
Micropatterns in Grammars

Vadim Zaytsev, vadim@grammarware.net

Software Analysis & Transformation Team (SWAT),
Centrum Wiskunde & Informatica (CWI), The Netherlands

Abstract. Micropatterns and nanopatterns have been previously demon-
strated to be useful techniques for object-oriented program comprehen-
sion. In this paper, we use a similar approach for identifying structurally
similar fragments in grammars in a broad sense (contracts for commit-
ment to structure), in particular parser specifications, metamodels and
data models. Grammatical micropatterns bridge the gap between gram-
mar metrics, which are easy to implement but hard to assign meaning
to, and language design guidelines, which are inherently meaningful as
stemming from current software language engineering practice but con-
siderably harder to formalise.

1 Introduction

Micropatterns are mechanically recognisable pieces of design that reside on a
significantly lower level than design patterns, hence being closer to the imple-
mentation than to an abstract domain model, while still representing design
steps and decisions [14]. They have been proposed in 2005 by Gil and Maman
as a method of comparing software systems programmed in the object-oriented
paradigm — the original paper concerned Java as the base language for its ex-
periments, but the presence of similar classification methods for considerably
different languages like Smalltalk [26] leads us to believe that the approach is
applicable to any object-oriented programming language at the least. In this
paper, we investigate whether micropatterns can become a useful tool for gram-
marware.

Grammatical micropatterns are similar in many aspects to the OOP mi-
cropatterns, in particular in (cf. [14, §4]):

– Recognisability. For any micropattern, we can construct an algorithm that
recognises if the given grammar matches its condition. Our approach toward
this property is straightforward: we implement all micropattern recognisers
in Rascal [21] and expose them at the public open source code repository [42].
Unlike design patterns, there are no two micropatterns with the same struc-
ture.

– Purposefulness. Even though there are infinitely many possible micropat-
terns (“name starts with A”, “number of terminals is a prime number”,
“uses nonterminals in alphabetical order”, etc), we collect only those which
intent can be reverse engineered and clearly identified (“name starts with

mailto:vadim@grammarware.net
vadim@grammarware.net

uppercase” — because the metalanguage demands it; “no terminals used”
— because it defines abstract syntax; etc).

– Prevalence is the fraction of nonterminals that satisfy the micropattern
condition. It is a property that strengthens the purposefulness, showing
whether the condition happens in practice and if so, how often. We tend to
ignore micropatterns with zero prevalence or with prevalence greater than
50 %, with a few notable exceptions.

– Simplicity is a requirement that stops us from concocting overcomplicated
micropatterns like “uses a nonterminal that is not used in the rest of the
grammar”, even if they are useful. Mostly we pursued two forms of micropat-
tern conditions: ones that can be formulated with a single pattern matching
clause, and ones that assert one simple condition over all its children. (When
inspecting the implementation, one can notice multiline definitions as well,
which are only made so for readability and maintainability purposes, and
utilise advanced Rascal techniques like pattern-driven dispatch).

– Scope. Each micropattern concerns one nonterminal symbol, and can be
automatically identified based on the production rules of that nonterminal
symbol. It does not have to bear any information about how this nonterminal
is used or what the real intent was behind its design.

– Empirical evidence. The micropatterns from our catalogue are validated
against a corpus of grammars in a broad sense. Even if the corpus is not
curated and not balanced to yield statistically meaningful results, we have a
stronger claim of evidential usage of micropatterns in the practice of gram-
marware engineering than any software language design patterns or guide-
lines might have (simply because their claims rely on manual harvest).

However, there are some notable differences in our work:

– Usability of isolated micropatterns. One of the distinctive feature of
micropatterns versus design patterns and implementation patterns pointed
out by Gil and Maman in [14, §4.2], was that a single micropattern is not
useful on its own, and only the entire catalogue is a worthy instrument.
However, as we found out, isolated micropatterns (single ones and small
subsets of the catalogue) can also be useful indicators of grammar properties,
triggers for grammar mutations, assertions of technical compatibility, etc.

– Coverage is measured as a combined prevalence of a thematic group of mi-
cropatterns (it is not equal to the sum of their prevalences, since micropat-
terns in most groups are not mutually exclusive) and computed separately
for each group. For OOP micropatterns, coverage was calculated for the
whole catalogue, but per system: we do it the other way around, to empha-
size conceptual gaps between groups and to avoid issues with a non-curated
corpus. For groups with low coverage we also report on frequency, which is
prevalence within the group.

– Grammar mining is much less popular than software mining and data
mining [40], and hence the fact that we derived our catalogue my mining a
repository of versatile grammars, is a unique contribution in that sense.

2 Grammar corpus

Grammar Zoo and Grammar Tank are twin repositories that together aim at col-
lecting grammars in a broad sense (per [20]) from various sources: abstract and
concrete, large and small, typical and peculiar [40]. Technically and historically,
they are a part of the larger initiative titled Software Language Processing Suite
(SLPS) and available as a publicly accessible repository online since 2008 [42].
The SLPS project also includes experiments and tools relating to the activities
of grammar extraction, recovery, documentation, convergence, maintenance, de-
ployment, transformation, mutation, migration, testing, etc.

The conceptual difference between the two sibling collections is that Gram-
mar Zoo is meant to display big beasts occurring in real life, while Grammar
Tank collects flocks of smaller prey which quite often cannot tell the users much
on their own. The border between them is not clearly defined, and so for the
purpose of this paper we will simply refer to the entire collection of grammars
as “the corpus” or “the Zoo”. Contrary to prior practice, we will also not in-
clude pointers to individual sources per grammar in the paper, plainly due to
sheer impossibility of delivering over 500 bibliographic references. An interested
reader is referred to the frontend of the Zoo at http://slps.github.io/zoo

and http://slps.github.io/tank to inspect any of the grammars or all of
them, together with the metadata concerning their authors, original publication
dates, extraction and recovery methods and other details properly structured
and presented there.

