
Open and Original Problems in Software Language Engineering
2015 Workshop Report

Anya Helene Bagge
Bergen Language Design Laboratory, University of Bergen, Norway

anya@ii.uib.no
Vadim Zaytsev

Institute of Informatics, Universiteit van Amsterdam, The Netherlands
vadim@grammarware.net

ABSTRACT
OOPSLE is a workshop co-located with a re-engineering confer-
ence and serving as a venue for software language engineers to
meet outside the SLE conference to discuss either long-standing
problems that remain unresolved for years or decades, or oft-
avoided problems that everyone is so used to work around that
they stop noticing them at all. In 2015, it ran for the third
time. The list of topics discussed at the workshop, included
transformation in the presence of Boolean grammars, natural lan-
guage software interfaces, formally supported model management,
community-aware language design, domain-specific language de-
sign choices and uncertainty-aware development. A report such
as this one was requested by the participants, but more condensed
and general information can be found on our official webpage at
http://oopsle.github.io.

1. INTRODUCTION
The third international workshop on Open and Original Problems
in Software Language Engineering (OOPSLE’15), held on 6 March
2015 at SANER, followed the first two editions held at WCRE
2013 in Koblenz [4] and at CSMR-WCRE 2014 in Antwerp [6].
The main focus of the workshop remained in identifying and for-
mulating challenges in the software language engineering field —
the challenges that could be addressed later at venues like SLE,
MoDELS, SANER, ICSME, OOPSLA, ECOOP, PLDI, POPL
and others. The workshop was highly interactive, all speakers
were allocated generous time slots (45 minutes) and advised to
speak for one third of the time and reserve the rest for discus-
sion. In this report, requested by the participants at the end
of the workshop, we try to recall the highlights of the day and
document brief summaries of sessions.

Quoting the description distributed in the call for papers [4, 6]:

The field covered by the workshop, revolves around
“software languages” — all kinds of artificial languages
used in software development: for programming, mark-
up, pretty-printing, modelling, data description, for-
mal specification, evolution, etc. Software language
engineering is a relatively new research domain of sys-
tematic, disciplined and measurable approaches of de-
velopment, evolution and maintenance of such lan-
guages. Many concerns of software language engineer-
ing are acknowledged by reverse and forward software
engineers: robust parsing of language cocktails, fact
extraction from heterogeneous codebases, tool inter-
faces and interoperability, renovation of legacy sys-
tems, static and dynamic code analysis, language fea-

ture usage analysis, mining repositories and chresto-
mathies, library versioning and wrapping, etc.

There are research fields that have a list of known open problems
already, for example:

• 23 Hilbert’s problems [21]

• The POPLmark Challenge [33]

• Open problems in Boolean grammars [31]

The workshop was predominantly motivated by the lack of any
comparable list for the field of software language engineering. We
wanted to expose expertise hidden in the community and elicit
such problems in an explicit list. Another side of the workshop
was the hope of formulating open challenges related to software
language engineering. There are many contests, challenges, com-
petitions and benchmarks around:

• The benchmark collection of the POPLmark Challenge [33]

• LDTA Tool Challenge held at that workshop in 2011 [27]

• Language Workbench Challenge [17] held at CodeGenera-
tion yearly since 2011

• Transformation Tool Contest held seven times since 2007 [36]

• Rewrite Engines Competition held three times in 2006, 2008
and 2010 at WRLA [13]

• PLT Games held monthly in 2013 [29]

The full list of topics advised for workshop participants can be
found on the website: http://oopsle.github.io.

2. FORMAT
In 2013, we started this initiative as a small scale endeavour with
three sessions: the academic keynote given by Prof. Dr. Ralf
Lämmel (Universität Koblenz-Landau); the industrial keynote by
Dr. Darius Blasband (RainCode); and a freeform discussion ses-
sion attended by approximately ten people interested in the re-
search area.

The format evolved in 2014: we advertised the workshop more
broadly and received a number of submissions through Easy-
Chair. All of them were accepted for presentation. The authors of

http://oopsle.github.io
http://oopsle.github.io


the submissions received review-like feedback from the organizers,
some more detailed than others, and were asked to present their
contributions in a highly interactive fashion. Again, we had two
keynotes: the academic keynote was given by Prof. Dr. Sibylle
Schupp (Technische Universität Hamburg-Harburg); the indus-
trial one by Dr. Ira Baxter (Semantic Designs). The extended
abstracts of all submissions, including the keynotes, were bun-
dled in a pre-proceedings volume distributed among the work-
shop participants, as well as online through social media [5]. At
the end of the workshop we committed to eventually preparing a
post-proceedings special issue of the EC-EASST journal, possibly
combined with the contributions of OOPSLE 2013.

