techniques and indexes to discover and measure correlations. In the following we
overview the Pearson’s and Spearman’s coe�cients that we have considered in
this paper to measure the correlations among calculated metamamodel metrics.

The Pearson’s correlation coe�cient [18] was developed by Karl Pearson
from a related idea introduced by Francis Galton in the 1880s. It is widely used
in the sciences as a measure of the degree of linear dependence between two
variables. In particular, the Pearson correlation coe�cient is appropriate when
it is possible to draw a regression line between the points of the available data
(e.g., see the diagrams A and B in Fig. 2).

The Spearman’s correlation coe�cient [24] was used by Charles Spearman
in the 1900s in the psychology domain. This coe�cient is better than Pearson
to manage situations when there is a monotonic relationship between the con-
sidered variables. For instance, in the cases shown in the diagrams C and D in
Fig. 2, the Pearson coe�cient would wrongly identify a very low correlations
among the considered data. This is due to the fact that the assumption of lin-
ear relationships required by Pearson is not satisfied. Contrariwise, Spearman’s
correlation index would perform better in cases of monotonic relationships as in
the diagrams C and D in Fig. 2
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Fig. 2. Examples of scattered plots

It is also important to note that
the assumption of a monotonic rela-
tionship is less restrictive than a lin-
ear relationship (an assumption that
has to be met by the Pearson correlation). For this reason, we use Spearman
only for highlighting curvilinear correlations. Finally, both Pearson’s and Spear-
man’s correlation indexes assume values in the range of -1.00 (perfect negative
correlation) and +1.00 (perfect positive correlation). A correlation with value 0
indicates that there is no correlation between two variables. In order to assess
the strength of correlations it is possible to consider the guide that Evans [14]
suggests for the absolute value of the correlation indexes, i.e., [0.0,0.19 ] very
weak, [0.20,0.39 ] weak, [0.40,0.59 ] moderate, [0.60,0.79 ] strong, and [0.80,1.0 ]
very strong.

Metamodel metrics correlations Once the metamodel metrics have been
calculated, the most correlated ones are identified and selected. In particular,
we have calculated the Pearson’s correlation indexes for all the values of the
metamodel metrics. The outcome of this operation is a correlation matrix as the
one shown in Fig 3. The discussion is based on the correlation matrix shown in
Fig 3 and by considering the most interesting correlations having value greater
than 0.60 (thus strong or even very strong). Because of lack of space it is not
possible to discuss all the identified correlations that include the metrics shown
in Table 1 and 2. However, interested readers can refer to the spreadsheet
available online1 containing all the obtained results. For instance, the number
of MC2 (number of metaclasses) is strongly correlated with the number of CMC

1 http://www.di.univaq.it/ludovico.iovino/data-mise2015.html
2 For the complete list of acronyms in the table we refer to [11]



(number of concrete metaclasses) as testified by their Pearson’s correlation index
having value 0.997.

#MC #AMC #CMC #IFLMC #SF #ASF #TCWS #MGHL #MHS LNS
#MC
#AMC 0.451
#CMC 0.997 0.377
#IFLMC 0.874 0.139 0.894
#SF 0.831 0.574 0.810 0.488
#ASF -0.102 -0.064 -0.100 -0.176 0.155
#TCWS 0.993 0.451 0.990 0.890 0.797 -0.131
#MGHL 0.666 0.637 0.633 0.534 0.558 -0.216 0.678
#MHS 0.704 0.463 0.688 0.562 0.620 -0.164 0.704 0.561
LNS -0.082 -0.055 -0.080 -0.030 -0.108 -0,181 -0.072 -0.100 -0.094

Fig. 3. Pearson Correlation values related to metamodel metrics

Model transformation and metamodel metric correlations The inter-
esting part of our analysis relies on correlating model transformation and meta-
model metrics. To this end a correlation matrix based on the Spearman’s index
has been calculated and a fragment is shown in Fig 4. The matrix relates model
transformation metrics with metrics calculated on the corresponding source and
target metamodels. For instance, according to the calculated matrix, the number
of output patterns (OP) of a model transformation is strongly related with the
number of metaclasses (MC) contained in the output metamodel.

B IP OP TR MR LR CR RWF RWD H HWC HNC CRT
MC 0.450 0.690 0.467 0.452 0.402 0.295 0.248 0.267 0.329 -0.002 -0.082 0.168 0.088
AMC 0.340 0.463 0.339 0.412 0.374 0.264 0.228 0.390 0.306 0.083 -0.019 0.229 -0.003
CMC 0.478 0.504 0.496 0.468 0.412 0.290 0.289 0.260 0.360 0.036 -0.040 0.178 0.098
SF 0.503 0.394 0.467 0.363 0.334 0.208 0.282 0.126 0.315 -0.037 -0.138 0.139 0.051
MC 0.520 0.542 0.783 0.746 0.500 0.223 0.369 0.480 0.399 0.180 0.168 0.204 0.131
AMC 0.478 0.504 0.496 0.468 0.412 0.290 0.289 0.260 0.360 0.036 -0.040 0.178 0.098
CMC 0.503 0.394 0.467 0.363 0.334 0.208 0.282 0.126 0.315 -0.037 -0.138 0.139 0.051
SF 0.808 0.506 0.505 0.481 0.451 0.202 0.266 0.375 0.284 -0.008 -0.075 0.100 -0.014
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Fig. 4. Spearman Correlation values related to transformation and metamodel metrics

3 Data analysis

In this section we discuss some relevant correlations we have identified as de-
scribed in the previous section. In particular, by considering some of the iden-
tified transformation metrics, it is possible to draw interesting considerations
about how the constructs of the ATL language are typically used by developers.



Moreover, by considering the correlations of both transformation and metamodel
metrics (see Section 3.2), further considerations can be drawn about how struc-
tural characteristics of metamodels a↵ect the structure of the corresponding
model transformations.

3.1 Metamodels correlation analysis

In this section we briefly present the most representative metrics and correlations
we have discovered in this process. We present the metrics correlation discussing
the meaning and highlighting the results in the graphical representation.

How the number of metaclasses is related to the adoption of abstrac-
tion constructs In this section we discuss how the size of metamodels expressed
in terms of number of metaclasses is related to the adoption of abstraction con-
structs, i.e., abstract metaclasses, and supertypes.
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Fig. 5. Analyzing metamodel abstraction
level

In particular, as shown in Fig. 5
the number of metaclasses (MC)
and the number of those with su-
per types (MCWS) are strongly cor-
related (with Pearson index 0.99).
More specifically, when the number of
metaclasses grows, typically also the
number of classes with supertypes in-
creases. In other words, as expected,
the adoption of inheritance is propor-
tional to the size of metamodels ex-
pressed in terms of number of meta-
classes. Interestingly, metamodel de-
signers prefer to add siblings in hierar-
chies instead of adding new hierarchy
levels. This is testified by Fig. 5 that
shows the values of the MHS (Max
Hierarchy Sibling) and MGHL (Max generalization hierarchical level) metrics.
Such conclusions are confirmed by the Pearson correlation indexes between MC
and MHS (0.70) and the one between MC and MGHL (0.66). Finally, Fig. 5
reveals that in metamodels with at most 50 metaclasses, i) the number of su-
pertypes in hierarchy is in between 0 and 20, ii) the number of siblings in a
hierarchy is in between 0 and 10, and iii) the maximum height of a hierarchy
is in between 0 and 5. These data represent a pattern charactering the typical
typical metamodel definition.

How structural features are used with hierarchies This section aims at
comprehend how structural features are used in presence of class hierarchies.
To this end, we can consider the average number of features (ASF) and the
total number of metaclasses with supertypes (MCWS) metrics. Even though



the correlation index of these two metrics is low, according to the matrix in
Fig 3, the Spearman approach permits to identify a greater correlation index.
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Fig. 6. Analyzing structural features intro-
duction in hierarchies

As shown in Fig. 6 it is evident that
increasing the number of metaclasses
with supertypes, the average num-
ber of structural features in a meta-
class decreases. Moreover, an interest-
ing statistical result obtained by con-
sidering the correlation between the
MC and ASF metrics is that by con-
sidering metamodels having the num-
ber of metaclasses in the range be-
tween 1 and 50 , the average num-
ber of features (excluding the inher-
ited ones) of a metaclass ranges be-
tween 1 and 5.

How the number of featureless metaclasses is related to hierarchies
height The correlation between the number of metaclasses with supertypes
(MCWS) and the number of concrete metaclasses without features (IFLMC) is
interesting for understanding how specializations of metaclasses can introduce or
reduce structural features in metamodels.
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Fig. 7. Analyzing hierarchical height and featureless
metaclasses

To this end, MCWS and
IFLMC are strongly corre-
lated as supported by the
Pearson’s index having value
0.890. The e↵ect of such cor-
relation is shown in Fig. 73.
In particular, by increasing
the number of metaclasses
with super types, the num-
ber of metaclasses without
attributes or references in-
creases too. This means that
when hierarchies are introduced, usually existing features are subject to refac-
toring operations. Usually, what is done is to move them to super classes and
to create leaves in the hierarchies inheriting features from the super types. This
is in line with the typical usage of hierarchies for factorizing common aspects in
superclasses.

3.2 How metamodel characteristics a↵ect model transformations

By exploiting the matrix obtained by correlating transformation and metamodel
metrics, in this section we discuss how metamodels a↵ect the development of

3 This scattered plot diagram use date logarithmic scale for empathize the correlation



model transformations. The discussion is based on the correlation matrix shown
in Fig. 4 and by considering the most interesting correlations having value greater
than 0.65.

How transformation rules are influenced by target metamodels This
aspect can be investigated by considering the correlation between the number of

Fig. 8. How TR are influence by number of MC in
target metamodel

metaclasses in the target
metamodel (OUT MC) and
the number of TR (Trans-
formation Rules). Such two
values are correlated because
of the Spearman’s index hav-
ing value 0.746. The graph in
Fig 84 represents how these
two values are influenced by
each other in our corpus. Ac-
cording to the graph it is evi-
dent that increasing the num-
ber of the MC in the target
metamodel the number of TR
increases too. This is generally true, since the transformation writing is output-
driven when the developer tries to cover all the metaclasses of the target meta-
model. We can also state that the common concentration in the corpus is in
the range between 1 and 20 metaclasses and 1 and 15 transformation rules,
again confirming the declarative style of transformation as common choice of
the developers.

How the structural features in the target metamodel influence the
number of bindings According to the calculated Spearman correlation, the

Fig. 9. How the SF in the target metamodel influ-
ence the number of B

structural features (SF) of the
target metamodel can influ-
ence the number of bindings
(B) written in the rules of the
transformations. The plot in
Fig 94 shows that increasing
the value of SF in the out-
put metamodel (OUT SF),
the number of binding grows
too. The distribution is com-
mon for the number of SF be-
tween 0 and 20 distributed for
the value of B that goes from
1 to about 75.

4 The scattered plot diagram use date logarithmic scale for empathize the correlation



How the total number of output patterns are influenced by the target
metamodels According to the calculated matrix the Spearman’s correlationin-
dex between the value of OP

Fig. 10. How OP are influenced by the target meta-
models

(Output Patterns) in the
rules and the number of meta-
classes in the target meta-
models has value 0.783. This
correlation occurring in our
corpus is depicted in Fig 104

where the value of OP in the
rules of our transformations
increases at the raising of the
value of MC in the target
metamodels. The most dense
concentration is in the range
of 1-10 output patterns and 1-
10 metaclasses in output.

