
Negotiated Grammar Transformation

Vadim Zaytsev
Software Analysis & Transformation Team, Centrum Wiskunde & Informatica, The Netherlands

vadim@grammarware.net

ABSTRACT
In this paper, we study controlled adaptability of meta-
model transformations. We consider one of the most rigid
metamodel transformation formalisms — automated gram-
mar transformation with operator suites, where a transfor-
mation script is built in such a way that it is essentially
meant to be applicable only to one designated input gram-
mar fragment. We propose a different model of processing
unidirectional programmable grammar transformation com-
mands, that makes them more adaptable. In the proposed
method, the making of a decision of letting the transfor-
mation command fail (and thus halt the subsequent trans-
formation steps) is taken away from the transformation en-
gine and can be delegated to the transformation script (by
specifying variability limits explicitly), to the grammar engi-
neer (by making the transformation process interactive), or
to another separate component that systematically imple-
ments the desired level of adaptability. The paper lists and
explains two kinds of different adaptability of transforma-
tion (through tolerance and through adjustment) and con-
tains examples of possible usage of this negotiated grammar
transformation process.

1. INTRODUCTION
Some metamodel transformation formalisms and instruments
are more adaptable than others. One of the most rigid ones
is grammar transformation with operator suites. Within this
approach, a collection of well-defined transformation opera-
tors with well-understood semantics is provided, and those
operators are supplied with arguments and the input gram-
mar, so that the output grammar can be derived automat-
ically. The transformation scripts are stored in the form
of, in fact, partially evaluated operators, for which the argu-
ments have already been provided, but the input grammar is
not a part of such a transformation script. Thus, for exam-
ple, if rename is an operator that changes the name of one
nonterminal symbol, then rename(a, b) is a valid transfor-
mation command. However, suppose that the nonterminal
a disappears from the original grammar (due to some evolu-

tion happening concurrently: renaming, unfolding, slicing,
etc) — this makes the command of renaming it, irreparably
inapplicable. This tight coupling between the shape of the
input grammar fragment and the transformation step that
is supposed to work on it, makes programmable grammar
transformations rather fragile and prevents effective manip-
ulation of such a system. (We say “fragment” to emphasize
that the grammar transformation scripts are not necessarily
applicable to only one specific grammar, but rather to any
grammar that includes the expected fragment. However,
such “fragment” is not always sequential, it is in fact more
of a slice — for instance, in the abovementioned example
with renaming a to b, the applicability condition concerns
presence of any production rules defining or referring to a).

Existing research on adaptability in grammarware mostly
concerns adaptation of grammars towards a specific cause [4,
9, 12, 14, 16, 17, 18, 25]; while adaptation and co-adaptation
of grammar transformation scripts remains a much less pop-
ular topic [15, 20].

This problem is not at all specific to the XBGF/ΞBGF oper-
ator suite that we use as the backend of our prototypes [18,
25]. Coarse grammar transformations redefining nontermi-
nals entirely or adding new production rules to them, which
is common for frameworks like TXL [4] or GDK [12], are ro-
bust to a greater extent, but there is no control over the kind
of adaptation we will experience (tolerance or adjustment,
see next section). Finer grammar transformations that can,
for example, fold a symbol sequence as a definition of a new
nonterminal or change one particular repetition from the
“one or more” kind to the “zero or more”, that are possible
with frameworks like GRK [16] or FST [17], are extremely
prone to any kind of change in the source fragment of the in-
put grammar, and easily are rendered inapplicable without
a clearly traceable way to prevent it.

In the next sections we will propose a method for making
grammar transformation scripts more adaptable. In short,
the method entails clear separation of applicability asser-
tions from the actual transformation actions, and reformu-
lating the former in the way that allows to send suggestions
back to the user instead of simply refusing to work.