In 2015 we opted for a different format by strategically encour-
aging researchers from a broad selection of subdomains of soft-
ware language engineering to become workshop presenters. We
also moved to a one keynote format by inviting Prof. Dr. James
R. Cordy (Queen’s University), who is known for his work in
academia as well as in the industry. This allowed us to save time
in the programme and leave more space for discussions. The final
list contained the following presenters:

• James R. Cordy1 (grammarware engineering, program trans-
formation)

• Emily Hill2 (social software engineering, natural language
processing)

• Zinovy Diskin3 (model-driven engineering, formal methods)

• Alexander Serebrenik4 (collaborative software engineering,
human aspects)

• Mark Hills5 (rewriting logic, software analytics)

• Naoyasu Ubayashi6 (aspect-oriented software development,
software quality)

3. OOPSLE 2015
On the following pages we recall the presentations and discussions,
one subsection per presenting participant.

3.1 Source Transformation on Boolean Grammars:
Advantages and Challenges

In his keynote, James Cordy presented open problems in his work
with Andrew Stevenson on transformation in the presence of Boo-
lean grammars [37]. Boolean grammars [31] are an extension of
context-free grammars that include a conjunction (the“and”oper-
ator) and negation (frequently in the form of negative conjunction,
the “and not” operator) in addition to commonly used disjunction
(the choice operator “or”). For example, a rule NonNum ::= Expr

&! Number defines a nonterminal NonNum which must be an Expr

and must not be a Number at the same time. The class of Boolean
grammars is larger than that of context-free grammars, allowing
for languages such as

ABC ::= AB c* & a* BC

AB ::= a AB b | ε
BC ::= b BC c | ε

1http://research.cs.queensu.ca/home/cordy
2http://www.drew.edu/mcs/faculty
3http://gsd.uwaterloo.ca/zdiskin
4http://www.win.tue.nl/~aserebre
5http://www.cs.ecu.edu/hillsma
6http://posl.ait.kyushu-u.ac.jp/~ubayashi

which defines a language {anbncn} commonly known to not belong
to the context-free class.

Boolean grammars are not (yet) wildly popular, but has received
some attention in the programming language community recognis-
ing their usefulness in specifying processes that were impossible to
describe grammatically before them [41]. In the source-to-source
transformation framework TXL [8], Boolean grammars are used
to create “views” — additional ways of interpreting the input that
are particularly suited to a specific transformation. For example,
for transformations, it may be easier to see the language above as
a sequence of a’s, b’s and c’s, without any restriction:

ABC ::= AB c* & a* BC & A B C

A ::= a*

B ::= b*

C ::= c*

The advantage lies in the fact that from this point the first two
conjuncts are used for recognising the required language, but the
last one can be used for expressing transformations (e.g., aaA bbB

ccC => A B C). This enables context sensitivity without the usual
hassle of propagating artificial constructs in different ways, seen
in all attempts to break free from CFGs in concrete syntax pro-
cessing so far. Essentially, the most convenient one of the views is
used as the abstract syntax or layout-agnostic concrete syntax [42]
for comfortably expressing program transformations.

The challenge, however, lies in formal semantics of transforma-
tions of conjunctive clauses: after transforming one view, we can
end up with something not well-formed according to the other
views, and the resolution is unclear. For instance, the rule shown
above can be broken in three rules aaA => A, bbB => B and ccC

=> C; each subrule is correct, and their composition yields a well-
formed tree, but the intermediate results are not well-formed. So
far TXL was built on the assumption that every transformation
preserves well-formedness, and behaving differently when trans-
forming with Boolean grammars would be unexpected and unde-
sirable for the users.

Neither Alexander Okhotin, the inventor of Boolean grammars,
nor James Cordy and his TXL colleagues, have been able to
present a general solution so far. In simple cases there is no prob-
lem and simple heuristics can help, but in general the offending
transformation can happen several steps before it gets detected
and a later application of a rule can invalidate a parse of a much
bigger tree than it is scoped for. This is to be expected, though
— when we go beyond the class of context-free grammars, it is
hard to require transformations to be fully context-free either.