How the total number of input pattern are influenced by the source
metamodels As anticipated in the previous sections the IP (Input Pattern)

Fig. 11. How IP are influenced by the source meta-
models

of the transformations are re-
lated to the value of MC
in the source metamodel (IN
MC). This is confirmed by the
Spearman’s correlation that
results 0.692. In the graph
in Fig 114 the distribution is
less clear than the previous
case but the trend is similar:
increasing the value of MC
in input, the value of IP in-
creases too. This again con-
firms the use of declarative
style as the preferred one in
our corpus.

4 Related works

In [28] the authors introduces metrics to measure ATL transformations and
the adoption of metrics to measure quality attributes of transformation without
considering any metamodel aspects. In other approaches the main topic is the
quality attribute driven by the metric [4], for example making the quality of
model transformations measurable. In [25] the authors have focused on trans-
formation model measurements in order to better understand transformations
via a quantitative evaluation, like the declarative factor of modules and rules.
In [27] an analogous approach for measuring model repositories is shown, sim-
ply considering models in the evaluation. The authors in [26] investigate factors



having impact on the execution performance of model transformations and they
extracted metrics for the analysis. Van Amstel et al. propose a set of six quality
attributes to evaluate the quality of model transformations [1]. All cited works
propose the adoption of metrics to measure quality attributes of transforma-
tion without considering any metamodel aspects. The authors of [21] worked
on how model transformations can improve the quality of models using metrics.
A similar approach for understanding structural characteristics of metamodels
and their relationships has been presented in [11]. Williams et al. in [17] is the
first one to discuss metrics related to a large metamodel collection exposing how
metamodels are commonly structured, and how they evolve over time.

5 Conclusions and future work

In this paper, we proposed a number of metrics which can be used to acquire
objective, transparent, and reproducible measurements of metamodels and trans-
formations. The first goal is to better understand the main characteristic of meta-
models, how they are coupled, and how they change depending on the metamodel
structure. We have also proposed an approach to analyze model transformations
by considering also the corresponding metamodels. The approach relies on the
correlation of di↵erent metrics and has been applied on a corpus of 450 meta-
models and 90 transformations and permitted to draw interesting considerations
that we intend to extend in the future.
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6 Appendix

Acronym Name Description

AMC Number of abstract MetaClass Number of metaclasses that cannot be instantiated in mod-
els

ASF Average Structural Features Average number of attributes and references in a metaclass
CMC Number of concrete MetaClass Number of metaclasses that can be directly instantiated
IFLMC Number of concrete Immediately

Featureless MetaClass
The number of concrete metaclasses that have no attributes
or references, but may inherit features from a superclass

LNS Isolated metaclasses It is the percentage of metaclasses that are not connected
with any other one

MC Number of total MetaClass Number of metaclasses in the metamodel (MC = AMC +
CMC)

MCWS Number of class with a super
type

Number of metaclasses having at least one super type

MGHL Maximum generalization hierar-
chical level

Maximum hierarchical depth in the metamodel

MHS Max Hierarchy Sibling Maximun number of classes inheriting from a generic super-
class

SF Number of structural features Number of attributes and references in the metamodel

Table 1. Some of the used metrics for measuring metamodels

Acronym Name Description

B Number of bindings Number of bindings in all output pattern
IP Number of Input Pattern The metric number of input pattern elements measure the

size of the input pattern of rules. Note that since called rules
do not have an input pattern, the metric number of input
model elements does not include called rules.

OP Number of Output Pattern The metric number of output pattern elements measure the
size of the output pattern of rules.

TR Number of Transformation Rules A measure for the size of a model transformation is the num-
ber of transformation rules it encompasses. In ATL, there are
di↵erent types of rules, viz., matched rules, lazy matched
rules, unique lazy matched rules, and called rules.

MR Number of Matched Rules (Ex-
cluding Lazy Matched Rules)

Number of matchad rule exzcluding lazy matched rule. If
this matrics are equals to number of transformation rule the
transformation are defined completely declarative

LR Number of Lazy Matched Rules
(Including Unique)

Number of lazy rule including unique

CR Number of Called Rules Number of Called Rules
RWF Number of Rules with a Filter

Condition on the Input Pattern
Number of rules with a filter condition on the input pattern.
The input pattern has a condition. This implies that not all
model elements in the source model may be transformed.

RWD Number of Rules with a do Sec-
tion

ATL allows the definition of imperative code in rules in a
do block. This can be used to perform calculations that do
not fit the preferred declarative style of programming. To
measure the use of imperative code in a transformation, we
defined number of rules with a do section

RWU Number of Rules with a using
clause

ATL allows the definition of local variable in a rule. This
can be used to perform calculations that do not fit the pre-
ferred declarative style of programming. To measure the use
of imperative code in a transformation, we defined number
of rules with a using clause

H Number of Helper Number of total helper in the transformation
HWC Number of Helpers with Context Number of helper with context in the transformation
HNC Number of Helpers without Con-

text
Number of helper without context in the transformation

CRT Number of Calls to resol-
veTemp()

The resolveTemp() function is used to look-up references
to non-default output elements of other rules. Therefore, it
is to be expected that model transformations with a large
number of calls to the resolveTemp() function are harder to
understand.

Table 2. Some of the used metrics for measuring transformations
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1 Introduction

Software evolution has gained a lot of interest during the last years [1]. Indeed,
as software ages, it needs to evolve and be maintained to fit new user require-
ments. This avoids to build a new software from scratch and hence save time and
money. Handling evolution in component-based software systems is non trivial
since an ill-mastered change may lead to architecture inconsistencies and incoher-
ence between design and implementation. Many Adls (Architecture Description
Languages) were proposed to support architecture modeling and analysis. Ex-
amples include C2SADL [2], Wright [3] and Darwin [4]. Although, some Adls
integrate architecture modification languages, handling and controlling architec-
ture evolution in the overall software lifecycle is still an important issue. In this
paper, we attempt to provide a solution to the architecture-centric evolution that
preserves consistency and coherence between architecture levels. We propose an
architecture evolution process based on the formal foundations of our three-level
Adl Dedal [5]. The process is then illustrated by an evolution scenario on a sim-
plified Home Automation Software architecture. The remainder of this paper is
organized as follows: Section 2 briefly discusses examples of existing Adls. Sec-
tion 3 gives an overview of Dedal and its formal foundations. Section 4 describes
the evolution process based on Dedal. Section 5 presents an evolution scenario
that illustrates the proposed evolution process before Section 6 concludes and
discusses future work.



2 Existing ADLs

Over the two last decades, a number of Adls were proposed [6]. Most of them
provide textual notations to describe architectural entities (i.e. components, in-
terfaces and connections). Initially, Adls were domain-specific. Examples include
C2SADL [2] for the design of concurrent systems and Wright [3] and Darwin [4]
for the design and analysis of distributed architectures. Later on, attempts to
unify Adls and make them general-purpose were made. For example, ACME [7]
was designed for such purpose. It consists in a common interchange description
language that o↵ers annotation facilities to support architecture descriptions in
other languages. Another relevant example is xADL 2.0 [8]. It was designed to
support various types of systems. The strength of xADL 2.0 resides in its exten-
sibility since it is XML-based. It o↵ers then an easy way for architects to adapt
its use to any kind of architectures.

Although a lot of e↵ort was dedicated to improve the expressiveness of Adls
and promote their use to model software architectures, several important issues
are not taken into account. First, existing Adls hardly support all the develop-
ment steps of component-based software architectures (i.e. specification, imple-
mentation and deployment). Most of them cover only one or at most two levels
which harden their integration in development processes. Second, they hardly
support architecture evolution and handle architecture inconsistencies such as
drift or erosion [9]. C2SADL and Darwin are exceptions. They include language
to describe changes. However, they do not support reverse evolution and they
do not cover all steps of component-based development either.

In this work, we address architecture evolution in the whole component-based
development process. We show how architectural erosion could be avoided thanks
to reverse evolution.

3 Overview of Dedal

3.1 The three architecture levels

Dedal is a novel ADL that covers the whole life-cycle of a component-based
software. It proposes a three-step approach for specifying, implementing and
deploying software architectures in a reuse-based process [10].

To illustrate the three architecture levels of Dedal, we propose an example
of a Home Automaton Software (Has). Figure 1 presents the Has architecture
at three abstraction levels:
The abstract architecture specification (cf. Figure 1-a) is the first level
of architecture software descriptions. It represents the architecture as designed
by the architect and after analyzing the requirements of the future software.
In Dedal, the architecture specification is composed of component roles and
their connections. Component roles are abstract and partial component type
specifications. They are identified by the architect in order to search for and
select corresponding concrete components in the next step.



Fig. 1. Illustrative Example

The concrete architecture configuration (cf. Figure 1-b) is an implemen-
tation view of the software architecture. It results from the selection of exist-
ing component classes in component repositories. Thus, an architecture config-
uration lists the concrete component classes that compose a specific version of
the software system. In Dedal, component classes can be either primitive or
composite. Primitive component classes encapsulate executable code. Compos-
ite component classes encapsulate an inner architecture configuration (i.e. a set
of connected component classes which may, in turn, be primitive or compos-
ite). A composite component class exposes a set of interfaces corresponding to
unconnected interfaces of its inner components.

The instantiated architecture assembly (cf. Figure 1-c) describes software
at runtime and gathers information about its internal state. The architecture as-
sembly results from the instantiation of an architecture configuration. It lists the
instances of the component and connector classes that compose the deployed ar-
chitecture at runtime and their assembly constraints (such as maximum numbers
of allowed instances).



3.2 The formal foundations of Dedal

Dedal is formalized using B [11], a set-theoretic and first order logic formalism.
The formalization [12] covers all the concepts of Dedal and includes a set of
rules that defines the relations between the di↵erent artifacts into and over each
architecture level of Dedal (cf. Figure 2). These rules are classified into two
categories: the intra-level rules and the inter-level rules.

Fig. 2. Inter-level relations in Dedal

Intra-level rules in Dedal consist in substitutability and compatibility be-
tween components of the same abstraction level (component roles, concrete com-
ponent types, instances). Defining intra-level relations is necessary to check the
architecture consistency. For instance, the components must be correctly con-
nected to each other (i.e. each required interface is connected to a compatible
provided one).

Inter-level rules are specific to Dedal and consist in relations between com-
ponents at di↵erent abstraction levels as shown in Figure 2. Defining inter-level
rules is mandatory to decide about coherence between two architecture descrip-
tions at di↵erent abstraction levels. For instance, the realization rule is used to
check that a given configuration is a valid implementation of a given specification
and the instantiation rule is used to check if an assembly correctly instantiates
a given configuration.



4 Software architecture evolution in Dedal

Handling software evolution in Dedal is quite advantageous. Indeed, Dedal covers
the whole life-cycle of software systems and hence all descriptions can be kept up-
to-date for further reuse, reimplementation and deployment in di↵erent contexts.
To keep architecture descriptions coherent, change must be propagated from
where it is initiated to the other abstraction levels descriptions. As a solution,
we propose an evolution process based on Dedal to enable change in software
systems in a manner that preserves architecture consistency and coherence.