The rest of the paper discusses two different kinds of trans-
formation adaptability, that can be desirable in different
situations (§2), explains the negotiated grammar transfor-
mation in detail (§3) and provides some concrete examples

mailto:vadim@grammarware.net


Figure 1: Adaptation through tolerance.

taken from a prototype implementation (§4). For the fig-
ures on the pages of this paper, we will use MegaL/yEd,
a domain-specific (mega)modelling language for specifying
and discussion linguistic architecture [5]. The entity types
will be distinguished by the colour and an associated icon:
an Artefact (blue, dark grey in greyscale, box icon) is a
tangible software artefact—i.e., a file, a file fragment, a lan-
guage definition, a language instance, a library; a Function
(light green, light grey in greyscale, cogwheel) is a func-
tion in the (meta)model transformation sense;for the sake
of brevity, partially evaluated functions are also depicted as
functions. a Function application (dark green, dark grey
in greyscale, cogwheel) is a concrete transformation, usu-
ally conforming to some function definition, but also having
all arguments at its disposal. The types of relationships
occurring on the figures, will be either classic or intuitive,
and hopefully will not need any explanation (e.g., inputOf,
hasOutput, elementOf, realisationOf). MegaL models are
megamodels [1, 6] — models of linguistic architecture that
specifically address relationships between complex entities
such as software languages and (meta)model transforma-
tions in order to comprehend software technologies and re-
late technological spaces [13]

2. TRANSFORMATION ADAPTABILITY
We can think of two kinds of adaptability that we may de-
sire in metamodel transformation: through tolerance and
through adjustment.

2.1 Adaptation through tolerance
Figure 1 presents a megamodel for one kind of adaptation.
We start with the group in the right top corner. It contains
three artefacts: two grammars and a transformation script
that describes a function, which, if applied to Grammar1,
will yield Grammar2. If we assume that some evolution

(which is also technically a transformation) happens with
the original grammar (the group on the left), then we might
need to derive another transformation script Script2T, which
will take the adjusted grammar and produce exactly the
same result as the original Script1 (the exact way to derive
this script, is unknown, non-automated or irrelevant, which
we depict as the “???” box on the megamodel).

Adaptation through tolerance is quite common in situations
when the evolutional part refers to some backend adjust-
ments of the baseline grammar that we do not want to be
affecting the transformation result in any way. In that case,
conceptually, if Xformation12 is f and XformationE is e,
then XformationT is t = e−1 ◦ f .

In conventional unidirectional programmable grammar trans-
formation, most destructive operators inherently exhibit this
property (with Script1 being equal to Script2T): for exam-
ple, when a nonterminal is undefined, it means that all
its production rules are disregarded and removed from the
grammar — so, even if they are adjusted by XformationE,
they are still removed, and the adjustments disappear from
the output grammar.

2.2 Adaptation through adjustment
Figure 2 presents a different megamodel for adaptation of
grammar transformation scripts. It is similar to the previ-
ous megamodel in many aspects, except for the output of
the transformation function application in the right bottom
group. In this case, we preserve the evolutional steps by as-
suming a hypothetic function XformationE’ (e′) which has
some correspondence to the original evolution function in
the sense of f ◦ e′ = e ◦ a, where a is XformationA.

Adaptation through adjustment is common in many scenar-



Figure 2: Adaptation through adjustment.

ios when the changes brought in by the original transfor-
mation and by metamodel evolution, are independent (i.e.,
in terms of grammarware, they concern different nontermi-
nals). Apparently, in case of complete independence their
superposition is commutative, so e′ = e, but there are many
“grey” cases when the transformations are essentially inde-
pendent, but the scripts that represent them, still need to
be adjusted: think of changing different parts of the same
production rule — since the access scheme most probably
entails including the whole production rule as an argument
in both cases, the one that take place latest, needs adjust-
ment.

3. NEGOTIATED TRANSFORMATION
The method we propose as one of the ways to address the
controlled adaptability problem that was identified in the
previous section, changes the model of the process. The
current model is as follows:

1. The transformation command is supplied to the trans-
formation engine that has access to the input gram-
mar.

2. The applicability of the transformation command is
assessed.

3. If the transformation command is deemed inapplicable
to the input grammar, an error is reported and the
transformation sequence halts.

4. If the transformation command turns out to be vacu-
ous (lead to zero changes) if applied to the input gram-
mar, a different error is reported, and the transforma-
tion sequence still halts.

5. If the transformation command is applicable and non-
vacuous, it is applied, and the transformation engine
proceeds to (1.) with the next command.