The central questions raised in James Cordy’s keynote are:

• How to integrate transformation with Boolean grammars in
TXL in such a way that TXL’s well-formedness properties
hold, without being so restrictive that practical applications
are hampered?

• How should we treat composite transformations that ulti-
mately have a valid result, but not until all transformations
are complete?

• What happens when different rules transform the same parse
tree in different views? How should the result be inter-
preted?

A number of solutions were sketched by the speaker, none of them
perfect:

http://research.cs.queensu.ca/home/cordy
http://www.drew.edu/mcs/faculty
http://gsd.uwaterloo.ca/zdiskin
http://www.win.tue.nl/~aserebre
http://www.cs.ecu.edu/hillsma
http://posl.ait.kyushu-u.ac.jp/~ubayashi


• Abandoning the well-formedness principle, which would be
un-TXL-ish.

• Turn conjuncts into disjuncts upon transformation: drop-
ping support for multiple views per program, and adding
little to what TXL could already do.

• Require patterns that include all views (proposed by Vadim
Zaytsev) — in general this defeats the purpose of having
views in TXL, and optimised implementations remain to be
investigated.

• Do full reparsing after transformation (with some optimisa-
tion of rule sets), fail the rule if reparsing fails, and let the
user worry about extending the grammar to accommodate
intermediate results.

• Work only on a single normalised representation, and trans-
form all rules to work on this representation. This solution
emerged in a discussion with the audience and would be
rather complicated to achieve for TXL which works solely
on concrete syntax trees, but may work in an abstract syn-
tax tree setting.

• Give up on Boolean grammars.

Although open problems remain in the use of Boolean grammars
in TXL, a number of common usage scenarios is already sup-
ported, including viewing a complicated expression grammar with
precedence as a simplified grammar with one nonterminal. Also,
while the grammar formalism is extended with Boolean operators,
there is no change in performance or semantics for users who do
not use these features. In the end, it remains to be seen how TXL
users will make use of Boolean grammars.

3.2 Engineering Iron Man’s J.A.R.V.I.S.
Emily Hill’s work mostly concerned natural language processing
techniques used for software engineering and reverse engineering.
This particular talk was inspired by the Iron Man [20] movie
where the titular hero talks to his computer assistant in casual
colloquial phrases using wording like “I’m thinking icing is the
probable factor” and “thrill me!”, potentially ambiguous even to a
human speaker. According to Emily Hill, we should strive toward
computer interfaces that require similar lack of strain in formulat-
ing a known solution into executable steps, as well as a comparable
luxury in abstract sketching instead of precise definitions that can
be refined automatically whenever needed.

This point of view was in considerable discord with the trend of
the last decades of programming in strict languages with fixed un-
ambiguous semantics (or at least attempting to reach that ideal).
However, she did identify related endeavours in code search, code
completion, method invocation search, naturalistic programming
languages [25], informal software representations [2], people-specific
languages [34], keyword programming [28] and representing nat-
ural language phrasal concepts [22].

Transforming among people-specific or even technology-specific
languages was easily identified as an open problem in software
language engineering. Transforming high level abstract and am-
biguous natural language description of a problem into executable
code for a solution was deemed to be the other side of the same
challenge, also stopping J.A.R.V.I.S.-like systems from appearing.
However, there were several fundamental issues named that need
to be addressed to even enable the first steps toward these goals:
semantic ambiguity (human languages are inherently ambiguous

and designed as such; computer languages are the opposite); pro-
ductivity (can programmers be as effective while operating such
a natural language interface as they can get with a keyboard and
a strict software language?); internationalisation (are all natural
language programming interfaces equally usable?). Possible so-
lutions included pulling out actionable verb phrases from the in-
put and searching for similarly labelled code examples like RAN-
DOOP; constrained natural languages like Pegasus; training pro-
gramming languages with people-specific DSLs; and in general in-
vestigating correspondence between high level natural languages
and programming/modelling languages.

A fundamental obstacle was identified by Zinovy Diskin to be
promptly supported by Valerio Cosentino: sometimes formalising,
modelling or programming are done in order to understand the
problem better, so avoiding this step in such situations will be
harmful. For the most part, the concluding question about the
feasibility for natural language interfaces and the reasons for the
lack of progress in the programming language community has been
answered, but the problem remained firmly standing.