The evolution process in Dedal lies on two kinds of rules: (1) static rules to
check architecture consistency and coherence between the di↵erent descriptions
and (2) evolution rules to trigger the change at each abstraction level and prop-
agate it to the other levels descriptions. Figure 3 presents the condition diagram
of the evolution process.

Fig. 3. Condition diagram of the evolution process



4.1 Static rules

Static rules in Dedal are classified into consistency rules and coherence rules.
Consistency rules are name uniqueness, completeness, connection correctness
and graph consistency. These properties are verified at the same abstraction
level by the evolution manager to check weather the architecture is structurally
consistent or a change must be triggered to restore consistency. Coherence rules
are used to check if software descriptions at the three abstraction levels of Dedal
are coherent. If an incoherence is detected, the evolution manager propagates
change to the other levels to restore coherence. Coherence rules include the
verification of the following properties:

– A configuration Conf is an implementation of a given specification Spec.
– A specification Spec is a documentation of a given configuration Conf.
– An assembly Asm is an instantiation of a given configuration Conf.
– A configuration Conf is instantiated by a given assembly Asm.

4.2 Evolution rules

An evolution rule is an operation that makes change in a target software archi-
tecture by the deletion, addition or substitution of one of its constituent elements
(components and connections). Each rule is composed of three parts: the opera-
tion signature, preconditions and actions. Specific evolution rules are defined at
each abstraction level to perform change at the corresponding formal description.
These rules are triggered by the evolution manager when a change is requested.
Firstly, a sequence of rule triggers is generated to reestablish consistency at the
formal description of the initial level of change. Afterward, the evolution man-
ager attempts to restore coherence between the other descriptions by executing
the adequate evolution rules. The following role addition rule is an example of
evolution rules at specification level:

/* Operation signature takes as arguments an instance of the architecture
specification(spec) and the instance of the new role(newRole)*/

addRole(spec, newRole) =

/* preconditions */
PRE
spec 2 arch spec ^ newRole 2 compRole ^ newRole 62 spec components(spec) ^
/* spec does not contain a role with the same name*/
8 cr.(cr 2 compRole ^ cr 2 spec components(spec)

) comp name(cr) 6= comp name(newRole))

THEN
/* actions */
/* update the set of clients (required interfaces), the set of

servers (provided interfaces) and the set of component roles */
spec servers(spec) := spec servers(spec) [ servers(newRole) ||
spec clients(spec) := spec clients(spec) [ clients(newRole) ||
spec components(spec) := spec components(spec) [ {newRole}

END;

5 Evolution scenario

5.1 Motivation

To illustrate the evolution approach, we propose an example of evolving the Has
architecture. The objective is to enable the control of the house through a mobile



device running under Android OS. The change is initiated at the configuration
level and attempts to adapt the current HAS implementation to an android
device.

Figure 4-a shows the initial implementation of HAS while Figure 4-b shows
the evolved one. Two main changes are noticed in the new configuration: the
orchestrator is substituted for a new one compatible with android. Since a new
service to control the intensity of lamp is required, the component Lamp is
replaced by the component AdjustableLamp with additional provided interface
(IIntensity) to adjust the luminosity.

Fig. 4. Evolving the HAS configuration

5.2 Tool support overview

At this stage of work, the evolution process is assisted using ProB [13], an an-
imation tool of B models. We manually instantiate the B formal models corre-
sponding to the Has architecture and execute evolution rules at each abstraction
level. We control the evolution process by checking consistency and coherence
properties thanks to the evaluation console of ProB. This first step provides
a proof feasability of our work. Ongoing work is to automate the generation of
Dedal formal models and use the ProB solver to automate the evolution process.

5.3 Evolving the HAS configuration

The change is initiated by disconnecting and deleting the old orchestrator. Then,
the one compatible with android is added and connected. The old Lamp is re-
placed by the adjustable one and connected to the android orchestrator. The
evolution manager performs the following operations:



disconnect(HAS config, (cl4, rintIPower), (cl1, pintIPower))
disconnect(HAS config, (cl4, rintIClock), (cl2, pintIClock))
disconnect(HAS config, (cl4, rintITherm), (cl3, pintITherm))

disconnect(HAS config, (cl4, rintIAirCon), (cl3, pintIAirCon))
deleteClass(HAS config, cl4)
addClass(HAS config, cl4a)
replaceClass(HAS config, cl1, cl1a)
connect(HAS config, (cl4a, rintIPower2), (cl1a, pintIPower2))
connect(HAS config, (cl4a, rintIIntensity), (cl1a, pintIIntensity))
connect(HAS config, (cl4a, rintIClock2), (cl2, pintIClock))
connect(HAS config, (cl4a, rintITherm2), (cl3, pintITherm))

connect(HAS config, (cl4a, rintIAirCon2), (cl3, pintIAirCon2))

We note that cl1, cl2, cl3 and cl4 refer respectively to the component classes
Lamp, Clock, AirConditioner and Orchestrator. cl1a and cl4a refer respectively
to the new component classes AdjustableLamp and AndroidOrchestrator. Their
Interface names are prefixed with rint(for a required interface) and pint(for
provided interface) followed by the interface type name and eventually a number
when there is several instances of the same interface

5.4 Propagating change to the HAS specification

The current Has specification is no longer a good documentation of the new
version of the HAS configuration and thus, we have a problem of erosion. In-
deed, the control of the light intensity is not included in the current specification.
Hence, a new documentation version is required to keep both descriptions co-
herent. Figure 5 shows the initial and evolved version of the HAS specification
after the change propagation.

Fig. 5. Evolving the HAS specification by change propagation

The change is propagated to the HAS specification by replacing the role
HomeOrchestrator(cr4) with HomeOrchestrator2 (cr4a) and the role Light(cr1)



by Lunminosity(cr1a). The following operations are performed by the evolution
manager:

disconnect(HAS spec, (cr4, rintILight), (cr1, pintILight))
disconnect(HAS spec, (cr4, rintIT ime), (cr2, pintIT ime))
disconnect(HAS spec, (cr4, rintITherm1), (cr3, pintITherm))

disconnect(HAS spec, (cr4, rintICon), (cr5, pintICon))
deleteRole(HAS spec, cr4)
addRole(HAS spec, cr4a)
replaceRole(HAS spec, cr1, cr1a)
connect(HAS spec, (cr4a, rintILight2), (cr1a, pintILight2))
connect(HAS spec, (cr4a, rintIIntensity), (cr1a, pintIIntensity))
connect(HAS spec, (cr4a, rintIT ime), (cr2, pintIT ime))
connect(HAS spec, (cr4a, rintITherm1), (cr3, pintITherm))

connect(HAS spec, (cr4a, rintICon), (cr5, pintICon))

5.5 Propagating change to the HAS assembly

The current HAS assembly violates the instantiation rule according to the new
version of the HAS configuration. This violation is detected by the evolution
manager and change is triggered at the assembly level to restore coherence. Fi-
gure 6 illustrates the changes applied on the assembly architecture.

Fig. 6. Evolving the HAS assembly

6 Conclusion and future work

In this paper, we give an overview of our three-level Adl Dedal and its formal
model. At this stage, a set of evolution rules is proposed to handle architecture
change during the three steps of software lifecycle: specification, implementation
and deployment. The rules were tested and validated on sample models using a
B model checker. As future work, we aim to manage the history of architecture
changes in Dedal descriptions as a way to manage software system versions.
Furthermore we are considering to automate evolution by integrating Dedal and
evolution rules into an eclipse-based platform.
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Abstract. In Model-Driven Engineering, the potential advantages of using bidi-
rectional transformations are largely recognized. The non-deterministic nature
of bidirectionality represents a key aspect: i.e, consistently propagating changes
from one side to the other is typically non univocal and more than one correct
solutions are admitted. In this paper, the problem of uncertainty in bidirectional
transformations is discussed. In particular, we illustrate how represent a family of
cohesive models, generated as output of a bidirectional transformation, by means
of models with uncertainty.

1 Introduction

In Model-Driven Engineering (MDE) [20], the potential advantages of using bidirec-
tional transformations in various scenarios are largely recognized. As for instance, as-
suring the overall consistency of a set of interrelated models which requires the ca-
pability of propagating changes back and forth the transformation chain [21]. Despite
its relevance, bidirectionality has rarely produced anticipated benefits as demonstrated
by the lack of a leading language comparable, for instance, to ATL for unidirectional
transformations due to the ambivalence concerning non-bijectivity that give place to
non-determinism. For instance, while MDE requirements demand enough expressive-
ness to write non-bijective transformations [24], the QVT standard is somewhat uncer-
tain in asserting whether the language permits such transformations [23]. In particular,
when reversing a non-injective bidirectional mapping more than one admissible solu-
tion might be found. Thus, rather than having a single model, we actually have a set of
possible models and we are not sure which is the desired one. On the other hand, while
a transformation can always be disambiguated at design-time by fixing those details
that leave the solution open to multiple alternatives, in many cases this is impractical
because the designer does not detain enough information beforehand for establishing a
general solution. Recently, few declarative approaches [4, 17, 3] to bidirectionality have
been proposed. They are able to cope with the non-bijectivity by generating all the ad-
missible solutions of a transformation at once. Among them, the Janus Transformation
Language [4] (JTL) is a model transformation language specifically tailored to support
bidirectionality and change propagation. Unfortunately, managing a set of models ex-
plicitly is challenging and poses severe issues as its size might be quite large. The main
problem of these approaches is related to the difficulty to manage a number of models.

A similar problem is present in the management of uncertainty [12]. Typically it oc-
curs when the designer has not complete, consistent and accurate information required
to make a decision during software development. In particular, the designer may add
ambiguity during the writing of model transformation. For instance, she may be unsure



about some correspondences among source and target elements and, as a consequence,
the transformation may generate multiple solutions each one representing a different
design decision. Furthermore, often she can understand it only at execution time, when
a multitude of models are obtained.

Providing a representation of the uncertainty generated as outcome of a model trans-
formation process represents a first step to support designers. We propose a metamodel-
independent approach to represent a family of cohesive models deriving from a bidirec-
tional transformation by means of models with uncertainty. This paper is related to pre-
vious work [11] which introduced the uncertainty due to non-deterministic bidirectional
transformations and outlined the challenges aiming to give a support to the problem.

The paper is organized as follows. Section 2 introduces the problem by means of a
running example based on JTL. Section 3 discusses uncertainty and the need of a tool
support for manage it. Section 4 presents the proposed approach to represent uncer-
tainty. Finally, Sect. 5 describes related work and Sect. 6 draws some conclusion and
future work.

2 A motivating example

It is more the rule than the exception that uncertainty is part of almost any aspects
of software development [22]. This is also valid for model transformation design and
implementation. In particular, in this section we describe how lack of information at
design-time can lead to non-deterministic transformations which generates uncertainty
in the solution because some mapping between elements in models may be ambiguous.

To better understand the problem and the difficulties it poses, we firstly introduce
a well-known application scenario and secondly provide an implementation with JTL
highlighting its intrinsic non-determinism.