The new model, that we refer to as “negotiated transforma-
tion”, can be described like this:

1. The transformation command is supplied to the trans-
formation engine that has access to the input gram-
mar.

2. The applicability of the transformation command is
assessed.

3. If the transformation command is applicable and non-
vacuous, it is applied, and the transformation engine
proceeds to (1.) with the next command.

4. If the transformation command turns out to be vacu-
ous (lead to zero changes) if applied to the input gram-
mar, and such a result is acceptable according to the
semantics of the operator, a warning is reported, but
the transformation process still continues to (1.) with
the next command.

5. If the transformation command is deemed inapplicable
to the input grammar or unacceptably vacuous, alter-
natives are explored and reported back in the form of
a collection of possible arguments that make the trans-
formation applicable.

6. The side that supplied the transformation command,
decides by itself whether to report an error and halt



the transformation process or proceed to (1.) with
the same command and one of the alternative sets of
arguments.

The last two items beg for more detailed explanation. By
“reported back” we can mean one of the following:

• The alternatives are compared with the variability lim-
its that are specified explicitly as a part of the trans-
formation script. In this case the role of the actual
argument is somewhat diminished to the preferred one.

• The alternatives are literally reported back to the user
who runs the transformation scripts, and the choice
among them, with the always present option to fail, is
up to this user.

• A message about violating the contract is displayed,
but the transformation sequence proceeds by choosing
one option randomly or according to some minimality
considerations.

• One alternative is chosen, but the other ones are stored
in order to enable falling back to them if the transfor-
mation sequence gets stuck later on.

• The transformation sequence is halted as usual, but
the suggestions are displayed to the user as recom-
mendations.

• Any other useful utilisation by the set of alternatives
by an additional component.

One of the trivial ways to implement such a component is
to let the transformation sequence fail anyway — this is
equivalent to the traditional grammar transformation (with
somewhat better error reporting, if the alternatives are dis-
played). On the other side of the spectrum, we can hy-
pothetically think of encoding very large or infinite sets of
allowed alternatives, or specifying the variability limits by
constraints, which is in fact equivalent to grammar muta-
tion [24]. Isolating this aspect to a separate component that
systematically implements the desired level of adaptability,
allows us to encode any desired behaviour between those two
known approaches and beyond them.

4. EXAMPLES
4.1 renameN
Consider one of the easiest to understand grammar transfor-
mation operator: renameN, which renames a nonterminal.
Its implementations are available in the GitHub repository
of the Software Language Processing Suite [25] in Prolog1

and Rascal2, and conceptually renameN(x, y) follows this
plan:

1. Source name x for renaming is expected to not be fresh
(i.e., it must be present in the input grammar before
renaming).

1http://github.com/grammarware/slps/blob/master/
shared/prolog/xbgf1.pro.
2http://github.com/grammarware/slps/blob/master/
shared/rascal/src/transform/XBGF.rsc.

2. Target name y for renaming is expected to be fresh
(i.e., it must not be present in the input grammar be-
fore renaming).

3. If x is listed among the root (starting) nonterminals,
it is replaced there by y.

4. All production rules for nonterminals other than x,
have their right hand sides altered such that every oc-
currence of x is replaced by y.

5. All production rules defining x, if they are present,
undergo the same transformation, plus their left hand
sides are changed to define y instead.

For the remaking of this transformation operator in the ne-
gotiated grammar transformation paradigm, we isolate the
steps (3.) though (5.) as the core transformation code and
reformulate the first two constraints as recommenders:

1. If the source name x for renaming is fresh, we compute
Levenshtein distances between x and all nonterminals
that actually occur anywhere in the grammar, and rec-
ommend the one with the lowest score.

2. If the target name y for renaming is not fresh, we make
three proposals: one of the form of y1, y2, etc (what-
ever is the lowest number that is not taken yet); one is
obtained by concatenating underscores to y; and one
randomly generated with the same length and letter
cases as y (i.e., “AbcDef” can lead to “FooBar”).

Some design decisions explained here are mere implemen-
tation details, but they are still included for the sake of
providing examples of how suggestions can be formed in a
concrete scenario for negotiated grammar transformations.