The corpus mainly consists of the following kinds of grammars:

– grammars extracted from parser specifications composed by students

• for example, 32 TESCOL grammars were used in [9] for grammar testing

– grammars extracted from language documents

• standardisation bodies like ISO, ECMA, W3C, OMG publish standards [41]
that are possible to process with notation-parametric grammar recovery
methodology [37]

– grammars extracted from document schemata

• for example, XML Schema and RELAX NG definitions of MathML,
SVG, DocBook are available and ready to be researched and compared
to definitions of the same languages with other technologies like Ecore

– grammars extracted from metamodels

• the entire Atlantic metamodel zoo1 is imported into Grammar Zoo by
reusing their Ecore metamodel variants with our extractor

– grammars extracted from concrete syntax specs

• for example, the ASF+SDF Meta-Environment and the TXL framework
have their own repositories for concrete grammars, which have been ex-
tracted and added to the Grammar Zoo

– grammars extracted from DSL grammars in a versioning system (BGF)

1 AtlantEcore Zoo: http://www.emn.fr/z-info/atlanmod/index.php/Ecore.

http://slps.github.io/zoo
http://slps.github.io/tank
http://www.emn.fr/z-info/atlanmod/index.php/Ecore

• various DSL were spawned by the SLPS itself during its development:
they are not interesting on their own, but the presence of many versions
of the same grammar is a rare treasure; for example, there are 35 version
available of the unified format for language documents from [41].

With 121 grammars in the Grammar Zoo and 412 in the Grammar Tank2,
they are the biggest collection of grammars in a broad sense; the grammars
are obtained from heterogeneous sources; they are all properly documented, at-
tributed to their creators and annotated with the data available about their
extraction process — the combination of these three factors may set the Zoo
apart from its competitors [40], yet it does not make it perfect.

We could not emphasize strong enough that empirical investigation is not
the primary contribution of this paper. All presented evidence about prevalence
of proposed micropatterns serves as a mere demonstration that they indeed
occur in practice. Our grammar corpus consists of as many grammars as we
could secure, obtained by different means from heterogeneous sources, and we
calculate prevalence and coverage as an estimate of ever encountering the same
micropatterns in other real life grammars, not as a prediction of the probability
of that. At this point, it is not yet feasible to construct a representative versatile
corpus of grammars: even though Grammar Zoo is the largest of its kind, it
does not have enough content to claim any kind of balance between different
technologies, grammar sizes, quality levels, etc. However, this effort is an ongoing
work.

3 Grammatical micropatterns

The process of obtaining the micropatterns catalogue is identical to the one un-
dertaken by Gil and Maman [14], and we will spare the space on its details. In
short, all possible combinations of metaconstructs were considered and tried on
a corpus of grammars; those with no matches were either abandoned or kept
purely for symmetrical considerations; the intent behind each of them was man-
ually investigated, leading to naming a micropattern properly; and finally the
named micropattern was connected to its context by pointing out key publica-
tions related to it.

3.1 Metasyntax

It has been shown before [36] that many metalanguages existing for context-free
grammars, commonly referred to as BNF dialects or “Extended Backus-Naur
Forms”3, can be specified by a small set of indicators for their metasymbols,

2 Counted at the day of paper submission: the actual website may contain more.
3 By “the EBNF”, people usually mean the most influential extended variant of BNF,

proposed in 1977 by Wirth [34] as a part of his work on Wirth Syntax Notation.
However, almost each of the metalanguages used in language documentation ever
since, uses its own concrete notation, which sometimes differs even in expressivity
from Wirth’s proposal — see [36] for more details.

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 132 0.32% 2.73%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Table 1. Metasyntax micropatterns

which correspond both to the “grammar for grammars” and to human-perceived
aspects like “do we quote terminals in this notation?” or “how do we write down
multiple production rules for one nonterminal?”.

For every feature of the internal representation of a grammar in a broad
sense, we define a ContainsX micropattern, where X is that feature:

– ContainsEpsilon for the empty string metaconstruct (ε),

– ContainsFailure for the empty language metaconstruct (ϕ),

– ContainsUniversal for the universal metaconstruct (α),

– ContainsString for a built-in string value,

– ContainsInteger for a built-in integer value,

– ContainsOptional for an optionality metasymbol,

– ContainsPlus for the transitive closure,

– ContainsStar for the Kleene star,

– ContainsSepListPlus for a separator list with one or more elements,

– ContainsSepListStar for a separator list with zero or more elements,

– ContainsDisjunction for inner choice metasymbol,

– ContainsSelectors for named subexpressions,

– ContainsLabels for production labels,

– ContainsSequence for sequential composition metaconstruct.

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

add _/- to uppercase/
lowercase?

add numbers

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.62%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 109 0.27% 2.26%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 112 0.27% 2.32%

Template

BracketedPlus 5 0.01% 0.10%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 104 0.25% 2.16%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 3002 7.32% 62.22%

Template

DistinguishByTerm 917 2.23% 19.01%
Total coverage 4,825 11.76%

4,825
Constructor 657 4,825
BracketSelf 2 4,825
Bracket 109 4,825
BracketedFakeSepList 56 4,825
BracketedFakeSLStar 10 4,825
BracketedOptional 112 4,825
BracketedPlus 5 4,825
BracketedSepListPlus 8 4,825
BracketedSepListStar 24 4,825
BracketedStar 15 4,825
Delimited 104 4,825
ElementAccess 25 4,825
PureSequence 3002 4,825
DistinguishByTerm 917 4,825

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Table 2. Global position micropatterns

Furthermore, we add one extra micropattern AbstractSyntax for nonterminals
which definitions do not contain terminal symbols — mainly because investiga-
tions of abstract data types and abstract syntax vs concrete syntax [32] form a
valuable subdomain of grammarware research. As can be observed on Table 1,
the prevalence of AbstractSyntax is quite high, which can be explained by many
Ecore metamodels and XML Schema schemata in our corpus.

3.2 Global position and structure

Since the very beginning of grammar research, even when grammars were still
considered as structural string rewriting systems and not as commitments to
structure, the was a need to denote the initial state for rewriting [5, §4.2]. Such
an initial state was quickly agreed to be specified with a starting symbol, or
a grammar root — the nonterminal symbol that initiates the generation, or a
root of a parse tree. Not being able to overlook this, we say that a nonterminal
exercises the Root micropattern, when it is explicitly marked as a root of its
grammar. Contrariwise, we define the Leaf micropattern for nonterminals that
do not refer to any other nonterminals — they are the leaves of the nonterminal
connectivity graph, not of the parse tree.

In some frameworks, the roots are not specified explicitly: either because such
metafunctionality is lacking (such as in pure BNF), or because the information
was simply lost during engineering or knowledge extraction. For such cases,
found quite often in grammar recovery research, we could speak of the Top
micropattern, named after “top sorts” from [23, p.19] and “top nonterminals”
from [22, §2.2], which are nonterminals defined by the grammar, but never used.
A previously existing heuristic technique in semi-automated interactive grammar

adaptation, reported rather reliable, is to establish missing connections to all top
nonterminals, until only one non-leaf top remains, and assume it to be the true
root [22]. Methods such as this would become much easier to explain in terms
of micropatterns and relations between them.