Fig. 1. Collapse/expand state diagrams in a round-trip process

Scenario. Let us consider a typical round-trip problem based on the Collapse/Expand
State Diagrams benchmark [5]. In particular, starting from a hierarchical state diagram
(involving some nesting) as the one reported in Fig. 1(a), the bidirectional transforma-
tion yields a flat state machine as provided in Fig. 1(b). A fundamental requirement of
the transformation prescribes that manual modifications on the target model must be
back propagated to the source model. For instance, suppose that the designer modifies
the flattened machine in Fig. 1(b) to produce the model in Fig. 1(c) by:

– adding the new state Printing,



– adding the transition print that associates state Active to the latter, and finally
– modifying the source of the transition done from the state Active to the state
Printing.

The expected transformation is clearly non-injective (as different hierarchical machines
can be flattened to the same model). In addition, such a model refinement gives place
to an interesting situation, i.e., more than one model is admissible (see dotted edges in
Fig. 1(d)).
Implementation. The HSM2SM bidirectional transformation, which relates hierarchi-
cal and flat state machines, has been implemented by means of JTL: a constraint-based
model transformation language specifically tailored to support bidirectionality. It adopts
a QVT-R1 like syntax and allows a declarative specification of relationships between
MOF models. The semantics is given in terms of Answer Set Programming (ASP) [15],
which is a form of declarative programming oriented towards difficult (primarily NP-
hard) search problems and based on the stable model (answer set) semantics of logic
programming. Then, the ASP solver2 finds and generates, in a single execution, all the
possible models which are consistent with the transformation rules by a deductive pro-
cess. The JTL environment has been implemented as a set of plug-ins for the Eclipse
framework and mainly exploits EMF3.

1transformation hsm2sm(source : HSM, target : SM) {
2 ...
3 top relation Transition2Transition {
4 enforce domain source sourceTrans: HSM::Transition{
5 owningStateMachine = sourceSM: HSM::StateMachine { },
6 };
7 enforce domain target targetTrans: SM::Transition{
8 owningStateMachine = targetSM: SM::StateMachine { },
9 };

10 when {...}
11 where {...}
12 }
13 relation TransitionSource2TransitionSource {
14 enforce domain source sourceTrans: HSM::Transition {
15 source = sourceState : HSM::State { }
16 };
17 enforce domain target targetTrans: SM::Transition {
18 source = targetState : SM::State { }
19 };
20 when {
21 State2State(sourceState, targetState) and
22 sourceState.owningCompositeState.oclIsUndefined();
23 }
24 }
25 relation TransitionSourceComposite2TransitionSource {
26 enforce domain source sourceTrans: HSM::Transition {
27 source = sourceState : HSM::CompositeState { }
28 };
29 enforce domain target targetTrans: SM::Transition {
30 source = targetState : SM::State { }
31 };
32 when { CompositeState2State(sourceState, targetState); }
33 } ...

Listing 1.1. A fragment of the HSM2SM transformation in JTL

1 http://www.omg.org/spec/QVT/1.1/
2 http://www.dlvsystem.com/
3 http://www.eclipse.org/modeling/emf/



A fragment of the HSM2SM transformation is illustrated in List. 1.1. It consists of a
number of relations defined by the two involved domains. In particular, the following
relations are reported:

– Transition2Transition which relates transitions of the hierarchical metamodel and
transitions of the flat metamodel,

– TransitionSource2TransitionSource which relates source states of transitions of the
hierarchical metamodel and the corresponding source states of transitions of the flat
metamodel, and finally

– TransitionSourceComposite2TransitionSource which relates source composite states
of transitions of the hierarchical metamodel and correspondent source states of tran-
sitions of the flat metamodel4.

Fig. 2. The HSM model and the correspondent SM model

Fig. 3. The modified SM model and the correspondent HSM models

The forward application of the transformation is illustrated in Fig. 2, where the
model HSMm on the left-hand side is mapped to SMm in the right-hand side. As afore-
mentioned the transformation is non-injective. The back propagation of the changes

4 The interested reader can access the full implementation at http://jtl.di.univaq.it/



showed in Fig. 1(c) therefore gives place to the following situation: the newly added
transition print can be equally mapped to each of the nested states within Active
as well as to the container state itself, as in Fig. 1(d). In particular, the modified tar-
get model SMm’ in Fig. 3(a) is mapped back to the source models HSMm0

1, ...,HSMm0
4

in Fig. 3(b). For example, as visible in the property of the print transition, HSMm0
4

represents the case in which the transition target goes to the composite state Active.

Such non-determinism can still be resolved by accommodating in the transforma-
tion the prescription that any new edges in a target model should be mapped to an edge
in corresponding source model, such that it always refers to the same kind of state, e.g.,
the container state. This would definitely make the transformation deterministic. How-
ever, when the solution cannot be singled out in such a general way, the decision must
be left to the modeler in later stages. The potential information erosion have a negative
impact on software cost and quality [19]. Thus, designers dealing with model uncer-
tainty need to be supported with suitable mechanism and tools in order to avoid effect
of having multiple design alternatives.

3 Uncertainty in modeling

In software engineering decisions have to be made at different stages. Despite the na-
ture of software means making these decisions with absolute confidence, uncertainty
appears everywhere [22]. Typically, it occurs when the designer does not have com-
plete, consistent and accurate information required to make a decision during software
development. Introducing uncertainty in modeling processes means that, rather than
having a single model, we actually have a set of possible models and we are not sure
which is the correct one [12]. Thus, handling uncertainty requires the modeler to use
this set whenever an individual model would be used. In addition, managing a set of
models explicitly is impractical as its size might be quite large. On the other hand,
if uncertainty is ignored and one particular possible model is prematurely chosen, we
risk having incorrect information in the model. Recently, an approach [12, 14] has been
proposed to cope with different aspects of this problem. In particular, the concept of
partial model has been given in terms of graph theory to capture uncertainty in models.
In essence, by means of first-order logic annotations points of uncertainty can be in-
troduced in the model, each denoting a possible concretization, i.e., a model where the
uncertainty is resolved.

Non-bijective model transformations are strictly related to uncertainty, that is intro-
duced during the transformation writing but it is often evident only after the execution,
when more than one models may be generated. Especially when the set of generated
models is large, designers need to be supported by suitable mechanisms and tools able
to manage uncertainty. For this reasons, our aim is to provide the designer a tool for rep-
resent the different models into a new one that contains all generated alternatives which
abstracts from the calculation method and permits to harness the potential offered by
generic modeling platforms such as Eclipse/EMF ([2]]). Furthermore, it represents the
starting point for extending a language like JTL semantics and its transformation en-
gine towards an uncertainty-aware solution, capable of dealing with the intrinsic non-
determinism of non-bijective transformation in terms of uncertain or partial models.



4 A metamodel-independent approach to uncertainty

Uncertainty as it is known in literature (e.g., [12]) does not have a characterization in
terms of metamodels. It is mainly based on annotations which can be processed by
tools which are outside, for instance, the EMF ecosystem. In this section, we introduce
a metamodel-independent approach to uncertainty representation, i.e., starting from a
base metamodel M we are interested to understand what are the characteristics of the
corresponding metamodel with uncertainty U(M) and how constructively define it.

Since, it has to be used in modeling environment and must be processed by means of
automated transformation, in according to our view, we identified a number of natural
properties that representation technique should have, as described below

– model-based, a set of models representing different alternatives must be represented
with a model with uncertainty enabling a range of operations, including analysis or
manipulations during the decision process;

– minimality, a model with uncertainty is a concise representation of all the alterna-
tive solutions; it should not contain any other information besides what needed for
representing both the common elements and alternative elements, i.e. alternative
designed choices grouped by a point of uncertainty;

– metamodel-independence, the metamodel must be agnostic of the base metamodel,
i.e., it must be defined in a parametric way such that the definition procedure can
be applied in an automated way to any metamodel;

– interoperability, each model containing uncertainty must be applicable an unfold-
ing operation, such that whenever applied to it returns all the correspondent con-
cretizations models or the specific concretization selected by the designer.

Starting from these requirements, an automated procedure U : Ecore ! Ecore is pro-
posed. The transformation is written in ATL and takes a metamodel M and returns the
corresponding metamodel with uncertainty U(M) as described in the rest of the section.

4.1 The uncertainty metamodel

The metamodel with uncertainty is obtained by extending the base metamodel with
given connectives to represent the multiple outcomes of a transformation (as showed
in Sect. 2). These connectives denote points of uncertainty where different model ele-
ment are attached. Moreover, such points of uncertainty are traceable in order to ease
the traversal of the whole solution space and permit the identification of specific con-
cretizations.

As an example, let us consider HSM, the metamodel of the hierarchical state ma-
chines given in Fig. 4. Then the corresponding metamodel with uncertainty U(HSM)
illustrated in Fig. 5 can be automatically obtained as follows:

– the abstract metaclass TracedClass with attributes trace and ref is s added to
U(HSM);

– for each metaclass c in HSM, such that it is non-abstract and does not specialize
other metaclasses, i) a corresponding metaclass uc is created in U(HSM) such that
uc specializes c, and ii) c is generalized by TracedClass;

– each metaclass uc is composed with c, enabling the representation of a point of
uncertainty and its alternatives;



– the cardinality of attributes and references derived from HSM are relaxed and made
optional in U(HSM) in order to permit to express uncertainty also over them.
In particular, the metaclasses UStateMachine, UState and UTransition in U(HSM)

derive from StateMachine, State and Transition in HSM, whereas the latter ones
are generalized by TracedClass. The scope of this abstract class is to maintain infor-
mation about the relationships between the points of uncertainty and the correspondent
own alternatives in the concretization models.

Fig. 4. The HSM metamodel

Fig. 5. The U(HSM) metamodel

As said, the above procedure is implemented as an endogenous model transforma-
tion in ATL. For the sake of brevity, only an excerpt of the transformation is presented
in Listing 1.25 containing solely those rules which build the specific constructions of the
uncertainty metamodel. More in detail, the rule EClass2UEClass (lines 4-20) a) prop-
agates base metaclasses (and their associations) which are not abstract and do not have
non-abstract ancestors (lines 5-6) and b) for each of them generates a corresponding
uncertainty metaclass (lines 11-14), as in Fig. 5 where the metaclass UState is gener-
ated and composed with State. Moreover, the target pattern (lines 7-20) is composed
of a set of elements, each of them specifies a target type from the target metamodel and
a set of bindings. In particular, the element t (lines 7-10) copies the metaclass s in the
target metamodel; the element u of the target pattern (lines 11-14) generates uncertainty
metaclass as specialization of the matched source class s; and finally, the reference r
is created as a structural feature of the element u in order to refer alternative elements
contained in u.

1module MM2UMM;
2create OUT : UMM from IN : MM;

5 The MM2UMM transformation implementation is available at http://jtl.di.univaq.it/



3[...]
4rule EClass2UEClass {
5 from s : MM!EClass ((thisModule.inElements->includes(s)) and
6 ((s.eSuperTypes->size()=0) or (s."abstract"=’false’)))
7 to t : UMM!EClass (
8 name <- s.name,
9 eSuperTypes <- s.eSuperTypes->append(thisModule.traceableMetaclass),

10 ...),
11 u : UMM!EClass (
12 name <- ’U’+s.name,
13 eReferences <- Sequence{}->append(r),
14 eSuperTypes <- Sequence{}->append(s)),
15 r:UMM!EReference(
16 name <- s.name + ’s’,
17 containment <- true,
18 lowerBound <- 1,
19 upperBound <- -1)
20}
21[...]