3.3 Sociology of Model Management: Why Model
Mappings are to Be the First-class Citizens in
MDE

Zinovy Diskin is a prominent researcher in the field of model-
driven engineering, specialising in the formal side of it. Patterns
found in category theory in the form of commuting diagrams (for
pushouts, pullbacks and colimits in general), are directly applica-
ble to mathematical modelling of structures appearing in everyday
MDE practice: model merging, transformation, synchronisation,
well-formedness and consistency management can all be seen as
executions of categorical specifications [10]. Then, if an operation
can be defined diagrammatically, composition of them amounts
to trivial tiling of commuting squares [9].

The main focus of Zinovy Diskin at our workshop was not a defi-
nition of a new open problem, but rather a call for attention to the
fact that many problems from different domains have similarly-
looking solutions if you formalise them in a certain uniform way
(i.e., in categorical terms). The realities of MDE, presented based
on a recent survey involving industrial users [30], show a lot of
problems involving tool adoption and usability. Additionally, the
MDE pipeline is not streamlined and has a lot of “turbulence” [11]
because the real world knowledge gets tangled with transforma-
tions and code generation, without sufficiently strong support for
declaring and leveraging bidirectional transformations.

The solution, according to Diskin, lies in developing a sound the-
ory of model management. This can help change the fact that
metamodels often do not correspond to intuition and are in gen-
eral a sloppy way to define the structure of models (often omitting
constraints, having pieces of missing structure and allowing ille-
gally structured instances). The case discussed in detail was model
merge: without mappings the model of merging is insufficient (or
wrong), so viewing it categorically is natural; one only needs to
define three components for such a merge. These components are:
the equality or correspondence relation that shows which nodes
can be joined; the copying or mapping of nodes that cannot be
glued together; and a coverage claim to ensure that all the ele-
ments of the original models were preserved. The great theorem
of set merge states that for any sets A and B and correspondence
span R, there is only one merge X, up to isomorphism. Diskin
concluded by a Church-Turing-like thesis that any intuitive def-
inition of a set merge amounts to the formal operation he intro-
duced. This obviously includes popular tools for merging/weaving



of models: UML Package Merge, Kompose, ADORE, TreMer+
and others; and in general has been known to work on richer data
structures like graphs, attributed graphs, Petri nets, and models
for a given metamodel and equational constraints.

3.4 Software Languages: Designing for Humans
Alexander Serebrenik is active in many fields, one of which con-
cerns investigating diversity and variability of software project
participants and consequences on productivity and community
engagement. It is evident from his previous research on Gnome
Ecosystem [40] and other GitHub projects [39], participant hetero-
geneity contributes positively to many properties such as project
life expectancy, without noticeable negative effects. As we know
from other lines of research, diversity can also positively influ-
ence job satisfaction [1]. However, there have been projects like
The Digital City (“De Digitale Stad” in Dutch, now defunct) and
Stack Overflow that could profit from a wide variety of contribu-
tions but did not due to various reasons — The Digital City was
shut down after the organisers realised that a project started as a
way to get all sorts of people online, turned into a community of
middle-age white males; and the Stack Overflow community has
recently become concerned with the alienation users from non-
dominant categories report. Serebrenik confronted the audience
with the following three questions:

• Are differences among the software language users recog-
nised by the language designers?

• Should the differences among the users be taken into account
by the language designers?

• Have you applied any participatory techniques when design-
ing a software language? How did it go?

Nobody had direct experience, we turned out to be practition-
ers of so-called “I-design” (“I will add feature X because I think
users need it”) instead of participatory (“users, tell me what you
want!”) or observatory (“I observe the current user behaviour be-
fore proposing changes”) techniques. A number of well-known
cases were discussed: Radia Perlman’s LOGO-inspired TORTIS
language (1974, aimed at preschool children, remembered by Vadim
Zaytsev), Grace Hopper’s MATH-MATIC, FLOW-MATIC and
COBOL (1957–59, a disruptive innovation that initiated process-
ing programs in words, not in bytecode, also V.Z.), Helium7 and
error messages in Haskell (importance of distinguishing novice
users from experts, mentioned by Juriaan Hage), UML (as a scaled
up version of successful I-design, also J.H.), non-executable soft-
ware languages (used a lot in the model-driven community for
communication purposes, noted by Javier Luis Cánovas Izquierdo)
and finally SQL (J.H.) and Excel (A.S. himself).