In practical grammarware engineering, grammars are commonly allowed to
have multiple starting symbols, while most publications about formal languages
use a representation with a single root. The reason behind this is simple: one
can always imagine adding another nonterminal that becomes a new starting
symbol, defined with a choice of all nonterminals that are the “real” starting
symbols. Hence, we define a MultiRoot micropattern for catching such definitions
explicitly encoded. Surprisingly, it was not very popular: only one match in
the whole Grammar Zoo. However, if we were to investigate an XML-based
framework that relied heavily on the fact that each element defined by an XSD
is allowed to be the root, then such information can be decided to be propagated
by the xsd2bgf grammar extractor, which would then lead to all grammars
extracted from XML Schema schemata, to have one MultiRoot nonterminal each.
The current implementation of the xsd2bgf grammar extractor leaves the roots
unspecified, since it is hardly an intent of every XMLware developer to explicitly
rely on such diversity.

Complementary to Top, we propose the Bottom micropattern, which is ex-
hibited by a nonterminal that is used in a grammar but never defined — again,
we adopt these terminology from [22,23]. Usually in the same context another
property of a nonterminal is tested, called “fresh” [24, §3.4], for nonterminals
that are not present in the grammar in any way, but this property does not
convert well into a micropattern for obvious reasons.

For each nonterminal that is not bottom, there are only four possible ways
that it can be defined, and so we make four micropatterns from them: Disallowed
(defined by an empty language4), Singleton (defined with a single production
rule), Vertical (defined with multiple production rules) and Horizontal (defined
with one production rule that consist of a top level choice with alternatives).
We also introduce a separate ZigZag micropattern for definitions that are both
horizontal and vertical (multiple production rules, with at least one of them
having a top level choice). These five micropatterns together with Bottom are
mutually exclusive and together always cover 100 % of any set of nonterminals,
and for the Zoo it can be seen on Table 2. The terms “horizontal” and “vertical”
are borrowed from the XBGF grammar transformation framework and publi-
cations related to it [25, §4.1], other sources also relate to them as “flat” and
“non-flat” [24].

As for the global position micropatterns, unsurprisingly, most of nonterminals
do not belong to any of these classes, and this group of micropatterns has a
meager total coverage of 30.36 % (Table 2). As an example of how Top and

4 NB: an empty language should not be confused with an empty string/term language.
The former means L(G) = ∅ and means unconditional failure of parsing and impos-
sibility of generation. The latter means L(G) = ε and means successful parsing of
an empty string (or a trivial term) and immediate successful halting of generation.

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence Frequency
Sugar FakeOptional 134 0.33% 10.89%Sugar

FakeSepList 624 1.52% 50.69%
Sugar

ExprMidLayer 349 0.85% 28.35%

Sugar

ExprLowLayer 39 0.10% 3.17%

Sugar

YaccifiedPlusLeft 354 0.86% 28.76%

Sugar

YaccifiedPlusRight 6 0.01% 0.49%

Sugar

YaccifiedStarLeft 0 0.00% 0.00%

Sugar

YaccifiedStarRight 0 0.00% 0.00%
Total coverage 1,231 3.00%

1231
FakeOptional 134 1231
FakeSepList 624 1231
ExprMidLayer 349 1231
ExprLowLayer 39 1231
YaccifiedPlusLeft 354 1231
YaccifiedPlusRight 6 1231
YaccifiedStarLeft 0 1231
YaccifiedStarRight 0 1231

Empty 3028 9,226
Failure 69 9,226
ReflexiveChain 0 9,226
AChain 5404 9,226
JustChains 1045 9,226
JustOneChain 2063 9,226
JustOptional 48 9,226
JustPlus 199 9,226
JustStar 130 9,226
JustSepListPlus 28 9,226
JustSepListStar 32 9,226
NTorT 123 9,226
NTorTS 155 9,226
NTSorT 144 9,226
TSorNT 47 9,226

Category Pattern Matches Prevalence Frequency
Folding Empty 3,028 7.38% 32.82%Folding

Failure 69 0.17% 0.75%
Folding

ReflexiveChain 0 0.00% 0.00%

Folding

AChain 5,404 13.17% 58.57%

Folding

JustChains 1,045 2.55% 11.33%

Folding

JustOneChain 2,063 5.03% 22.36%

Folding

JustOptional 48 0.12% 0.52%

Folding

JustPlus 199 0.48% 2.16%

Folding

JustStar 130 0.32% 1.41%

Folding

JustSepListPlus 28 0.07% 0.30%

Folding

JustSepListStar 32 0.08% 0.35%

Folding

NTorT 123 0.30% 1.33%

Folding

NTorTS 155 0.38% 1.68%

Folding

NTSorT 144 0.35% 1.56%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 132 0.32% 2.73%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Table 3. Sugary micropatterns

Bottom micropatterns encapsulate grammar quality and design intent, we quote
Lämmel and Verhoef [23, p.20]:

In the ideal situation, there are only a few top sorts, preferably one
corresponding to the start symbol of the grammar, and the bottom sorts
are exactly the sorts that need to be defined lexically.

In the scope of disciplined grammar transformation [25], a ZigZag nontermi-
nal could also be considered a bad style of grammar engineering, but we have no
evidence of what dangers it brings along, only an observation of its surprisingly
high prevalence.

3.3 Metasyntactic sugar

There are several micropatterns that are conceptually similar to those from the
previous section, but without the metafunctionality explicitly present in the met-
alanguage. When a particular metaconstruct is available in the metalanguage,
we can check its use, as we have done in subsection 3.1; when it is not a part of
the metalanguage, we can still check if any usual substitute for it, is used. For
example, the optionality metasymbol is in fact metasyntactic sugar for “this or
nothing” — i.e., a choice with one alternative representing the empty language
(ε). We call such explicit encodings FakeOptionals (see Table 3), they mostly
indeed found occurring in grammars extracted from technical spaces that lack
the optionality metasymbol. Similarly, a FakeSepList micropattern explicitly en-
codes a separator list, and its prevalence is much higher since there are more
metalanguages without separator list metasymbols.