4.2 vertical
The vertical operator consumes production rules of one
nonterminal, that contain a top-level choice, and replaces
them with an equivalent definition consisting of multiple
production rules [25, XBGF Manual]. (The latter style of en-
gineering grammars is called “non-flat” [17] or “vertical” [18],
hence the operator name). Obviously, it fails to operate
when the nonterminal is not present or when it is already
vertically defined — i.e., if there is not a single production
rule with a top-level choice.

These two applicability preconditions are easily realised within
the negotiated grammar transformation paradigm. The search
for a different nonterminal name is not unlike the search for
x in the previous example, but it also filters out flat/hor-
izontal nonterminals. The vacuousness, however, does not
pose any additional challenge at all: the intended semantics
of the operator is to ensure that a particular nonterminal is
defined vertically — and if the transformation command is
vacuous, then it is already the case, so the postcondition is
satisfied. Hence, a negotiated version of the vertical oper-
ator disregards the assertion of non-vacuousness.

http://github.com/grammarware/slps/blob/master/shared/prolog/xbgf1.pro
http://github.com/grammarware/slps/blob/master/shared/prolog/xbgf1.pro
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/XBGF.rsc
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/XBGF.rsc


4.3 extract
Extracting a production rule means adding a new produc-
tion rule of a fresh nonterminal to the grammar, and folding
it — i.e., replacing all occurrences of its right hand side with
the newly introduced nonterminal [25, XBGF Manual]. Its
implementation can be found in the same place we refer-
enced above, but conceptually extract(n : rhs) works as
follows:

1. Left hand side n is expected to be fresh (i.e., it must
not be present in the input grammar before renaming).

2. The transformation is expected to be useful (i.e., rhs
should occur at least once in the input grammar before
adding the production rule).

3. All occurrences of rhs are replaced with n.

4. The production rule (n : rhs) is added to the grammar.

The steps (3.) and (4.) belong to the core transformation
code and are folded into a separate function that will be
called from both the regular and the negotiated grammar
transformation functions, just like in the previous example.
The step (1.) is also easily reused from the renameN ex-
ample. However, the second step is not easily reused from
the vertical example, since extract does not make sense
when it is vacuous: its base objective is to fold an existing
symbol sequence into a new nonterminal, not to introduce
a nonterminal unrelated to the rest of the grammar. Hence,
we implement a fuzzy search algorithm that tries to iden-
tify fragments in the input grammar that could possibly be
modifications of the right hand side that was provided as an
argument.

5. RELATED WORK
Herrmannsdörfer et al [8, 10], Wachsmuth [22], Cicchetti et
al [2] and many others have considered, proposed or analysed
metamodel transformation operators that are strikingly sim-
ilar to grammar transformation operators. In this paper, we
have limited ourselves to grammar transformation not only
because grammars are considered somewhat simpler than
arbitrary metamodels, but also because metamodel trans-
formation scripts are written in a more adaptable way, so
they suffer less from the problem we are solving here.

In §4.3, we have explained that alternative renaming can-
didates are proposed according to the minimal Levenshtein
distances between x and any other nonterminal. In fact,
the Levenshtein’s edit distance [19] is not the perfect metric
in this scenario: ultimately, we would want one that puts
“expr” closer to “expression” than to “abcd” [26]. To the
best of our knowledge, such metric does not exist yet, since
the need for it has apparently not previously risen. The (ad-
justed) Levenshtein distance algorithm was only used for the
sake of simplicity, but even (modifications of) much more
advanced techniques such as those relying on nonterminal
equivalence [23] or parser-based matching [7], could be ap-
plied here as well.

Another family of extreme modelling methods of inconsis-
tency management of concurrent transformations, allows con-
flicts to not be resolved on the spot. Such inconsistencies can

be represented as separate first-class entities [3] and incor-
porated directly to the resulting model [11], which enables
efficient handling of inconsistency detection and resolutions
as graph transformation rules [21]. These approaches can
be used together with negotiated grammar transformation
or as an alternative to it.

It is not outrageous to assume that the concept of negotiat-
ing the outcome of a transformation step instead of failing
it, is applicable beyond the level of metamodels (grammars).
However, the simplicity of the metametamodel (EBNF in
grammarware terms: terminals, nonterminals, symbol repe-
tition, etc) is one of the key factors for the approach to be
successful, since it is often feasible to come up with useful
alternative suggestions.