3.5 Domain-Specific Languages for Program
Analysis

Mark Hills has been involved in the development of the Rascal
metaprogramming language [24] and its application to program
analysis tasks for several years. One of his recent projects is
DCFlow [23], an infrastructure for control flow graph construc-
tion with a domain-specific language as an exposed interface. In
his OOPSLE talk, Hills explained the language and confronted
the audience with language design questions that nobody could
truly answer, even though we have all at some point faced them
in our own work and had to make educated guesses. For example,
these were asked:
7http://www.cs.uu.nl/wiki/Helium

• In which cases does it make sense to create a new (internal
or external) domain-specific language as opposed to directly
using a language like Rascal?

• Are internal DSLs better than external or vice versa? To
which kinds of problems are they best suited? When should
we support both?

• What is the best way to support complex features without
tailoring the DSL too closely to a specific implementation
of such features?

The discussion involved many specific details of software language
design and concluded that it remains an open problem, even in the
presence of the overwhelming body of literature from van Wijn-
gaarden, Hoare and Wirth to Fowler, Parr and Völter. Such work
is observatory at best and mostly concerned with extracting guide-
lines from experience and providing toolset-specific cookbooks as
opposed to empirically validating the limits of common choices in
language design and implementation.

3.6 Uncertainty-Aware Programming
Naoyasu Ubayashi is a well-known authority on aspect-oriented
software development. At OOPSLE, he presented a new pro-
gramming paradigm: uncertainty-aware programming — which
he co-invented with his colleagues Takuya Fukamachi, Shintaro
Hosoai and Yasutaka Kamei.

In modern software engineering, many issues either have to be
refined and concretised in order to be compiled, or can be suffi-
ciently relaxed with parameterising and generics. However, there
remains many uncertainties:

• Should a code fragment be replaced by another code frag-
ment by applying refactoring?

• Which algorithm should be chosen to implement a solution
to a common problem?

• Which code variant should be deployed at the clients who
keep changing their requirements?

• Should a concern be described as an interface or a module?

Naoyasu Ubayashi thoroughly motivated his position both by
practical considerations and by theorising about known knowns
(the usual programming concerns), unknown knowns (software
asbestos), known unknowns [14] and unknown unknowns (impos-
sible to address without a recommender system based on a bigger
codebase than the one being built). The prototype implementa-
tion is based on his previous work on Archface [38], and relies not
only on aspect-orientation, but also on related work on partial
modelling [18] and variability calculus.

The proposal met very warm welcome since most participants ac-
knowledged the problem as open as well. Zinovy Diskin shared
his own discussion with the bidirectional transformation commu-
nity, and Vadim Zaytsev presented his yet unpublished classifi-
cation of composition of nondeterministic mappings. In general,
the work was deemed related to the entire body of research on
variability in software product line engineering, as well as to the
current modelware struggle for developing stable frameworks of
uncertainty-aware bidirectional model transformation [15] based
on annotations [19], metamodels [16] or deltas [12].

http://www.cs.uu.nl/wiki/Helium


4. CONCLUSION
The first three years of OOPSLE have seen three somewhat dif-
ferent formats for the workshop. Although all three events have
set aside ample time for discussion, both in each time slot and
as a separate item on the agenda, the programme was different.
The first instance was a small-scale event with two invited talks.
The second event was larger, featuring two keynotes and multiple
contributed talks through an open call. This year’s event featured
a single keynote and talks on an intentionally broad selection of
topics. Overall, we have perhaps had a higher share of invited/en-
couraged contributions than is usual for workshops. We feel this
has worked in our favour, particularly in fostering interesting and
open discussions. However, to avoid becoming a closed commu-
nity, we also intend to make sure to mix in a number of talks
from a normal open submission process. The conclusion drawn
by the participants at the end of the day was to proceed with
a 2016 instance and advertise the event better within the SLE
community.

In the future, it is important to continue dissemination of knowl-
edge of software language engineering, its artefacts, techniques,
tools and principles, at broadly scoped venues like MoDELS [42],
ICMT [3], ECMFA [26], ECOOP [7], OOPSLA [35], PLDI [32]
(all the papers referenced in this paragraph are examples of per-
fectly SLE-compatible content being presented at other venues
with broader audience). This will help attracting more people
to the research domain and hence will facilitate constructing and
polishing the list of open problems and challenges.