For all metalanguages that do not allow to specify expression priorities ex-
plicitly, there exists a commonly used implementation pattern:

logical-or-expression ::= logical-and-expression

| logical-or-expression "||" logical-and-expression ;

logical-and-expression ::= inclusive-or-expression

| logical-and-expression "&&" inclusive-or-expression ;

... (12 layers skipped) ...

primary-expression ::= literal | "this"

| "(" expression ")" | id-expression ;

(ISO/IEC 14882:1998(E) C++)

Based on multiple occurrences of such an implementation pattern in the
Grammar Zoo, we have designed the following two micropatterns:

– ExprMidLayer: one alternative is a nonterminal, the others are sequences of
a nonterminal, a terminal and another nonterminal;

– ExprLowLayer: one alternative is a sequence of a terminal, a nonterminal and
another terminal, where the two terminals form a symmetric bracketing pair,
the others are solitary terminals or solitary nonterminals.

As one can see, these micropatterns are defined locally and do not enforce
any complicated constraints (e.g., concerning the nonterminal between brackets
in ExprLowLayer), which could possibly result in false positives, but satisfies our
requirements from section 1.

Similarly, we can look for “yaccified” definitions that emulate repetition
metasymbols with recursive patterns. A yaccified definition [18,22] is named af-
ter YACC [17], a compiler compiler, the old versions of which required explicitly
defined recursive nonterminals. Instead of writing:

X ::= Y+ ;

one would write:

X ::= Y ;

X ::= X Y ;

because in LALR parsers like YACC, left recursion was preferred to right
recursion (contrary to recursive descent parsers, which are unable to process
left recursion directly at all). The use of metalanguage constructs X+ and X*

is technology-agnostic, and the compiler compiler can make its own decisions
about the particular way of implementation, and will neither crash nor have to
perform any transformations behind the scenes. However, as can be seen from
Table 3, many existing grammars contain yaccified definitions, and usually the
first step in any project that attempts to reuse such grammars for practical
purposes, starts with deyaccification [22,25,35, etc].

3.4 Naming

Research on naming conventions has enjoyed a lot of interest in the scopes of
program analysis and comprehension [4] and code refactorings that recommend

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

LowerCase 3323 8.10%
Naming

MixedCase 1706 4.16%

Naming

MultiWord 31816 77.53%

Naming

UpperCase 2073 5.05%
Total coverage 40,562 98.84%

Naming, lax CamelCaseLax 18332 44.67%Naming, lax
LowerCaseLax 17840 43.47%

Naming, lax

MixedCaseLax 1969 4.80%

Naming, lax

MultiWordLax 32290 78.68%

Naming, lax

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%

40562 41038
CamelCase 16704 40562 41038
LowerCase 3323 40562 41038
MixedCase 1706 40562 41038
MultiWord 31816 40562 41038
UpperCase 2073 40562 41038
CamelCaseLax 18332 40562 41038
LowerCaseLax 17840 40562 41038
MixedCaseLax 1969 40562 41038
MultiWordLax 32290 40562 41038
UpperCaseLax 2412 40562 41038

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563

Table 4. Naming micropatterns

renaming misspelt, synonymous and inaccurate variable names [29]. Naming
conventions have not yet been thoroughly investigated in grammarware engi-
neering, but were noted to be useful to consider as a part of metalanguage for
notation-parametric grammar recovery [37] and were used as motivation for some
automated grammar mutations [38], usually preceding unparsing a grammar in a
specific metalanguage. In the scope of grammar recovery, mismatches like digit

vs DIGIT or newline vs NewLine were reported as common in recovering gram-
mars with community-created fragments [35].

Let us distinguish four naming conventions to be recognised by micropat-
terns, namely: CamelCase (LikeThis), MixedCase (almostTheSame), LowerCase
(apparentlyso) and UpperCase (OBVIOUSLY). Given that most of current re-
search on naming conventions in software engineering focuses on tokenisation
and disabbreviation, we add one more micropattern called MultiWord. A non-
terminal conforms to MultiWord, when its name is either written in camelcase
or mixed case and has two or more words; or when its name consists of letter
subsequences separated by a space, a dash, a slash, a dot or an underscore, —
in other words, when its name can be easily tokenised without any dictionary-
based heuristics nor heavy machine learning. Something akin to a SingleWord
micropattern would have been useful as well, but we failed to obtain a reason-
able definition for it: a single mixed case word name is indistinguishable from
a single lower case word; both lower case and upper case names may have no
word delimiters; a single word camelcase name could in fact also be a multi word
capitalised name; etc.

By looking at the top half of Table 4, one quickly realises that the constraints
for naming notations could be formulated in a more relaxed way. The nontermi-
nal Express_metamodel::Core::GeneralARRAYType from the EXPRESS meta-

model is a nice example of an unclassifiable nonterminal name: it combines four
capitalised words, one lowercase and one uppercase one, with three different
kinds of concatenation (by an underscore, double colons and an empty separa-
tor). Arguably, though, its name can be considered CamelCase, with underscore
being a “neutral letter” and word boundaries being either empty or “::”. Hence,
we define a set of five more lax naming convention micropatterns, that together
easily cover the whole corpus by using “neutral letters” (underscores and num-
bers) and being more tolerant with separators.

In particular, one could notice a remarkably high prevalence of MultiWord
micropatterns, both strict and lax. These micropatterns have no directly notice-
able use right away, but can become a central part of future research on mining
and tokenising nonterminal symbol names in grammars.

3.5 Concrete syntax

We inherit the term Preterminal from the natural language processing field, where
it is used for syntactic categories of the words of the language. Preterminals are
the immediate parents of the leaves of the parse tree, and usually define keywords
of the language, identifier names, etc. Prevalence of the Preterminal micropattern
is impressively high in our corpus — 7.92 % — despite the fact that more then
half of its grammars have been extracted from metamodels and thus contain few
or no terminal symbols at all. This can be explained by many concrete syntax
definitions and parser specifications in the corpus as well — in particular, the
common practice in ANTLR is to wrap every terminal symbol in a separate
nonterminal with an uppercased name, so the prevalence of the Preterminal mi-
cropattern in such grammars can climb up to 46.9 % for big languages (Java
5 grammar by Dieter Habelitz) and up to 71.19 % for small ones (TESCOL
grammar 10000).