6. CONCLUSION
Some metamodel transformation paradigms, like unidirec-
tional programmable grammar transformation, are rather
rigid. They are written to work with one input grammar,
and are not easily adapted if the grammar changes. How-
ever, such adaptations are often desirable: in fact, we have
presented megamodels of two scenarios when different kinds
of adaptability can be useful.

Our proposed solution entails isolation of the applicability
assertions into a component separate from the rest of the
transformation engine, and enhancing the simple accept-
and-proceed vs. reject-and-halt scheme into one that pro-
poses a list of valid alternative arguments and allows the
other transformation participant (the oracle, the script, the
end user running it, etc) to choose from it and negotiate
the intended level of adaptability and robustness. This solu-
tion enables more efficient manipulation of existing grammar
transformation scripts and their controlled adaptability.

Fragments of a prototype were shown and discussed in the
paper as well, all of them available publicly in the GitHub
repository of the Software Language Processing Suite [25].
Reimplementing all 50+ operators of XBGF within the ne-
gotiated grammar transformation paradigm, is still work in
progress.

7. REFERENCES
[1] J. Bézivin, F. Jouault, and P. Valduriez. On the Need

for Megamodels. OOPSLA & GPCE, Workshop on
best MDSD practices, 2004.

[2] A. Cicchetti, D. D. Ruscio, R. Eramo, and
A. Pierantonio. Automating Co-evolution in
Model-Driven Engineering. In Proceedings of the 2008
12th International IEEE Enterprise Distributed Object
Computing Conference, EDOC ’08, pages 222–231,
Washington, DC, USA, 2008. IEEE Computer Society.

[3] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A
Metamodel Independent Approach to Difference
Representation. Journal of Object Technology,
6(9):165–185, Oct. 2007. TOOLS EUROPE 2007 —
Objects, Models, Components, Patterns.

[4] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A.
Schneider. Grammar Programming in TXL. In
Proceedings of the Second IEEE International
Workshop on Source Code Analysis and Manipulation,



SCAM’02, pages 93–102, Washington, DC, USA, 2002.
IEEE Computer Society.

[5] J.-M. Favre, R. Lämmel, and A. Varanovich. Modeling
the Linguistic Architecture of Software Products. In
Proceedings of MoDELS 2012, LNCS. Springer, 2012.
17 pages. To appear.

[6] J.-M. Favre and T. NGuyen. Towards a Megamodel to
Model Software Evolution through Transformations.
Electronic Notes in Theoretical Computer Science,
Proceedings of the SETra Workshop, 127(3), 2004.

[7] B. Fischer, R. Lämmel, and V. Zaytsev. Comparison
of Context-free Grammars Based on Parsing
Generated Test Data. In U. Aßmann and A. Sloane,
editors, Post-proceedings of the Fourth International
Conference on Software Language Engineering (SLE
2011), volume 6940 of LNCS, pages 324–343. Springer,
Heidelberg, 2012.

[8] M. Herrmannsdörfer, S. Benz, and E. Juergens. COPE
— Automating Coupled Evolution of Metamodels and
Models. In Proceedings of the 23rd European
Conference on Object-Oriented Programming
(ECOOP’09), Genoa, pages 52–76, Berlin, Heidelberg,
2009. Springer-Verlag.

[9] M. Herrmannsdörfer, D. Ratiu, and M. Kögel.
Metamodel Usage Analysis for Identifying Metamodel
Improvements. In B. A. Malloy, S. Staab, and
M. G. J. van den Brand, editors, Post-proceedings of
the Third International Conference on Software
Language Engineering (SLE’10), volume 6563 of
LNCS, pages 62–81, Berlin, Heidelberg, January 2011.
Springer-Verlag.

[10] M. Herrmannsdörfer, S. Vermolen, and
G. Wachsmuth. An Extensive Catalog of Operators for
the Coupled Evolution of Metamodels and Models. In
B. A. Malloy, S. Staab, and M. G. J. van den Brand,
editors, Post-proceedings of the Third International
Conference on Software Language Engineering
(SLE’10), volume 6563 of LNCS, pages 163–182,
Berlin, Heidelberg, January 2011. Springer-Verlag.