5. REFERENCES
[1] S. T. Acuña, M. Gómez, and N. J. Juzgado. How Do

Personality, Team Processes and Task Characteristics
Relate to Job Satisfaction and Software Quality?
Information & Software Technology, 51(3):627–639, 2009.

[2] K. C. Arnold and H. Lieberman. Managing Ambiguity in
Programming by Finding Unambiguous Examples. In
OOPSLA, pages 877–884. ACM, 2010.

[3] A. H. Bagge and R. Lämmel. Walk Your Tree Any Way
You Want. In ICMT, volume 7909 of LNCS, pages 33–49.
Springer, 2013.

[4] A. H. Bagge and V. Zaytsev. Workshop on Open and
Original Problems in Software Language Engineering
(OOPSLE 2013). In WCRE, pages 493–494. IEEE, 2013.

[5] A. H. Bagge and V. Zaytsev, editors. Extended Abstracts of
the 2th International Workshop on Open and Original
Problems in Software Language Engineering, OOPSLE
2014, Antwerpen, Belgium, 2014.

[6] A. H. Bagge and V. Zaytsev. International Workshop on
Open and Original Problems in Software Language
Engineering (OOPSLE 2014). In CSMR-WCRE, page 478.
IEEE, 2014.

[7] G. M. Bierman, M. Abadi, and M. Torgersen.
Understanding TypeScript. In ECOOP, volume 8586 of
LNCS, pages 257–281. Springer, 2014.

[8] J. R. Cordy. The TXL Source Transformation Language.
Science of Computer Programming, 61(3):190–210, 2006.

[9] Z. Diskin. Model Synchronization: Mappings, Tiles, and
Categories. In GTTSE 2009, volume 6491 of LNCS, pages
92–165. Springer, 2011.

[10] Z. Diskin and T. S. E. Maibaum. Category Theory and
Model-Driven Engineering: From Formal Semantics to
Design Patterns and Beyond. In ACCAT, volume 93 of
EPTCS, pages 1–21, 2012.

[11] Z. Diskin, A. Wider, H. Gholizadeh, and K. Czarnecki.

Towards a Rational Taxonomy for Increasingly Symmetric
Model Synchronization. In Theory and Practice of Model
Transformations, volume 8568 of LNCS, pages 57–73.
Springer, 2014.

[12] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to
Delta-Based Bidirectional Model Transformations: the
Asymmetric Case. JOT, 10:1–25, 2011.

[13] F. Durán, M. Roldán, J.-C. Bach, E. Balland, M. van den
Brand, J. R. Cordy, S. Eker, L. Engelen, M. de Jonge, and
K. T. Kalleberg. The Third Rewrite Engines Competition.
In WRLA, volume 6381 of LNCS, pages 243–261. Springer,
2010.

[14] S. G. Elbaum and D. S. Rosenblum. Known Unknowns:
Testing in the Presence of Uncertainty. In S. Cheung,
A. Orso, and M. D. Storey, editors, FSE, pages 833–836.
ACM, 2014.

[15] R. Eramo, A. Pierantonio, and G. Rosa. Uncertainty in
Bidirectional Transformations. In J. M. Atlee, V. Kulkarni,
T. Clark, R. B. France, and B. Rumpe, editors, MiSE,
pages 37–42. ACM, 2014.

[16] R. Eramo, A. Pierantonio, and G. Rosa. Representing
Uncertainty in Bidirectional Transformations. In D. Di
Ruscio and V. Zaytsev, editors, SATToSE 2014, CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

[17] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout,
S. Kelly, A. Loh, G. Konat, P. J. Molina, M. Palatnik,
R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, and
J. van der Woning. The State of the Art in Language
Workbenches. Conclusions from the Language Workbench
Challenge. In SLE, volume 8225 of LNCS. Springer, 2013.

[18] M. Famelis, R. Salay, and M. Chechik. Partial Models:
Towards Modeling and Reasoning with Uncertainty. In
M. Glinz, G. C. Murphy, and M. Pezzè, editors, ICSE,
pages 573–583. IEEE, 2012.