Mining concrete grammars from the corpus led us to discover several steadily
occurring patterns of terminal usage (all subcases of the Preterminal micropat-
tern, reported on Table 5):

– Keyword: defined with one production rule, which right hand side is an al-
phanumeric word:
non_end_of_line_character ::= "character" ;

(LNCS 4348, Ada 2005)

Retry ::= "retry" ;

(ISO/IEC 25436:2006(E) Eiffel)

this-access ::= "this" ;

(Microsoft C# 3.0)

– Keywords: a horizontal or vertical (recall subsection 3.2) definition with all
alternatives being keywords:
ConstructorModifier ::= "public" ;

ConstructorModifier ::= "private" ;

ConstructorModifier ::= "protected" ;

(JLS Second Edition, readable Java grammar)

exit_qualifier ::= ("__exit" | "exit__" | "exit" | "__exit__") ;

(TXL C Basis Grammar 5.2)

– Operator: defined with one production rule, which right hand side is a strictly
non-alphanumeric word:
formal_discrete_type_definition ::= "(<>)" ;

(Magnus Kempe Ada 95)

right-shift-assignment ::= ">>=" ;

(Microsoft C# 4.0)

empty-statement ::= ";" ;

(ECMA-334 C# 1.0)

– Operators: a horizontal or vertical definition with all alternatives being op-
erators:
relational_operator ::= ("=" | "/=" | "<" | "<=" | ">" | ">=") ;

(Lämmel-Verhoef Ada 95)

PostfixOp ::= "++" ;

PostfixOp ::= "--" ;

(JLS Third Edition Java, implementable)

equalityOperator ::= ("==" | "!=" | "===" | "!==") ;

(Google Dart 0.01)

– OperatorsMixed: a horizontal or vertical definition with some alternatives be-
ing operators and some being keywords:
typeModifier ::= ("opt" | "repeat" | "list" | "attr" | "see" | "not"

| "push" | "pop" | ":" | "~" | ">" | "<") ;

(TXL Basis Grammar for TXL 10.5)

op ::= (">" | "<" | "<=" | ">=" | "<>" | "=" | "in" | "is" | "+" | "-"

| "or" | "xor" | "*" | "/" | "div" | "mod" | "and" | "shl" | "shr"

| "DIV" | "AND") ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

overloadable_unary_operator ::= ("+" | "-" | "!" | "~" | "++" | "--"

| "true" | "false") ;

(Validated TXL Basis Grammar for C# Edition 3)

– Words: a sequential and/or repetitive composition of keywords:
simpleDerivationSet ::= "#all" | ("list" | "union" | "restriction")*

(RELAX NG schema for XML Schema)

mml.lines.datatype ::= ("none" | "solid" | "dashed")+

(TESCOL 10001)

– Tokens: a sequential and/or repetitive composition of nontrivial non-keywords:
WS ::= (" " | "\t" | "\r" | "\n")+ ;

(TESCOL 10100)

– Modifiers: a horizontal or vertical definition with all alternatives being com-
binations of same keywords:
mode ::= ("in"? | ("in" "out") | "out") ;

(LNCS 4348, Ada 2005)

static_constructor_modifiers ::=

(("extern"? "static") | ("static" "extern"?)) ;

(Validated TXL Basis Grammar for C# 3)

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

add _/- to uppercase/
lowercase?

add numbers

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.62%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 109 0.27% 2.26%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 112 0.27% 2.32%

Template

BracketedPlus 5 0.01% 0.10%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 104 0.25% 2.16%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 3002 7.32% 62.22%

Template

DistinguishByTerm 917 2.23% 19.01%
Total coverage 4,825 11.76%

4,825
Constructor 657 4,825
BracketSelf 2 4,825
Bracket 109 4,825
BracketedFakeSepList 56 4,825
BracketedFakeSLStar 10 4,825
BracketedOptional 112 4,825
BracketedPlus 5 4,825
BracketedSepListPlus 8 4,825
BracketedSepListStar 24 4,825
BracketedStar 15 4,825
Delimited 104 4,825
ElementAccess 25 4,825
PureSequence 3002 4,825
DistinguishByTerm 917 4,825

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Table 5. Concrete syntax micropatterns

– Range: a choice of trivial terminals:
Integer_base_letter ::= ("b" | "c" | "x" | "B" | "C" | "X") ;

(ISO/IEC 25436:2006(E) Eiffel)

DIGIT ::= ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9") ;

(ANTLR Google Dart)

– NumericLiteral: a possibly signed repetition of choice of digits:
HEX_DIGIT ::= ("0" | "1" | ... | "9" | "A" | ... | "F" | "a" | ... | "f") ;

(Michael Studman Java 5)

INT ::= ("+" | "-")? ("0" | (("1" | ... | "9") ("0" | "1" | ... | "9")*)) ;

(TESCOL 00011)

– LiteralSimple: a repetition of a range of trivial terminals:
[NT-Digits] Digits ::= ("0" | "1" | "2" | "3" | ... | "8" | "9")+ ;

(W3C XPath 1.0)

– LiteralFirstRest: a choice of terminals followed by a Kleene star over a choice
of terminals:
IDENT ::= ("a" | ... | "z" | "A" | ... | "Z" | "_" | "$")

("a" | ... | "z" | "A" | ... | "Z" | "_" | "0" | ... | "9" | "$")* ;

(Michael Studman Java 5)

VARID ::= ("A" | ... | "Z" | "a" | ... | "z")

("A" | ... | "Z" | "a" | ... | "z" | "0" | ... | "9" | "_")* ;

(TESCOL 10110)

– EmptyStatement: a keyword followed by a semicolon:
terminate_alternative ::= "terminate" ";" ;

null_statement ::= "null" ";" ;

(ISO/IEC 8652/1995(E) LNCS 2219 Ada 95)

Category Pattern Matches Prevalence
Naming CamelCase 16,704 40.70%Naming

MixedCase 5,029 12.25%
Naming

LowerCase 3,323 8.10%

Naming

UpperCase 2,073 5.05%

Naming

MultiWord 28,487 69.42%
Total coverage 37,233 90.73%

add _/- to uppercase/
lowercase?

add numbers

Category Pattern Matches Prevalence
Concrete Preterminal 3,249 7.92%Concrete

LiteralSimple 49 0.12%
Concrete

LiteralFirstRest 62 0.15%

Concrete

LiteralSigned 13 0.03%

Concrete

LiteralNillable 1 0.002%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 4,481 10.92%

Structure

Horizontal 6,043 14.73%
Total coverage 39,727 96.81%

add others?

what others?

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsMarked 0 0.00%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsConjunction 0 0.00%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsNegation 0 0.00%

Metasyntax

ContainsSequence 19,475 47.46%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,540 89.04%

all? not all?