Listing 1.2. A fragment of the MM2UMM transformation

To better understand how a point of uncertainty is realized, please consider the
alternative solutions in the right-hand side of Fig. 3 and how they are denoted by the
corresponding point of uncertainty illustrated in Fig. 5. In particular, the alternative
transitions are collected in a point of uncertainty (UTransition) which contains the
transitions print targeting each one of the nested states within Active as well as to
the composite state itself.

It is important to notice that models with uncertainty may be an over-approximation
of the sets of transformation candidates. This is due to the ”combinatorial” nature of
these models since each point of uncertainty collects the different alternatives. Con-
sequently, it can happen that certain combinations produce concretizations which are
not part of the solution space. For instance, in the scenario in Fig. 1, probably only
one print transition can exist in the final model. However, the generated model with
uncertainty admits models with multiple print transitions giving place to more con-
cretizations than those expected. Therefore, besides the models with uncertainty it is
important to generate also those constraints which limit the solution to the admissible
concretization, in our case, in order to avoid multiple print transitions, the model with
uncertainty in Fig. 5 is augmented with a constraint that reduces the concretizations
to cases with one print transition only. According to the uncertainty metamodel de-
scribed in Sect. 4, each metaclass provide an attribute ref to maintain the reference to
the corresponding concretization(s).

5 Related work

Uncertainty is one of the factors prevalent within contexts as requirements engineering
[7], software processes [16] and adaptive systems [18]. Uncertainty management has
been studied in many works, often with the aim to express and represent it in models. In
[12] partial models are introduced to allow designers to specify uncertain information
by means of a base model enriched with annotations and first order logic. Model trans-
formation techniques typically operate under the assumption that models do not contain
uncertainty. Nevertheless, the work in [13] proposes a technique for adapting existing
model transformations in order to deal with models containing uncertainty. The main is
a lifting operation which permits to adapt unidirectional transformations for being used
over models with uncertainty preserving their original behavior.



Fig. 6. UHSMm model

As discussed in this paper, modelers may need to encode ambiguities in their model
transformation and obtain multiple design alternatives in order to choose among them.
In contrast with this requirement, most existing bidirectional model transformation lan-
guages deal with non-determinism by requiring designers to write non-ambiguous map-
pings in order to obtain a deterministic result [1, 23, 6] . The ability to deduce and gen-
erate all the possible solutions of an uncertain transformation has been achieved by
few approaches, including JTL [8, 10]. In such case, may be useful to manage non-
determinism during the design process in order to detect ambiguities and support de-
signers in solving non-determinism in their specification as faced in [9].

6 Conclusion

Bidirectional model transformations represent at the same time an intrinsically difficult
problem and a crucial mechanism for keeping consistent and synchronized a number
of related models. In this paper, we tackle the problem of non-determinism in bidirec-
tional transformations focusing on the concept of uncertainty, which represent one of
the prevalent factors within software engineering. When modelers are not able to fix
a design decision they may encode ambiguities in their model transformation speci-
fication, e.g. not providing additional constraints that would make the transformation
deterministic. In this work we have made an attempt to help designers to give an uni-
form characterization of the solution in terms of models with uncertainty as already
known in literature.
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Abstract. In Model Driven Engineering, bidirectional transformations are con-
sidered a core ingredient for managing both the consistency and synchronization
of two or more related models. However, current languages still lack of a com-
mon understanding of their semantic implications hampering their applicability
in practice. This paper illustrates a set of relevant properties pertaining to bidirec-
tional model transformations. It is a first step towards a taxonomy that can help
developers to decide which bidirectional language or tool is best suited to their
task at hand. This study is based on the existing literature and characteristics of
existing approaches.

1 Introduction

Bidirectionality is an important feature of model transformations: often it is assumed
that during development only the source model of a transformation undergoes modifi-
cations, however in practice it is necessary for developers to modify both the source and
the target models of a transformation and propagate changes in both directions [31, 37].
In this context, bidirectional model transformations have arrived as a key mechanism,
in fact they describe not only a forward transformation from a source model to a target
model, but also a backward transformation that reflects the changes on the target model
to the source model so that consistency between two models is maintained.

Many typical situations, that arise when both models are modified by humans, de-
mand bidirectional transformations; for instance, a conceptual model is transformed
into a platform specific model; a subview of selected data is modified and contextu-
ally the entire database is updated; many kinds of integration between systems or parts
of systems, which are modeled separately, must be consistent (e.g., a database schema
must be kept consistent with the application that uses it) [31]. Hence, bidirectional
transformations have many potential applications in software development, including
model synchronization, round-trip engineering, software evolution by keeping different
models coherent to each other, multiple-view software development.

In this paper we propose a taxonomy for bidirectional model transformations. It
represent a first step towards a complete set of objective criteria, that designers may
consider in order to select the approach that is more suitable for their needs. The study
is based on the discussions of the working group of the Dagstuhl seminars on Lan-
guage Engineering for Model-Driven Software Development [6, 20] and the existing
taxonomies for model transformations (e.g., [23, 7]).



The paper is organized as follows. Section 2 introduces the background. Section 3
proposes a taxonomy of bidirectional model transformations. Section 4 discusses how
this taxonomy can be applied on existing approaches. Finally, Section 5 describes re-
lated work and Section 6 draws some conclusion and future work.

2 Background

Despite its relevance, bidirectionality has rarely produced anticipated benefits as demon-
strated by the lack of a language comparable to what ATL1 represents for unidirectional
transformations. However, a number of languages and tools have been proposed due to
the intrinsic complexity of bidirectionality; each one is characterized by a set of specific
properties pertaining to a particular applicative domain [32].

The attempt to advocate a language rather than another can not neglect the important
differences in circumstances. In fact, each language or tool presents specific character-
istics that make it more suitable for a certain circumstance; as a consequence, a solution
which seems good with one set of assumptions made about the situation can be infea-
sible with another. Understanding these characteristics is useful for distinguishing be-
tween existing approaches; in particular, in order to choose the most suitable approach,
designers need to know how factors, that may influence their choice, affect bidirectional
approaches.

Several works have been proposed for defining characterization and classification
schemes of model transformation, others illustrate the state-of-the-art. Many of the pro-
posed aspects characterizing model transformations are considered in this study, many
other aspects need to be explored to shift the focus on intrinsic characteristics of bidi-
rectional model transformations. Taking inspiration from [23], we consider some fun-
damental issues as following:

- What needs to be transformed into what;
- Which mechanisms can be used for bidirectional transformation;
- What are the application domains;
- What are the characteristics of a bidirectional transformation;
- What are the quality requirements for a bidirectional language or tool;
- What are the success criteria for a bidirectional language or tool.

These issues demand for the definition of pertaining concepts, terms and base char-
acteristics for bidirectional transformation. To this end, in the next section a taxonomy
for bidirectional transformation is proposed to provide specific and intrinsic features
and requirements.

3 Taxonomy

The proposed taxonomy is based on a set of features that are divided into three main
categories: General Requirements (GR), Functional Requirements (FR) and Non Func-
tional Requirements (NFR). They are described in detail in the following.

1 http://www.eclipse.org/atl/



3.1 General Requirements (GR)

This section defines general requirements that concerns generic and important aspects
for bidirectional model transformations. These requirements are useful to understand
what are some important characteristics of a bidirectional approach or tool.

Complexity. Transformations can be considered as small (e.g., refactoring), or heavy-
duty (e.g., compilers and code generators) [23]. The large difference among them re-
quires an entirely different set of tools and techniques. Considering the complexity of
transformations is out of our scope; it demands for more effort and can be treated, for
instance, by using metrics.
Level of automation. A bidirectional transformation can be performed in a completely
automatic way (fully-automated), otherwise it may need to a certain amount of man-
ual intervention (human-in-the-loop). In particular, manual intervention is needed to
address and resolve ambiguity, incompleteness and inconsistency in the requirements,
that may be partially expressed in natural language [23].
Visualization. It refers to the way in which models, metamodels and model transforma-
tions are presented to the user; it can be graphical or textual. Some existing tools allow
developers to create artifacts in a completely graphical way (e.g., [28]), others require
transformations are written entirely in textual way (e.g., [3]).
Level of industry application. Some existing tools are used in both academic and
industrial world (e.g., [28]), others are used exclusively in academic setting (e.g., [5]),
in which the usefulness is due to particular issues related to the bidirectionality.
Maturity level. The main existing approaches for bidirectional transformations are im-
plemented by means a tool (practical approaches), often available on internet (e.g., [28,
26]). However, other approaches, despite the theoretical development (e.g., [9, 10]) have
not been yet implemented by meas of a tool (theoretical approaches).

3.2 Functional Requirements (FR)

Functional requirements refer to the product capabilities and define how a bidirectional
approach behaves to meet user needs. These requirements define important characteris-
tics of a bidirectional approach that contribute to the success of such a language or tool.
Furthermore, part of these requirements concerns the source and target artifacts of the
transformations and the mechanisms that can be used.

Correctness. The simplest notion of correctness is the syntactic correctness: given a
well-formed source model, it must guarantee that the target model produced by the
transformation is wellformed. A significantly more complex notion is the semantic
correctness: does the produced target model must have the expected semantic prop-
erties [23]. In other words, if the target model conforms to the target metamodel speci-
fication and wellformednes rules, then the model transformation is syntactically correct;
whereas if the model transformation preserves the behavior of the source model, then it
is semantically correct [11].
Inconsistency management. It concerns the ability to deal with incomplete or inconsis-
tent artifacts. In fact, in the early phases of the software development life-cycle, require-
ments may not yet be fully understood; this often gives rise to ambiguous, incomplete



or inconsistent specifications, demanding for mechanisms for inconsistency manage-
ment. These mechanisms may be used to detect inconsistencies in the transformation or
in transformed models [23, 22, 24].
Modularity. It is the ability to compose existing transformations into new composite
ones. Decomposing a complex transformation into small steps may require mechanisms
to specify how these smaller transformations are combined [29, 4].
Traceability. It is the property of having a record of links between the source and
target elements of a transformation as well as the various stages of the transformation
process. Traceability links can be stored either in the target model or separately [29, 4,
8]. To support it, tools need to provide mechanisms to maintain an explicit link between
the source and target models [23, 22, 24].
Change Propagation. Bidirectional approaches have to correctly propagate changes
occurring in models from a direction to another. In order to support change propa-
gation, bidirectional approaches may provide mechanism for an incremental updates
or consistency management. Unfortunately, some approaches require to translate the
source model into some standardized format (e.g., XML) before the transformation ex-
ecution, and to translate again to obtain the target model. A clear disadvantage of such
an approach concerns the difficult to synchronize models when changes are made [23,
22, 24]. Whereas, [35] propose a change propagating transformation language that sup-
ports the preservation of target changes by back propagating them toward the source.
On the one hand, conflicts may arise each time the generated target should be merged
with the existing one; on the other hand, the back propagation poses some problems
related to the invertibility of transformations.
Incrementality. It refers to the ability to update existing target models on the base on
changes made in the source models, and vice versa [7]. In particular, incremental trans-
formations synchronize two models by propagating modifications such that information
not covered by the transformation can be preserved and the computational effort can be
minimized. In contrast, a classical batch transformation synchronizes two models tak-
ing a source model as input and computes the resulting target model from scratch, and
vice versa [17]. This property can be achieved, for example, by using traceability links.
When any of the source models are modified and the transformation is executed again,
the necessary changes to the target are determined and applied. At the same time, the
target elements may be preserved. In general, incremental transformations are able to
avoid loss of information (e.g., elements discarded by the mapping).
Uniqueness. It refers to the number of solutions generated by the bidirectional ap-
proach [4]. If the transformation is non-deterministic, it may exist more than one way
to keep models in a consistent way. Most of the existing tools generate a single solution.
Some recent approaches are able to generate all the possible solutions according to a
non-deterministic specification (e.g., [5]).
Termination. A model transformation provides termination, if it always terminates and
leads to a result [4].
Symmetric/Asymmetric behavior. Transformations are asymmetric when they work
between a concrete set of models and a strict abstraction of this, and the abstract set of
models contains strict less information [31]. For instance, [15, 36] are asymmetric trans-