[11] M. Kögel, H. Naughton, J. Helming, and
M. Herrmannsdörfer. Collaborative Model Merging. In
Companion of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications, SPLASH ’10, pages 27–34, New York,
NY, USA, 2010. ACM.

[12] J. Kort, R. Lämmel, and C. Verhoef. The Grammar
Deployment Kit. In M. G. J. van den Brand and
R. Lämmel, editors, Proceedings of the Second
Workshop on Language Descriptions, Tools and
Applications (LDTA’02), volume 65 of Electronic
Notes in Theoretical Computer Science. Elsevier
Science Publishers, 2002.

[13] I. Kurtev, J. Bézivin, and M. Akşit. Technological
Spaces: an Initial Appraisal. In Proceedings of CoopIS,
DOA’2002, Industrial track, 2002.

[14] R. Lämmel. Grammar Adaptation. In Proceedings of
the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software
Productivity, volume 2021 of LNCS, pages 550–570.
Springer-Verlag, 2001.

[15] R. Lämmel. Coupled Software Transformations. In
First International Workshop on Software Evolution

Transformations (SET’04), Nov. 2004.

[16] R. Lämmel. The Amsterdam Toolkit for Language
Archaeology. Electronic Notes in Theoretical
Computer Science (ENTCS), 137(3):43–55, 2005.
Proceedings of the Second International Workshop on
Metamodels, Schemas and Grammars for Reverse
Engineering (ATEM’04).

[17] R. Lämmel and G. Wachsmuth. Transformation of
SDF Syntax Definitions in the ASF+SDF
Meta-Environment. In Proceedings of the Workshop on
Language Descriptions, Tools and Applications
(LDTA’01), volume 44 of ENTCS. Elsevier Science,
2001.

[18] R. Lämmel and V. Zaytsev. Recovering Grammar
Relationships for the Java Language Specification.
Software Quality Journal (SQJ), 19(2):333–378, March
2011.

[19] V. I. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10(8):707–710, 1966.

[20] W. Lohmann and G. Riedewald. Towards Automatical
Migration of Transformation Rules after Grammar
Extension. Proceedings of the 15th European
Conference on Software Maintenance and
Reengineering (CSMR’03), page 30, 2003.

[21] T. Mens, R. Van Der Straeten, and M. DâĂŹHondt.
Detecting and resolving model inconsistencies using
transformation dependency analysis. In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, Model
Driven Engineering Languages and Systems, volume
4199 of Lecture Notes in Computer Science, pages
200–214. Springer Berlin / Heidelberg, 2006.

[22] G. Wachsmuth. Metamodel Adaptation and Model
Co-adaptation. In E. Ernst, editor, ECOOP’07,
volume 4609 of LNCS, pages 600–624. Springer, July
2007.

[23] V. Zaytsev. Guided Grammar Convergence. Full Case
Study Report. Generated by converge::Guided.
Computing Research Repository (CoRR),
abs/1207.6541:1–44, July 2012.

[24] V. Zaytsev. Language Evolution, Metasyntactically.
Electronic Communications of the European
Association of Software Science and Technology
(EC-EASST), 49, 2012. Post-proceedings of the First
International Workshop on Bidirectional
Transformation (BX’12).

[25] V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli,
and G. Wachsmuth. Software Language Processing
Suite3, 2008–2012. http://grammarware.github.com.
Contains, among other works, XBGF Manual: BGF
Transformation Operator Suite v.1.0 (V. Zaytsev,
August 2010),
http://grammarware.github.com/xbgf.

[26] V. Zaytsev (grammarware). “Which string metric
meaningfully and consistently puts ‘expr’ closer to
‘expression’ than to ‘abcd’?”, 10 June 2012, 12:20.
Tweet. http://twitter.com/grammarware/status/
211764758968418304.

3The authors are given according to the list of contrib-
utors at http://github.com/grammarware/slps/graphs/
contributors.

http://grammarware.github.com
http://grammarware.github.com/xbgf
http://twitter.com/grammarware/status/211764758968418304
http://twitter.com/grammarware/status/211764758968418304
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors

