
Modelling Parsing and Unparsing

Vadim Zaytsev1 and Anya Helene Bagge2

1 Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net
2 Universitetet i Bergen, Norway, anya@ii.uib.no

Abstract

Any expert researcher in the field of parsing knows exactly what parsing is, and
does not need any definition for it. With some expendable mental effort, we can
all read one another’s papers on “parsing” that do not explicitly state whether
the focus is on the process of syntactic analysis of tokenised sequences, or on the
generalised scannerless parsing, or on extracting linked structured information
from flat textual data, or on converting concrete syntax trees to abstract ones
— all these activities, and many others, at some point have been referred to as
“parsing”, with details emerging from the context. Yet, some of these processes
are inherently different than others, and that distinction is not apparent in any
way to outsiders and to students studying compiler construction or software
language engineering, in particular.

Recently we have proposed a unified model of parsing in a broad sense [6]
— a lattice-like diagram with nodes/cells corresponding to different kinds of
software artefacts such as parse trees or token sequences and edges representing
existing mappings between them which are (or can be) referred to as “pars-
ing” and “unparsing”. It builds on top of our previous work on understanding
(un)parsing [1,4, etc] and refers to many well-known (un)parsing activities. The
model can be “renarrated” in order to explain a particular parsing technology [5],
which we already successfully use in teaching [2].

The twelve kinds of artefacts commonly found in software language engineer-
ing can be seen on Figure 1:
♦ Str — a string, a file, a byte stream.
♦ Tok — a finite sequence of tokens which, when concatenated, yield Str. Includes

spaces, line breaks, comments, etc — collectively, layout.
♦ TTk — a finite sequence of typed tokens, possibly with layout removed, some

classified as numbers, strings, etc.
♦ Lex — a lexical source model (ILA, TEBA, srcML, etc) that adds grouping to

typing; a possibly incomplete tree connecting most tokens within one structure.
♦ For — a forest of parse trees, a parse graph or an ambiguous parse tree.
♦ Ptr — an unambiguous parse tree, the leaves can be concatenated to form Str.
♦ Cst — a parse tree with concrete syntax information. Structurally similar to Ptr,

but abstracted from layout and other minor details. Comments could still be a
part of the Cst model, depending on the use case.

♦ Ast — a tree which contains only abstract syntax information.
♦ Pic — a picture, which can be an ad hoc model, a natural model [3] or a rendering

of a formal model.

mailto:vadim@grammarware.net
mailto:anya@ii.uib.no


Str
(string)

Tok
(tokens)

TTk
(typed tokens)

Lex
(lexical model)

For
(parse forest)

Ptr
(parse tree)

Cst
(concrete syntax tree)

Ast
(abstract syntax tree)

Pic
(rasterised picture)

Dra
(vector drawing)

Gra
(graph model)

Dia
(diagram)

to
ke

n
is
e

co
n
ca

t

st
ri
p

fo
rm

at

parse

unparse

parse

unparse

st
ri
p

fo
rm

at

im
p
lo

d
e

ex
p
lo

d
e

d
is
am

b
ig

u
at

e

re
co

g
n
is
e

re
n
d
er

st
ri
p

fo
rm

at

ex
tr

ac
t

fl
at

te
n

scannerless parse

unparse

visualise

serialise

m
2
m

text editing

structural editing

m
2m

transform
ation

re
fa

ct
or

in
g

co
d
e

tr
an

sf
or

m
at

io
n

fi
lt
er

in
g

d
ra

w
in

g
vi

su
al

ed
it
in

g

R
aw

L
ay

ou
t

L
ay

ou
tl

es
s

A
bs

tr
ac

t

Textual Structured Graphical

Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:

• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5

Fig. 1. A model of parsing in a broad sense [6].

♦ Dra — a graphical representation, a drawing in the sense of GraphML or SVG.
♦ Gra — an entity-relationship graph, a categorical diagram or any other primitive

“boxes and arrows” level model.
♦ Dia — a diagram, a graphical model in the sense of EMF or UML, a model with

an explicit advanced metamodel.

References

1. A. H. Bagge and T. Hasu. A Pretty Good Formatting Pipeline. In M. Erwig, R. F.
Paige, and E. V. Wyk, editors, SLE’13, LNCS 8225, pages 177–196, 2013.

2. A. H. Bagge, R. Lämmel, and V. Zaytsev. Reflections on Courses for Software
Language Engineering. Submitted to EduSymp’14. Pending reviews, July 2014.

3. Z. Zarwin, M. Bjekovic, J.-M. Favre, J.-S. Sottet, and H. A. Proper. Natural Mod-
elling. Journal of Object Technology, 13(3):4:1–36, 2014.

4. V. Zaytsev. Formal Foundations for Semi-parsing. In S. Demeyer, D. Binkley, and
F. Ricca, editors, CSMR-WCRE’14, pages 313–317. IEEE, Feb. 2014.

5. V. Zaytsev. Understanding Metalanguage Integration by Renarrating a Technical
Space Megamodel. Submitted to GEMOC’14. Pending reviews, July 2014.

6. V. Zaytsev and A. H. Bagge. Parsing in a Broad Sense. In MoDELS’14, Oct. 2014.

2