formations since two models that need to be synchronized must be one an abstraction
of the other. On the contrary, the transformation is symmetric.
Type of Artifact. The distinction concerns the kinds of artifacts being transformed [23].
Program transformations involve programs (i.e., source code, bytecode, or machine
code); Model transformations involve software models. According to [23], the latter
term encompasses the former since a model can range from abstract analysis models,
over more concrete design models, to very concrete models of source code. Hence,
model transformations also include transformations from a more abstract to a more
concrete model (e.g., from design to code) and vice versa (e.g., in a reverse engineering
context). Model transformations are obviously needed in common tools such as code
generators and parsers.
Data Model. It refers to the way in which data are represented into the tool. In particu-
lar, data can be represented by means of a graphs or trees.
Endogenous/Exogenous transformations. Models need to be expressed in some mod-
eling language (e.g., UML for design models, or programming languages for source
code models). The syntax and semantics of the modeling language itself is expressed
by a metamodel (e.g., the UML metamodel). Based on the language in which the source
and target models of a transformation are expressed, a distinction can be made be-
tween endogenous and exogenous transformations [23]. Endogenous transformations
are transformations between models expressed in the same language. Exogenous trans-
formations are transformations between models expressed using different languages.
Transformation Mechanisms. The major distinction between transformation mecha-
nisms is whether they rely on a declarative or an operational (or imperative) approach.
Declarative approaches focus on the what aspect, i.e., they focus on what needs to be
transformed into what by defining a relation between the source and target models. Op-
erational approaches focus on the how aspect, i.e., they focus on how the transformation
itself needs to be performed by specifying the steps that are required to derive the target
models from the source models. Declarative approaches (e.g., [1]) are attractive be-
cause particular services such as source model traversal, traceability management and
automatic bidirectionality can be offered by an underlying reasoning engine.

There are several aspects that can be made implicit in a transformation language:
(i) navigation of a source model, (ii) creation of target model and (iii) order of rule ex-
ecution. As such, declarative transformations tend to be easier to write and understand
by software engineers. Operational (or constructive) approaches (e.g., [30]) may be re-
quired to implement transformations for which declarative approaches fail to guarantee
their services. Especially when the application order of a set of transformations needs to
be controlled explicitly, an imperative approach is more appropriate thanks to its built-
in notions of sequence, selection and iteration. Such explicit control may be required to
implement transformations that reconcile source and target models after they were both
heavily manipulated outside that transformation tool.

Declarative approaches include, but are not limited to, all of the following ap-
proaches: functional programming, logic programming and graph transformation.

- Functional programming. Such an approach towards model transformation is ap-
pealing, since any transformation can be regarded as a function that transforms
some input (the source model) into some output (the target model). In most func-



tional languages, functions are first class, implying that transformations can be ma-
nipulated as models too. An important disadvantage of the functional approach is
that it becomes awkward to maintain state during transformation.

- Logic programming. A logic language (e.g., Prolog or Mercury) has many features
that are of direct interest for model transformation: backtracking, constraint prop-
agation (in the case of constraint logic programming languages), and unification.
Additionally, logic languages always offer a query mechanism, which means that
no separate query language needs to be provided.

- Graph transformation. It is a set of techniques and associated formalisms that are
directly applicable to model transformation [16]. It has many advantages. It is a
visual notation: the source, target and the transformation itself can be expressed in
a visual way. It offers mechanism to compose smaller transformations into more
complex ones.

In-place/Out-of-place transformations. If the number of involved models is only one,
the source and target model are the same and all changes are made in-place. Other
endogenous transformations create model elements in one model based on properties of
another model (regardless of the fact that both models conform to the same metamodel).
Such transformations are called out-place [24]. Note that exogenous transformations are
always out-place.

3.3 Non Functional Requirements (NFR)

Non functional requirements may be considered as the quality attributes for a bidirec-
tional transformation.
Extensibility and Modifiability. The extensibility of a tool refers to the ease in which
it can be extended with new features. The modifiability of an artifact refers the ability
of a bidirectional transformation to be modified and adapted to provide different or
additional features [25].
Usability and Utility. The language or tool should be useful, which means that it has
to serve to a practical purpose. On the other hand, it has to be usable too, which means
that it should be intuitive and efficient to use [23].
Scalability. It is the ability to cope with large and complex transformations or transfor-
mations of large and complex software models without sacrificing performance [23].
Robustness. It is the ability to manage invalid models. If unexpected errors are handled
and invalid source models are managed, then the approach provides robustness [4].
Verbosity and Conciseness. Conciseness means that the transformation language should
have as few syntactic constructs as possible. From a practical point of view, however,
this often requires more work to specify complex transformations. Hence, the language
should be more verbose by introducing extra syntactic sugar for frequently used syn-
tactic constructs. It is always a difficult task to find the right balance between these two
conflicting goals [23, 25].
Interoperability. It refers to the ability of a tool to integrate itself with other tools, used
within the (model-driven) software engineering process [25]. Sometimes designers wish
to use and interchange models among different modeling tools and modeling languages.
A typical example is the translation of some tool-specific representation of UML models



into XMI (and vice versa), OMG’s XML-based standard for model interchange. This
facilitates exchanging UML models between different UML modeling tools [22].
Reference Platform (Standardization). It indicates whether the transform tool is com-
pliant to all the relevant standards (e.g., XML, UML, MOF) [25]. Many tools can export
and import models in a standard form, typically XML; an external tool can then take the
exported model and transform it [29]. Most of them are implemented within EMF [5,
12, 13, 21]. Others adopt an algebraic approach [18, 3] and work on files or data strings,
which are not directly integrated with the environment EMF.
Verifiability and validity. It concerns the ability to test, verify and validate models and
transformations. Since transformations can be considered as a special kind of software
programs, systematic testing and validation techniques can be applied to them to ensure
that they have the desired behavior [23, 4]. Verification of (sets) of model transforma-
tions is needed to assure that they produce well-formed and correct models, and pre-
serve (or improve) desirable properties such as (syntactical or semantical) correctness,
consistency, and so on [22].

Existing approaches and tools involve testing (e.g., test case generation for model
transformations), model checking, or analysis performed only on executing programs
(e.g., run-time monitoring) [2]. In contrast, [2] and [14] propose an approach to ana-
lyze model transformation by means of a logic environment, able to verify if the trans-
formation satisfy certain properties (correctness, well-formedness, non-determinism,
etc.). Furthermore, existing functional approaches perform model transformation anal-
ysis [18, 27], in order to evaluate the transformation validity (generally, in terms of
correctness) before its execution.

4 Applications

The proposed taxonomy can be applied for assessing characteristics of the existing bidi-
rectional approaches. As already said, each language or tool provides different charac-
teristics, and designers can choose the desired approach by using the set of evaluation
criteria proposed in this taxonomy. The application of this taxonomy on the existing
approaches aims to emphasize strengths and weaknesses.

The most common paradigms used in the existing approaches are the declarative
and the functional paradigms. Among the existing declarative approaches, we are inter-
ested to consider: (i) TGGs [28], a bidirectional languages based on graph grammars;
(ii) QVT-Relations [26], a declarative bidirectional language part of the QVT standard;
(iii) JTL [5], a constraint-based bidirectional transformation language. Moreover, we
are interested in considering some functional approaches, that are: (i) Lenses [3], an
asymmetric bidirectional programming language between a concrete structure and a
correspondent abstract view, (ii) GRound-Tram [18], a functional language-based mod-
eling framework; (iii) BiFlux [27], an integrated modeling framework for developing
bidirectional model transformations based on graph query language.

The proposed taxonomy represents a a preliminary work; in fact, the real benefit
is represented by the result of the application over the existing work. The application
of the selected features will highlight weaknesses and criticality of the bidirectional
approaches .



5 Related Work

This work is essentially based on the existing works which propose taxonomies and
characterizations for model transformation and bidirectionality.

Important aspects of bidirectional transformations have been discussed during the
working group of the Dagstuhl seminars on Language Engineering for Model-Driven
Software Development in 2005 and 2011 [6, 20]. In general, model transformations can
be characterized by different orthogonal concerns (see [7] for a detailed classification).
Czarnecki and Helsen in [7] present a survey of model transformation techniques with a
particular emphasis on rule-based approaches such as those based on graph transforma-
tions. They mention directionality, but do not focus on it. In [23] the authors propose a
taxonomy for model transformation, in particular they consider functional requirements
that contribute to the success of the tool or language and non-functional requirements
or quality requirements. In [24], the taxonomy is applied to graph transformations, in
particular AGG [33] and Fujaba2. In [22] the same taxonomy is presented again, but
emphasizing the importance of other concepts such as composition, interoperability and
bidirectionality. [25] proposes a taxonomy based only on non-functional features, refer-
ring to languages and artifacts. [29] puts emphasis on standardization and languages for
model transformation. [4] considers existing taxonomies and proposes a set of most
important features. Finally, [34] performs a comparison among existing taxonomies.

The above mentioned works consider general model transformation. A specific tax-
onomy for bidirectional transformations has not yet been proposed, however there have
been several works analyzing characteristics and semantic issues of bidirectional model
transformations. Among them, in [32] the QVT-R bidirectional transformation language
is illustrated and semantic issues and open questions about bidirectionality are dis-
cussed. [31] explores the landscape of bidirectional model transformations until the
2007. [19] proposes a survey on TGGs tools.

6 Conclusion

In Model Driven Engineering, bidirectional transformations are considered a core in-
gredient for managing both the consistency and synchronization of two or more related
models. However, current languages still lack of a common understanding of its se-
mantic implications hampering their applicability in practice. This paper proposed a
set of relevant properties pertaining bidirectional model transformations. It is based on
the existing literature and the characteristics of existing approaches. This work aims to
represent a first step towards a taxonomy that can be used, among others, to help devel-
opers in deciding which bidirectional transformation language or tool is more suitable
for different types of tasks. In order to do this, as future work, we plan to extend the
taxonomy with other features for bidirectionality and apply it to existing languages and
tools for bidirectionality.

2 http://www.fujaba.de/
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28. A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In in Proc.
of the 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG ‘94),
Herrsching (D. Springer, 1995.

29. S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of Model-Driven
Software Development. IEEE Softw., 20(5):42–45, 2003.