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,224 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence
Template Constructor 657 1.60%Template

BracketSelf 2 0.00%
Template

Bracket 109 0.27%

Template

BracketedFakeSepList 56 0.14%

Template

BracketedFakeSLStar 10 0.02%

Template

BracketedOptional 112 0.27%

Template

BracketedPlus 5 0.01%

Template

BracketedSepListPlus 8 0.02%

Template

BracketedSepListStar 24 0.06%

Template

BracketedStar 15 0.04%

Template

Delimited 104 0.25%

Template

ElementAccess 25 0.06%

Template

PureSequence 3002 7.32%

Template

DistinguishByTerm 917 2.23%
Total coverage 4,825 11.76%

Constructor 657
BracketSelf 2
Bracket 109
BracketedFakeSepList 56
BracketedFakeSLStar 10
BracketedOptional 112
BracketedPlus 5
BracketedSepListPlus 8
BracketedSepListStar 24
BracketedStar 15
Delimited 104
ElementAccess 25
PureSequence 3002
DistinguishByTerm 917

Table 6. Normal form micropatterns

continue-statement ::= "continue" ";" ;

break-statement ::= "break" ";" ;

(ISO/IEC 23270:2003(E) C# 1.0)

3.6 Normal forms

A lot can be said about normal forms in formal grammar theory, and in the
context of micropatterns we can also view normal forms as conditions on non-
terminals and their definitions. In particular, we have implemented Chomsky
Normal Form, CNF [6]; Greibach Normal Form, GNF [15]; and Abstract Nor-
mal Form, ANF [39], as micropatterns — unsurprisingly, the prevalence of ANF
is rather high due to many abstract syntax definitions in the corpus (Table 6).

3.7 Folding/unfolding

Not all nonterminals are introduced to the grammar because of the impossibility
to express the same language differently: many are simply results of folding/un-
folding transformations on a minimal grammar, and are meant to improve read-
ability, maintainability or modularity of the language definition. In this group we
collected micropatterns for nonterminals that can be removed from the grammar
with relative ease (examples are given only for less intuitive micropatterns):

– Empty: a nonterminal is defined as an empty term;
– Failure: a nonterminal is explicitly undefined or prohibited;
– JustOptional: a nonterminal defined only with just an optional reference to

another nonterminal;
– JustPlus: a one-or-more repetition of a reference to another nonterminal;
– JustStar: a zero-or-more repetition of a reference to another nonterminal;
– JustSepListPlus: a non-empty separator list;
– JustSepListStar: a possibly empty separator list;
– JustChains: a nonterminal defined only with chain production rules (right

hand sides are nonterminals);
– JustOneChain: a nonterminal defined only with exactly one chain production

rule (right hand side is a nonterminal);
– ReflexiveChain: a nonterminal is circularly defined as itself (should only hap-

pen as an intermediate transformation result);

Category Pattern Matches Prevalence Frequency
Sugar FakeOptional 134 0.33% 10.89%Sugar

FakeSepList 624 1.52% 50.69%
Sugar

ExprMidLayer 349 0.85% 28.35%

Sugar

ExprLowLayer 39 0.10% 3.17%

Sugar

YaccifiedPlusLeft 354 0.86% 28.76%

Sugar

YaccifiedPlusRight 6 0.01% 0.49%

Sugar

YaccifiedStarLeft 0 0.00% 0.00%

Sugar

YaccifiedStarRight 0 0.00% 0.00%
Total coverage 1,231 3.00%

1231
ExprMidLayer 349 1231
ExprLowLayer 39 1231
YaccifiedPlusLeft 354 1231
YaccifiedPlusRight 6 1231
YaccifiedStarLeft 0 1231
YaccifiedStarRight 0 1231

9300
Empty 3028 9300
Failure 69 9300
JustOptional 48 9300
JustPlus 199 9300
JustStar 130 9300
JustSepListPlus 28 9300
JustSepListStar 32 9300
JustChains 1045 9300
JustOneChain 2065 9300
ReflexiveChain 0 9300
ChainOrTerminal 145 9300
ChainsAndTerminals 290 9300
AChain 5503 9300

Category Pattern Matches Prevalence Frequency
Folding Empty 3,028 7.38% 32.56%Folding

Failure 69 0.17% 0.74%
Folding

JustOptional 48 0.12% 0.52%

Folding

JustPlus 199 0.48% 2.14%

Folding

JustStar 130 0.32% 1.40%

Folding

JustSepListPlus 28 0.07% 0.30%

Folding

JustSepListStar 32 0.08% 0.34%

Folding

JustChains 1,045 2.55% 11.24%

Folding

JustOneChain 2,065 5.03% 22.20%

Folding

ReflexiveChain 0 0.00% 0.00%

Folding

ChainOrTerminal 145 0.35% 1.56%

Folding

ChainsAndTerminals 290 0.71% 3.12%
Total coverage 9,300 22.66%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%

CNF 5365
GNF 3074
ANF 26269

Empty
Failure
JustOptional
JustPlus
JustStar
JustSepListPlus
JustSepListStar
JustChains
JustOneChain
ReflexiveChain
ChainOrTerminal
ChainsAndTerminals
AChain

Table 7. Folding/unfolding micropatterns

– ChainOrTerminal: a choice of a nonterminal and a terminal:
return-type ::= (type | "void") ;

(Microsoft C# 4.0)

– ChainsAndTerminals: a choice where the all alternatives are either isolated
nonterminals or isolated terminals:
class-type ::= (type-name | "object" | "dynamic" | "string") ;

(Microsoft C# 4.0)

TypeDeclaration ::= ClassDeclaration ;

TypeDeclaration ::= ";" ;

TypeDeclaration ::= InterfaceDeclaration ;

(JLS Second Edition Java, readable)

– AChain: one production rule for the nonterminal is a chain production rule.

Table 7 summarises the prevalence observations of these micropatterns. The
ChainsAndTerminals nonterminals mostly tend to have a terminal as the first
alternative and nonterminals as the other ones, or vice versa, but we decided to
combine such cases into one micropattern due to their extremely low prevalence
(under 0.05 %).