[19] M. Famelis, R. Salay, A. D. Sandro, and M. Chechik.
Transformation of Models Containing Uncertainty. In
MoDELS, volume 8107 of LNCS, pages 673–689. Springer,
2013.

[20] J. Favreau. Iron Man. Movie by Marvel Studios and
Fairview Entertainment, 2008.

[21] D. Hilbert. Mathematical Problems. Bulletin of the
American Mathematical Society, 33(4):433–479, 1902.

[22] E. Hill, L. L. Pollock, and K. Vijay-Shanker. Improving
Source Code Search with Natural Language Phrasal
Representations of Method Signatures. In ASE, pages
524–527. IEEE, 2011.

[23] M. Hills. Streamlining Control Flow Graph Construction
with DCFlow. In SLE, volume 8706 of LNCS, pages
322–341. Springer, 2014.

[24] P. Klint, T. van der Storm, and J. Vinju. EASY
Meta-programming with Rascal. In GTTSE 2009, volume
6491 of LNCS, pages 222–289. Springer, Jan. 2011.

[25] R. Knöll and M. Mezini. Pegasus: First Steps Toward a
Naturalistic Programming Language. In OOPSLA, pages
542–559. ACM, 2006.

[26] R. Lämmel and A. Varanovich. Interpretation of Linguistic
Architecture. In ECMFA, volume 8569 of LNCS, pages
67–82. Springer, 2014.

[27] LDTA 2011. 11th International Workshop on Language
Descriptions, Tools and Applications. Tool Challenge, 2011.

[28] G. Little and R. C. Miller. Keyword Programming in Java.
In ASE, pages 84–93. ACM, 2007.



[29] B. McKenna. The Programming Language Theory Games:
a monthly programming language competition, 2012.

[30] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H.
Cheng, P. Collet, B. Combemale, R. B. France, R. Heldal,
J. Hill, J. Kienzle, M. Schöttle, F. Steimann,
D. Stikkolorum, and J. Whittle. The Relevance of
Model-Driven Engineering Thirty Years from Now. In
MoDELS, volume 8767 of LNCS, pages 183–200. Springer,
2014.

[31] A. Okhotin. Conjunctive and Boolean Grammars: The True
General Case of the Context-Free Grammars. Computer
Science Review, 9:27–59, 2013.

[32] T. Parr and K. Fisher. LL(*): The Foundation of the
ANTLR Parser Generator. In PLDI, pages 425–436. ACM,
2011.

[33] B. C. Pierce, P. Sewell, S. Weirich, and S. Zdancewic. It Is
Time to Mechanize Programming Language Metatheory. In
Verified Software: Theories, Tools, Experiments, volume
4171 of LNCS, pages 26–30. Springer, 2008.

[34] R. Poss. People-Specific Languages: A Case for Automated
Programming Language Generation by Reverse-engineering
Programmer Minds. In A. H. Bagge and V. Zaytsev,
editors, OOPSLE, pages 15–18, 2014.

[35] T. Rendel, J. I. Brachthäuser, and K. Ostermann. From
Object Algebras to Attribute Grammars. In OOPSLA,
pages 377–395. ACM, 2014.

[36] A. Rensink and P. Van Gorp. Graph Transformation Tool
Contest 2008. International Journal on Software Tools for
Technology Transfer (STTT), 12(3–4):171–181, 2010.

[37] A. Stevenson and J. R. Cordy. Parse Views with Boolean
Grammars. Science of Computer Programming, 97:59–63,
2015.

[38] N. Ubayashi, J. Nomura, and T. Tamai. Archface: a
Contract Place where Architectural Design and Code Meet
Together. In ICSE, pages 75–84. ACM, 2010.

[39] B. Vasilescu, D. Posnett, B. Ray, M. van den Brand,
A. Serebrenik, P. Devanbu, and V. Filkov. Gender and
Tenure Diversity in GitHub Teams. In CHI. ACM, 2015.

[40] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens.
On the Variation and Specialisation of Workload — A Case
Study of the Gnome Ecosystem Community. Empirical
Software Engineering, 19(4):955–1008, 2014.

[41] V. Zaytsev. Formal Foundations for Semi-parsing. In
CSMR-WCRE ERA, pages 313–317. IEEE, Feb. 2014.

[42] V. Zaytsev and A. H. Bagge. Parsing in a Broad Sense. In
MoDELS, volume 8767 of LNCS, pages 50–67. Springer,
2014.