30. J. Sprinkle, A. Agrawal, T. Levendovszky, F. Shi, and G. Karsai. Domain Model Translation
Using Graph Transformations. In 10th IEEE Int. Conf. and Workshop on the Engineering of
Computer-Based Systems, pages 159–168. IEEE Computer Society, 2003.

31. P. Stevens. A Landscape of Bidirectional Model Transformations. In R. Lämmel, J. Visser,
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Abstract. We all use software modelling in some sense, often without
using this term. We also tend to use increasingly sophisticated software
languages to express our design and implementation intentions towards
the machine and towards our peers. We also occasionally engage in meta-
modelling as a process of shaping the language of interest, and in meg-
amodelling as an activity of positioning models of various kinds with
respect to one another.
This paper is an attempt to provide an gentle introduction to modelling
the linguistic side of software evolution; some advanced users of model-
ware will find most of it rather pedestrian. Here we provide a summary
of the interactive tutorial, explain the basic terminology and provide
enough references to get one started as a software linguist and/or a meg-
amodeller.

1 Introduction

This paper is intended to serve as very introductory material into models, lan-
guages and their part in software evolution — in short, it has the same role as
the tutorial itself. However, the tutorial was interactive, yet the paper is not:
readers familiar with certain subtopics would have to go faster through certain
sections or skip them over.

In §2, we talk about languages in general and languages in software engineer-
ing. In §3, we move towards models as simplifications of software systems. The
subsections of §4 slowly explain megamodelling and different flavours of it. The
tutorial paper is concluded by §5.

2 Software Linguistics

Let us start by examining what a language is in a software context.
In Wikipedia, the concept is described3 as follows:

Language is the human ability to acquire and use complex systems of
communication, and a language is any specific example of such a system.
The scientific study of language is called linguistics.

3
http://en.wikipedia.org/wiki/Language.
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Even leaving aside the anthropocentricity of this definition, we see that lan-
guages are communication systems — spoken, written, symbol, diagrammatic.
As communication systems, languages have several properties, including struc-
ture, meaning and abstraction.

Structure, often also referred to as syntax [7], is about how sentences (pro-
grams) of a language are constructed or deconstructed, and in general what
components of sentences (programs) can be identified and how the language al-
lows us to put them together. In natural and software languages, the structure is
often recursive, allowing to create an infinite number of statements of arbitrary
complexity.

Meaning, also called semantics [12], assigns sense and value to language
constructs — for the sake of simplicity, we mostly assume they are syntacti-
cally correct before being concerned with their meaning; in some rare cases like
automated error correction we could also contemplate the meaning of incorrect
programs. There is usually a tight interplay between structure and meaning, so
that by changing the structure of a sentence, you change its meaning — the
activity commonly referred to as “programming”.

Abstraction is what allows discussion of arbitrary ideas and concepts, that
may be displaced in time and space. Abstractions allow engineers to reason about
physical systems by focusing on relevant details and ignoring extraneous ones [5].
Of course, the most interesting results are the ones that could not be obtained
from the real system — so, predictions are preferred to measurements [20]. A
crucial feature of natural languages as well as many software languages is the
ability to define and refine abstractions — for instance, in the way this intro-
duction defines English language abstractions for discussing software languages.

Early written communication (cave paintings) had symbols, but their mean-
ing (if any) remains unknown. Early writing systems used pictures with gram-
matical structure. Such picture is, in fact, a model of a concrete object: a picture
of a bull can confer the idea of doing something with it, but cannot feed you;
one does not simply smoke an image of a pipe. Once used for abstraction, the
symbols can be composed in nontrivial ways. For instance, in hieroglyphics, the
word “Pharaoh” is written as a combination of a duck and a circle, because the
Pharaoh is the son of Ra, since “son” is pronounced similarly to “duck” and Ra
is a god of sun, which is modelled by a circle for its shape [14]. In a similarly
nontrivial way, “a butcher’s” means “a look” in Cockney rhyming slang, since
“look” rhymes with “a butcher’s hook” and “butcher’s” is a shortened version
thereof [19]. Such combinations and combining ways are the main reason new
software languages are difficult to learn, if they are paradigmatically far from
the already familiar languages: the idioms of C are too different from the idioms
of English; and the idioms of Haskell are too different from the idioms of C.

Languages in software engineering as used in multiple ways. There are natural
languages, which are reused and extended (by jargon) by developers. There are
also formal languages which are also largely reused after their underlying theo-
ries being proposed and developed in fundamental research — essentially they
are the same as natural languages, but much easier for automated processing and



reasoning. Finally, there are also artificial languages which are specifically made
by humans — such as C or Esperanto. Usually all kinds of automation-enabling
languages that are used in construction and maintenance of software, are referred
to as software languages: these are programming languages, markup notations,
application programming interfaces, modelling languages, query languages, but
also ontologies, visual notations with known semantics, convention-bound sub-
sets of natural languages, etc.

For instance, any API (application programming interface) is a software lan-
guage [1], because it clearly possesses linguistic properties such as:

⇧ API has structure (described in the documentation)
⇧ API has meaning (defined by implementation)
⇧ API has abstractions (contained in its architecture)

However, API does not typically allow definition of new abstractions. For
classical programming languages, we would have a similar list, but in domain-
specific languages we would have abstractions limited by a particular domain,
not by the system design (which means possibly infinite number of them, even if
the abstraction mechanism is still lacking), while general purpose programming
languages usually leave it to the programmer to define arbitrary abstractions
(though not necessarily abstract over arbitrary parts of the language).

3 Moving to models

A model is a simplification of a system built with an intended goal in mind:
a list of names is a model of a party useful for planning sitting arrangements;
“CamelCase” is a model of naming that compresses multiple words into one. Any
model should be able to answer some questions in place of the actual system [2].
Models are abstractions that can provide information about the consequences of
choosing a specific solution before investing into implementation of the actual
software system [29].

⇧ Typically, a model represents a system.
⇧ Some models represent real systems (programs, configurations, interfaces)
⇧ Some models represent abstract systems (languages, technologies, mappings)
⇧ Some models are descriptive/illustrative (used for comprehension)
⇧ Some models are prescriptive/normative (used for conformance)

A model may be written (communicated) as a diagram or a text or some other
representation — possibly even as a piece of software that allows to simulate
behaviour. One might draw a model as an ad hoc illustration — similar to a
crude cave painting — but for clarity and ease of communication across time
and space, one may want to use a modelling language such as UML, BNF, XSD,
CMOF, Z, ASN.1, etc.

Systematically discussing, researching and dissecting software languages has
inevitably led to a special kind of models — called metamodels — that define



software languages. For example, a grammar [36] as a definition of a program-
ming language, is a metamodel, and programs written in such a language, are be-
havioural models conforming to that metamodel. Similarly, a database schema,
an protocol description or an algebraic data type definition are examples of
metamodels, since they all encapsulate knowledge about allowable (grammat-
ical) structures of a software language, each in their corresponding technical
spaces.

Formally speaking, a metamodel models a modelling language [25], in which
models are written, and such models are told to conform to this metamodel: an
XML file conforms to an XML Schema definition; a Haskell program conforms
to the metamodel of Haskell; a program depending on a library uses function
calls according to its API.

4 Megamodels explain relations between models

A model of a system of models is called a megamodel. For example, the last
paragraph of the previous section is a megamodel (in a natural language), since
it models the relations between software artefacts (model, metamodel, language).
Megamodels are crucial for big-picture understanding of complex systems [4]. In
literature they can be called megamodels [4,16,17], macromodels [28], linguistic
architecture models [15,34] or technology models [22]. Megamodels can be partial
in the sense of not being complete deterministic specifications of underlying
systems [13], and they can also be presented in a way that gradually exposes the
system in an increasingly detailed way [34,23,35].

A cave painting of a bison may be useful to understand the concept of hunting
by abstracting from the personalities of the hunters and the measurements of
the animal. However, to surface and understand its implications such as the
near extinction and recovery of the species, one must also have models of bison
populations, ecology, human society, USA politics, Native American politics,
and so on — and be able to see how they relate to each other. In the same way,
megamodels can aid in understanding software technologies, comparing them
and assessing the implications of design choices in software construction.

4.1 Informal megamodelling

A cave-painting approach to megamodelling could be as minimalistic as follows:

⇧ draw a diagram with models as nodes
⇧ add relations between them
⇧ describe relations in a natural language

The focus of this approach is on understanding and communication [30,4]. For
example, many papers, books and specifications in MDE contain an explanation
of the stack of M1, M2 and M3 models (models, metamodels and metameta-
models correspondingly) which positions them with respect to one another by



postulating that models conform to a metamodel and both M2 and M3 conform
to a metametamodel. Such an explanation, as well as its visual representation,
is a megamodel. We have to draw your attention here to the fact that such a
megamodel leaves many questions open and on a certain level of understanding
it is incorrect: many models conform to one metamodel, and many metamodels
can conform to one metametamodel, and the fact that the metametamodel con-
forms to itself, is no more than an implementation detail from MDA. That is the
reason for various more formal attempts to exist to express the same situation
in UML or another universal notation.

There is a big subset of informal megamodelling techniques referred to as
“natural” [30] — it happens all the time in unstructured environments, whenever
we use conveniently available salt and pepper dispensers as proxies for entities
at a conference banquet discussion, or in general whenever we use throwaway
abstractions to get to the point in a quick and dirty (volatile) way.

4.2 Ad hoc megamodelling

A slightly more detailed and yet still concrete approach is to explain relations
between models and languages by showing mappings between them, without
trying to generalise them to relations. Such mappings are easier to define and
formalise and may be enough to understand the system. Thus, instead of saying
“this model belongs to this language”, we show that there is a tool which processes
that model and that this tool is a software language processor. Usually such
models mix architectural and implementational elements and when it comes to
comprehension, almost impenetrable without extensive study of the system at
hand. Here is an example [32]:

After some frustration we are free to observe here how S(N), whatever it is4,
becomes GBGF (N) after a process called “grammar extraction” [33], and that
4

In fact, S(N) is a specification of a syntactic notation such as “an Extended Backus-

Naur Form dialect that uses dots to separate production rules, same level indentation

to list alternatives, ...” [31].



GBGF (N) is linked either bijectively or bidirectionally to G0
BGF (N), and all

these boxes titled with symbols, subscripts, dashes and parentheses, are linked
to their counterparts from a similarly looking chain of transformations that seem
to be related to N 0 rather than to N .

Even with a fair share of guesswork, this megamodel does not immediately be-
stow its observer with any piece of freshly granted knowledge. This megamodel
basically encapsulates everything one could learn from the corresponding pa-
per [32], condensing 17 pages into one diagram. It is more of a visualisation
tactic than a comprehension strategy.

Many methods of ad hoc megamodelling are transformational: they use a
newly introduced notation, different for each of them, to demonstrate how some
software artefacts get turned into other artefacts. Unlike natural megamodelling,
some ad hoc megamodelling approaches have very clearly defined semantics for
their components instead of a natural language description. Unlike formal meg-
amodelling that we will introduce below, they are typically fairly idiosyncratic
and are not expressive enough to unambiguously model a situation sufficiently
different from the study showcasing their application.