3.8 Templates

In previous sections, we have already seen some micropatterns defined as tem-
plates like “opening-bracket, nonterminal, closing bracket” (part of ExprLowLayer),
“single terminal” (Keyword or Operator), etc. In fact, there are 2673 such tem-
plates in total found in the corpus of grammars, and in this section we present
the most prevalent ones of them (Table 8):

Category Pattern Matches Prevalence
Total coverage 28,168 68.64%

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

Bracket 132 0.32% 2.73%
Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2,999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

Table 8. Template micropatterns

– Constructor: a named (non-empty production label or a top-level selector)
empty term (ε);

– Bracket: a bracket-delimited nonterminal:
Explicit_creation_type ::= "{" Type "}" ;

Actual_generics ::= "[" Type_list "]" ;

Parenthesized ::= "(" Expression ")" ;

External_system_file ::= "<" Simple_string ">" ;

(ISO/IEC 25436:2006(E) Eiffel)

– BracketedFakeSepList: a bracket-delimited explicitly encoded separator list:
typeParameters ::= "<" typeParameter ("," typeParameter)* ">" ;

namedFormalParameters ::= "[" defaultFormalParameter

("," defaultFormalParameter)* "]" ;

(ANTLR Google Dart)

template ::= "{{" title ("|" part)* "}}" ;

tplarg ::= "{{{" title ("|" part)* "}}}" ;

(EBNF MediaWiki)

– BracketedFakeSLStar: a bracket-delimited possibly empty separator list;

– BracketedOptional: a bracket-delimited optional reference to another nonter-
minal;

– BracketedPlus: a bracket-delimited one-or-more repetition of a nonterminal;

– BracketedSepListPlus: a bracket-delimited separator list;

– BracketedSepListStar: a bracket-delimited possibly empty separator list;

– BracketedStar: a bracket-delimited zero-or-more repetition of a nonterminal;

– Delimited: a sequence of symbols delimited by non-bracketing terminals:
RecordType ::= "RECORD" Fields "END" ;

LoopStmt ::= "LOOP" Stmts "END" ;

(SDF Modula 3)
– ElementAccess: a nonterminal followed by a bracketed nonterminal:

slice ::= prefix "(" discrete_range ")" ;

(LNCS 4348, Ada 2005)

libraryDefinition ::= LIBRARY "{" libraryBody "}" ;

(ANTLR Google Dart)

ArrayDeclarator ::= VariableName "(" ArraySpec ")" ;

StructureConstructor ::= TypeName "(" ExprList ")" ;

(TXL Fortran 77/90)
– PureSequence: a definition that uses purely sequential composition;
– DistinguishByTerm: a choice where each alternative starts with a terminal:

wildcard_type_bound ::= ("extends" type_specifier)

| ("super" type_specifier) ;

(TXL Java 1.5 Basis Grammar)

default_expression_OR_nodefault ::= ("default" expression)

| "nodefault" ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

image-mode-manual-thumb ::= ("thumbnail=" image-name)

| ("thumb=" image-name) ;

(BNF MediaWiki)

4 Related work

An obviously related research topic to micropatterns are design patterns [13],
implementation patterns [3] and architectural patterns [11]. In the software lan-
guage engineering community, there is no widely accepted collection of “DSL de-
sign patterns”, but there is no shortage on papers and books with guidelines on
language design and implementation [31,16,33,1,27,19,12,30, 1965–2013]. Most
of these guidelines encapsulate their authors’ vision and experience, but are
still waiting to be formally organised, algorithmically expressed and verified. We
hope that the catalogue of micropatterns is a step toward that goal, even if a
small one. In [10], the main focuses of tool support for patterns were identified
as application, validation and discovery — of these three, micropatterns mostly
contribute to discovery.

Extending software metrics line of thinking to grammars can also be identi-
fied as a related domain to grammatical micropatterns. However, there are three
main differences between our work and grammar metric suites like gMetrics [7]
and SynC [28]. First, grammar metrics are used mostly for measurements, while
the main purpose of micropatterns is classification. One can compare grammars
based on their metrics, and one can cluster them by size, McCabe complexity
and other computed values, so this gap is not unbridgeable, but it is present. The
second issue is that grammar metrics work on the level of grammars, while mi-
cropatterns in this paper are formulated on the level of nonterminals. The third

difference is that some metrics like Varju height are very complicated and require
lengthy computations, which clearly contradicts with the simplicity requirement
we formulated in section 1. It remains to be seen whether micropatterns carry a
value for grammar metrics in a form of “how many nonterminals in grammar X
satisfy the condition of micropattern Y?”.

In [8], it is noted that the expressiveness of the software language that is used
to define (micro)patterns, severely affects the complexity of their validation and
discovery. By using state of the art technology like Rascal [21], we were able to
fit the entire system of classifiers and all the experimental code around it, in 760
lines of code, which is about as concise as one could hope.

Being formulated on the level of nonterminals, which is arguably the most
fine-grained level of details one could get when working with grammars, puts
grammatical micropatterns closer to OOP nanopatterns [2]. However, there is
still enough space for grammatical nanopatterns — one could think of them as
continuation of the ContainsX micropatterns from subsection 3.1 and operate
with patterns like “contains a semicolon terminal”, “contains two consecutive
terminals”, etc.

Grammar mutations are large scale intentional grammar transformations [38,
§3.8.1] that involve enforcing a new naming convention over the entire grammar,
performing massive folding/unfolding rewritings, removing all terminal symbols
in one sweep, etc. Micropatterns are related to them because they can be used
as triggers for actual transformation steps, as preconditions and postconditions.
For instance, we can say that some grammar mutation works on all nonterminals
satisfying the micropattern LowerCase, and as a result they start being Upper-
Case. The change itself can be either inferred or programmed, but still with a
lot of control and a strict specification around it.

5 Conclusion

We have identified 85 algorithmically recognisable, purposeful, notable, simple
micropatterns, by analysing 41038 nonterminal symbols of 533 software lan-
guage definitions. Many of these micropatterns have been previously researched,
used or considered in publications in the domain of grammarware engineering.
Both the original corpus of grammars and the implementation of micropattern
recognisers is publicly exposed through a GitHub project.

References

1. L. Ammeraal. On the Design of Programming Languages Including MINI ALGOL
68. In J. Mülbacher, editor, GI 5. Jahrestagung, volume 34 of LNCS, pages 500–
504. Springer, 1975.

2. F. Batarseh. Java Nano Patterns: a Set of Reusable Objects. In Proceedings of the
48th Annual Southeast Regional Conference, ACM SE ’10, pages 60:1–60:4. ACM,
2010.

3. K. Beck. Smalltalk. Best Practice Patterns. Prentice Hall, 1996.

4. S. Butler. Mining Java Class Identifier Naming Conventions. In Proceedings of
the International Conference on Software Engineering, ICSE’12, pages 1641–1643.
IEEE Press, 2012.