4.3 Instrumental megamodelling

One of the alternative approaches is to rely on some instrumental support: a tool
or a language, perhaps both, that can do what a megamodel should — express
relations between models, model transformations and languages. Hence, by us-
ing such a tool we can focus on providing such descriptions for a given system,
perfecting them, reflecting on their evolution, etc. Committing to a framework
means sacrificing at least some of the flexibility that natural and ad hoc meg-
amodelling provide, in exchange of a much more precise understanding and def-
inition of each component. An instrumental megamodel is not a cave painting
anymore — it is a Latin text. Latin is a language everyone kinda understands,
thus enabling its dissemination to a broader public. It might not be the best
language to deliver you particular ideas, but once you get a hold on its cases,
declensions and conjugations, you can use it again and again for many other
tasks.

Here is an example megamodel by Favre, Lämmel and Varanovich [15]:



For a software engineer using such a megamodel “in Latin” means that each
of these components is clickable and resolvable to a (fragment of a) real soft-
ware artefact. In this particular case, the megamodelling language is MegaL5,
it supports entities such as “language”, “function”, “technology”, “program”, etc,
and relations such as “subsetOf”, “dependsOn”, “conformsTo”, “definitionOf” and
many others. There are other megamodelling languages: AMMA6, MEGAF7,
SPEM8, MCAST9, etc, some people use categorical diagrams, which are closer
to the next kind of megamodelling.

The process of navigating a megamodel and assigning a story to it, is called
renarration [34]. This technique is needed quite often, since detailed megamodels
can get bulky and rather intimidating — yet the same megamodels are supposed
to be used to simplify the process of understanding a software system or commu-
nicating such an understanding, not to obfuscate it. Indeed, when a megamodel is
drawn step by step with increasing level of detail (or vice verse, in increasing level
of abstraction), it lets the user treat and comprehend one element at a time while
slowly uncovering the intentions behind them. For MegaL, renarration operators
include addition/removal of declarations, type restriction/generalisation, zoom-
ing in/out, instantiation/parametrisation, connection/disconnection and back-
tracking [23].

4.4 Formal megamodelling

Relying on tool support can be nice, but it is even better to be backed up by a
theory that allows you to prove certain properties and verify your megamodels
through solid analysis. Such approaches have rich mathematical foundations and
vary greatly in form and taste. The choice is wide, but let us consider two
different examples a little closer.

5 MegaL: Megamodelling Language [15].
6 AMMA: Atlas Model Management Architecture [3].
7 MEGAF: Megamodelling Framework [18].
8 SPEM: Software & Systems Process Engineering Metamodel [27].
9 MCAST: Macromodel Creation and Solving Tool [28].



example (�µ�).
The sequence of greek letters used here above are ambiguous, in particular

because there is no formal rule for the ordering of letters. This is because the
concepts described above corresponds to graph patterns, not simply sequences.
We have identified a lot of interesting patterns that corresponds to known
concepts. Some examples are provided in the next figure.
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Fig. 8. MegaModel: Examples of interesting mega-patterns (� )

5 Conclusion

In this paper we introduced a megamodel to describe MDE concepts and their
relationships. This megamodel is summarized in Figure 9. The view presented
here corresponds has been simplified for the purpose of this paper. A more
complete view making explicit the relationships between the megamodel, the
set theory and the language theory can be found in [8].

In fact, by using the megamodel we discovered that it was much more pow-
erful than expected. It really helped us to connect concepts and technologies
that were apparently disconnected. Surprisingly we discovered that a lot of
known issues could be model as graph patterns. And we are still discovering
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Suppose that instead of trying to come up with all kinds of relations that
system fragments can have among themselves, we limit the relations to the most
essential ones. Such relations can be well-understood and defined with relative
ease for any particular technological space. We can refer to Jean-Marie Favre’s
relations [16,14]: µ — representationOf, ✏ — elementOf, � — decomposedIn, �
— conformsTo, ⌧ transformedTo. Then, we can on one hand afford to define each
of them for our particular domain (e.g., grammarware, XML, Cobol, EMF); and
on the other hand see megapatterns in them [16]:

For instance, in the top left corner we see an entity (say, X) that models
another entity (say, Y ), while X is also being transformed to Y . This is classi-
cal forward engineering, as opposed to reverse engineering where X models Y
while the system Y is being transformed into the model X [6]. By now you can
recognise the diagram of the original taxonomy by Chikofsky and Cross as an
ad hoc megamodel, which also contains much more details than such a pattern,
which is why the text of the paper is an important renarration of it. A similar
pattern is displayed in the right bottom corner where X is being transformed
into Y while also conforming to it — this could be grammatical inference, or
constructing and XML schema from a selection of documents, or deriving a par-
tial metamodel from a modelbase, or anything of that kind. All megapatterns
are simplifications of real scenarios and as such, they are in some sense “wrong”
— as are all models.

As another example of formal megamodelling, here is Diskin’s definition of
complex heterogeneous model mappings [9]:

D.3 Complex heterogeneous model mappings

Simple heterogeneous model mappings defined above give rise to a functor
µ : Modmap � MModmap. The goal of this section is to outline, semi-formally,
how this description can be extended for complex mappings involving derived
elements.

Let QL be a query language, that is, a signature of diagram operations over
graphs. It defines a graph MModmapQL of metamodels and their complex
mappings described in Sect. C. Similarly, we have graph ModmapQL of models
and their complex mappings like, e.g., pairs mappings (f,vvv) and (g,www) shown
in Fig. 41(b). (Recall that we actually deal with commutative square diagrams:
f ; tA = tm;vvv and g; tB = tM ;www.)

AAA �======
vvv

OOO ======
www

� BBB

A:AAA

:µQL

•
�

�����
f :vvv

M :OOO

:µQL

•
�

����
g:www

� B:BBB

:µQL

•
�

Fig. 43: Encapsulation of complex
heterogeneous mappings

By encapsulating typing mappings in-
side nodes, and metamodel mappings inside
arrows, we may rewrite the upper half of
diagram Fig. 42(a) as shown in Fig. 43.

A warning about arrow notation is in
order. Graph mappings in Fig. 38(c) are
denoted by double arrows to distinguish
them from links (single-line arrows), and di-
agrams of graph mappings are triple arrows.
Complex mappings add one more dimension
of encapsulation — derived elements, and hence mappings vvv, www should be de-
noted by triple arrows while mappings-diagrams f :vvv, g:www by quadruple arrows.
To avoid this monstrous notation, we sacrifice consistency. It is partially restored
by using bullet-end arrows for links: the latter may be thought of as arrows with
“zero-line” bodies.

Thus, similarly to simple heterogeneous model mappings, complex ones con-
tain complex metamodel mappings and hence there is a graph morphism

µQL : ModmapQL � MModmapQL

(vertical links in Fig. 43 are its instances). We want to turn the two graphs above
into categories (and µQL into a functor), i.e., we need to define composition of
complex mappings.

Composition of complex metamodel mappings is easy and amounts to term
substitution. As mentioned above in Sect. C.2, with an accurate definition of a
query langauge’s syntax, compositionality of metamodel mappings is a routine
exercise in categorical algebra (with the so called Kleisli triples [69]). It turns
graph MModmapQL into a category (the Kleisli category of the monad defined
by the query language).

Defining composition of complex model mappings is much harder because
we need to compose query executions, i.e., application instances of operations
rather than terms (definitions of operations). It can be done relatively easily
for monotonic queries defined above on p.69 (details will appear elsewhere).
Thus, if all queries are monotonic, graph ModmapQL can also be turned into a
category, whose arrows are square diagrams similar to those shown in Fig. 39.

74

Single-line arrows are links, double arrows are graph mappings, triple arrows
are diagrams of graph mappings that encapsulate type mappings inside nodes



and metamodel mappings inside arrows. Even this extremely condensed tile di-
agram is a simplification — since v and w are complex mappings, they should
be drawn as triple arrows, while f : v and g : w become quadruple arrows.
Still, the diagram itself remains structurally simple while still being unshakably
formal. If we provide an accurate definition of our language’s syntax, composi-
tionality of metamodel mappings (a routine categorical process of defining Kleisli
triples [24]), this graph turns into a (Kleisli) category. By going through some
trouble or by limiting ourselves to monotonic queries, we can do the same for
model mappings (not just metamodel mappings) [9].

Within this approach, each megapattern — divergence, convergence, revi-
sion of match, revision of update, improvement of match, conflict resolution
— forms a tile of four involved software artefacts and labelled arrows between
some of them. Then, tile algebra provides uniform rules to compose such tiles
together [10].

4.5 Space megamodelling

Recall that a metamodel is a model of a language. (The previous sentence is a
megamodel). Then, a megamodel is a model of a technology, since it shows how all
involved fragments fit together to facilitate the process. In the previous section
we have also made acquaintance with megapatterns — models of processes within
a technology. Just one more step brings us to a abstract megamodel of an entire
technological space [21]. For example [38]:
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Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:

• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5

This megamodel models everything that can possibly happen when you are
doing parsing, unparsing, pretty-printing, formatting, templating, stropping, etc.



Each element here is not resolvable to a concrete artefact, but rather to a sub-
space with its own stack of models and metamodels. For example, a concrete
syntax tree (Cst) element found near the centre of the megamodel, represents
concrete syntax trees, their definition as a concrete grammar, and all the tech-
niques and tools that create, transform and validate them. A vector drawing
(Dra, think SVG or GraphML), on the other hand, implies having a metamodel
defining graphical elements, their coordinates and other attributes, as well as
transformations such as a change of colour or realignment.

When renarrated, such a megamodel commits to becoming a representation
of one particular technology, hence removing some of the elements that do not
exist there and detailing the others so that they become resolvable [35]. We can
also use the megamodel as a classificatory tool to look at existing techniques and
positioning them with respect to others [37]. For example, what is “model-to-
text transformation” commonly used in modelware frameworks and papers and
deliberately omitted from being explicitly mentioned on the megamodel? In fact,
it is a very particular path through this megamodel starting at Ast or Dia and
going to Lex (commonly referred to as a “template” in this particular scenario)
and then dropping straight to Str.

One can reasonably claim that such megamodels are in fact ontologies [8].

5 Conclusion

The tutorial was highly interactive and its biggest contribution to SATToSE
was the discussion. This paper is a humble attempt to summarise (some of the)
issues raised during both lecturing10 and the hands-on parts, and provide bibli-
ographical pointers for the most interested participants. There are many issues
in megamodelling that we did not sufficiently cover — in particular, modelling
the very nature of modelling [25,26] and taking both ontological and linguistical
aspects into account [20,11,8].

Language is an important instrument of structured and meaningful com-
munication, whether we use natural languages to convey information or create
artificial ones tailored to the domain. We model languages with metamodels,
since they are models of how software models can be put together. In practice,
metamodels take many different forms such as programming language grammars,
UML domain models, XML schemata and document types, library API defini-
tions. Megamodels are used to model software technologies as systems of models,
aimed first and foremost at understanding software systems, languages, tools and
relations between them. Megamodelling makes relations explicit, identifies roles
that software artefacts play and thus helps to understand technologies, compare
them, validate, debug and deploy in a broad sense.

10 Slides: http://grammarware.github.io/sattose/slides/Bagge.pdf.

http://grammarware.github.io/sattose/slides/Bagge.pdf
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