5. N. Chomsky. Syntactic Structures. Mouton, 1957.
6. N. Chomsky. On Certain Formal Properties of Grammars. Information and Con-

trol, 2(2):137–167, 1959.
7. M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, and G. Roussel. On

Automata and Language Based Grammar Metrics. Computer Science and Infor-
mation Systems, 7(2), 2010.

8. P. van Emde Boas. Resistance is Futile; Formal Linguistic Observations on Design
Patterns. Technical Report ILLC-CT-97-02, Institute for Logic, Language and
Computation, University of Amsterdam, 1997.

9. B. Fischer, R. Lämmel, and V. Zaytsev. Comparison of Context-free Grammars
Based on Parsing Generated Test Data. In U. Aßmann and A. Sloane, editors,
Post-proceedings of the Fourth International Conference on Software Language En-
gineering (SLE 2011), volume 6940 of LNCS, pages 324–343. Springer, Heidelberg,
2012.

10. G. Florijn, M. Meijers, and P. Winsen. Tool Support for Object-Oriented Patterns.
In M. Akşit and S. Matsuoka, editors, ECOOP’97, volume 1241 of LNCS, pages
472–495. Springer, 1997.

11. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, 2002.

12. M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 2010.
13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
14. J. Gil and I. Maman. Micro Patterns in Java Code. In Proceedings of OOPSLA’05,

pages 97–116. ACM, 2005.
15. S. A. Greibach. A New Normal-Form Theorem for Context-Free Phrase Structure

Grammars. Journal of the ACM, 12(1):42–52, Jan. 1965.
16. C. A. R. Hoare. Hints on Programming Language Design. Technical report, Stan-

ford University, Stanford, CA, USA, 1973.
17. S. C. Johnson. YACC—Yet Another Compiler Compiler. Computer Science Tech-

nical Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey, 1975.
18. M. de Jonge and R. Monajemi. Cost-Effective Maintenance Tools for Proprietary

Languages. In Proceedings of ICSM 2001, pages 240–249. IEEE, 2001.
19. A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages

Using Metamodels. Addison-Wesley Professional, 2008.
20. P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering Discipline for Gram-

marware. ACM Transactions on Software Engineering Methodology (ToSEM),
14(3):331–380, 2005.

21. P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with Rascal.
In J. M. Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE, volume
6491 of LNCS, pages 222–289. Springer, January 2011.

22. R. Lämmel. Grammar Adaptation. In Proceedings of the International Symposium
of Formal Methods Europe on Formal Methods for Increasing Software Productivity,
volume 2021 of LNCS, pages 550–570. Springer, 2001.

23. R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001.

24. R. Lämmel and G. Wachsmuth. Transformation of SDF Syntax Definitions in the
ASF+SDF Meta-Environment. In Proceedings of LDTA’01, volume 44 of ENTCS.
Elsevier Science, 2001.

25. R. Lämmel and V. Zaytsev. Recovering Grammar Relationships for the Java Lan-
guage Specification. Software Quality Journal (SQJ), 19(2):333–378, Mar. 2011.

26. M. Lanza and S. Ducasse. A Categorization of Classes based on the Visualization
of their Internal Structure: the Class Blueprint. In L. M. Northrop and J. M.
Vlissides, editors, Proceedings of OOPSLA’01, pages 300–311. ACM, 2001.

27. M. Mernik, J. Heering, and A. M. Sloane. When and How to Develop Domain-
Specific Languages. ACM Computing Surveys, 37(4):316–344, 2005.

28. J. F. Power and B. A. Malloy. A Metrics Suite for Grammar-based Software.
Journal of Software Maintenance and Evolution: Research and Practice, 16:405–
426, Nov. 2004.

29. A. Thies and C. Roth. Recommending Rename Refactorings. In Proceedings of
the Second International Workshop on Recommendation Systems for Software En-
gineering, RSSE’10, pages 1–5. ACM, 2010.

30. M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats,
E. Visser, and G. Wachsmuth. DSL Engineering: Designing, Implementing and
Using Domain-Specific Languages. dslbook.org, 2013.

31. A. van Wijngaarden. Orthogonal Design and Description of a Formal Language.
MR 76, SMC, 1965.

32. D. S. Wile. Abstract Syntax from Concrete Syntax. In ICSE, pages 472–480. ACM,
1997.

33. N. Wirth. On the Design of Programming Languages. In IFIP Congress, pages
386–393, 1974.

34. N. Wirth. What Can We Do about the Unnecessary Diversity of Notation for
Syntactic Definitions? Communications of the ACM, 20(11):822–823, 1977.

35. V. Zaytsev. MediaWiki Grammar Recovery. Computing Research Repository
(CoRR), 4661:1–47, July 2011.

36. V. Zaytsev. BNF WAS HERE: What Have We Done About the Unnecessary
Diversity of Notation for Syntactic Definitions. In S. Ossowski and P. Lecca,
editors, SAC/PL 2012, pages 1910–1915. ACM, Mar. 2012.

37. V. Zaytsev. Notation-Parametric Grammar Recovery. In A. Sloane and S. Andova,
editors, Post-proceedings of LDTA 2012. ACM, June 2012.

38. V. Zaytsev. The Grammar Hammer of 2012. Computing Research Repository
(CoRR), 4446:1–32, Dec. 2012.

39. V. Zaytsev. Abstract Normal Form for Grammars in a Broad Sense. Submitted to
the Information Processing Letters (IPL). Under review. http://dx.doi.org/10.
6084/m9.figshare.643391, May 2013.

40. V. Zaytsev. Grammar Zoo: A Repository of Experimental Grammarware. Fifth
Special issue on Experimental Software and Toolkits of Science of Computer Pro-
gramming (SCP EST5). Currently under major revision, 2013.

41. V. Zaytsev and R. Lämmel. A Unified Format for Language Documents. In B. A.
Malloy, S. Staab, and M. G. J. van den Brand, editors, Post-proceedings of the Third
International Conference on Software Language Engineering (SLE 2010), volume
6563 of LNCS, pages 206–225, Berlin, Heidelberg, Jan. 2011. Springer-Verlag.

42. V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli, and G. Wachsmuth. Software
Language Processing Suite5, 2008–2013. http://slps.github.io.

5 The authors are given according to the list of contributors at http://github.com/

grammarware/slps/graphs/contributors.

http://dx.doi.org/10.6084/m9.figshare.643391
http://dx.doi.org/10.6084/m9.figshare.643391
http://slps.github.io
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors

