
Electronic Communications of the EASST
Volume X (2012)

Proceedings of the
First International Workshop on
Bidirectional Transformations

(BX 2012)

Language Evolution, Metasyntactically

Vadim Zaytsev

16 pages

Guest Editors: Frank Hermann, Janis Voigtländer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Language Evolution, Metasyntactically

Vadim Zaytsev

vadim@grammarware.net, http://grammarware.net
SWAT, CWI, The Netherlands

Abstract: Currently existing syntactic definitions employ many different notations
(usually dialects of EBNF) with slight deviations among them, which prevent effi-
cient automated processing. When changes in such notation are required either due
to maintenance activities such as correction or evolution, or because a grammar col-
lection is written in a different notation than the one required by the grammarware
toolkit, we speak of metalanguage evolution: i.e., a special language evolution sce-
nario when the language itself does not necessarily evolve, but the notation in which
it is written, does. Notational changes need to be propagated to different levels, such
as to parsers that used to work with the old notation, to grammars of those notations
that served as explanation material, and finally to the existing grammarbase.

The solution proposed in this paper, relies on composition of a notation specifica-
tion and expressing notation changes as transformations of that specification. These
transformation steps are coupled to changes in the notation grammar (i.e., grammar
for grammars) and to changes in other grammars written in the original notation.
This paper explains the general setup of such an infrastructure, with links to the
prototypical implementation of the solution.

Keywords: language evolution; bidirectional transformation; coupled transforma-
tion; syntactic notation; grammar convergence.

1 Introduction

The unnecessary diversity of notation for syntactic definitions stems from the current practice
of almost every language documentation artefact employing its own notation, usually a dialect
of EBNF [Wir77, Zay12a, ZL11]. When changes in such notation are required, we speak of
metalanguage evolution: i.e., a special language evolution scenario when the language itself
does not necessarily evolve, but the notation in which it is written, does. Scenarios when the
need for such changes arise, include:

Notation correction. Most of the grammars found in the language documentation, have never
been formally validated and are known to contain many types of errors. One specific
category of such errors is misused notation. For example, in Java Language Specifica-
tion [GJSB05] a grouping metasymbol (i.e., a possibility to group symbols with paren-
thesis) is never specified in the notation description, yet still used on several occasions.
Changing such grammar to fit into the intended notation is in fact a notation change from
the actual notation to the intended one.

1 / 16 Volume X (2012)

mailto:vadim@grammarware.net
http://grammarware.net

Language Evolution, Metasyntactically

Notation evolution. Notations can be considered software languages themselves, and as their
design and development commence, they become a target to change. For example, the
BNF-like notation used by the Grammar Deployment Kit (a framework for grammar main-
tenance and manipulation), considerably evolved since the first publication [KLV02] to the
current version [Kor03]. However, these changes are not immediately noticeable, and dec-
orating changes (e.g., renamed nonterminals in the grammar for grammars) and conceptual
changes (e.g., adding a notation for separator lists) are indistinguishable.

Mapping between notations. When a language engineer possesses a number of grammars (a
grammarbase) in a particular notation, they may need to be mutated if there is an intention
to use a particular grammarware framework (say, GDK, TXL, Rascal, SLPS) that works
with a different (yet perhaps even equivalent) notation. Bidirectionality [CFH+09] plays
an especially important role here because if the grammarware framework changed the
grammar, such changes will need to be propagated back to the original notation.

Notational changes need to be propagated to different levels: parsers that used to work with
the original notation; grammars of those notations that served as explanation material; the ex-
isting grammarbase. The solution proposed in this paper, relies on composition of a notation
specification and expressing notation changes as transformations of that specification. These
transformation steps are coupled to changes in the notation grammar (i.e., grammar for gram-
mars) and to changes in other grammars written in the original notation. Although the general
theory of metamodel evolution and coupled metamodel/metametamodel transformation is not at
all limited to the grammarware technical space, as we know from [Wac07, CCLP11], we limit
ourselves to grammar specifics.

The rest of the paper is organised as follows. §2 introduces the notation specification and
other artefacts related to it. §3 considers a scenario with two notations involved in notation
evolution. §4 describes a study of a real case of notation evolution and explains our prototypical
application of the proposed megamodel to it. §5 references and discusses issues related to ours
and touches on possible future explorations. §6 concludes the paper by listing contributions and
achievements.

2 Notation life cycle megamodel

Following Bézivin et al [BJV04], we present the general setup for notation life cycle in a “meg-
amodel”. In our case, we will use boxes for entities and arrows for actions. Consider the follow-
ing artefacts and relationships between them:

If N is a notation for syntactic definition, we can also compose a notation specification S(N)
(the leftmost box on the figure). Such a specification consists of a set of indications that we have

Proc. BX 2012 2 / 16

ECEASST

previously proposed in [Zay12a]:

Confix constructs (start & end metasymbols):
grammar, comment, label, nonterminal, terminal, special, group, optionality, star repeti-
tion, plus repetition, star separator list, plus separator list

Infix metasymbols:
terminator, possible terminator, defining, multiple defining, definition separator, concate-
nation, inner choice, exception

Postfix metasymbols:
optionality, star repetition, plus repetition

Prefix metasymbols:
start one line comment

Other metasymbols:
line continuation, tabulation, empty sequence

Conventions:
whitespace reliability, indentation, definition direction, nonterminal if defined, nontermi-
nal if contains, glue consecutive terminals, decomposition of symbols, uppercase nonter-
minals, lowercase nonterminals, camelcase nonterminals, mixed case nonterminals, up-
percase terminals, lowercase terminals, camelcase terminals, mixed case terminals

Predefined sets:
ignored line indicators, masked terminals, nonterminals may contain, built-in nonterminals

Together, these are powerful enough to define any EBNF dialect. Its representation in our
toolset is called EDD (stands for EBNF Dialect Definition) and, being a list of metasymbol name-
value tuples, is not technically interesting. It is available at SLPS as shared/xsd/edd.xsd
as a schema, with shared/edd directory containing specifications of several notations we have
encountered.

Constructing a notation specification is technically equivalent (yet more maintainable, as we
will argue later) to making a grammar for grammars (a parser specification that will allow to
parse grammars written in N): e.g., GRascal(N). The parser generated from it is useful for getting
IDE support for various grammarware engineering activities such as semi-automatic grammar
recovery [Zay12b], but is not an essential part of this paper’s solution. However, it can serve
as a source for grammar extraction, and provides us a notation grammar GBGF(N) for the
given notation, where BGF is an internal representation for grammars1. Being derived within an
“abstraction by extraction” paradigm [LZ09], it contains slightly less information than the more
detailed parser specification, making bidirectionalisation of this step somewhat problematic. For
instance, lexical syntax is ignored by the extractor; hence, all metasymbols specified there (most
notably the start and the end terminal metasymbols) are lost if the parser specification G′Rascal(N)
is re-exported upwards again. Note that we did not develop a tool for inferring the notation
specification from its parser: such tool would have been either much too restricted, since it is

1 BGF stands for BNF-like Grammar Format, its logic programming-based specification can be found in previously
published sources [LZ09, Zay10, LZ11, ...], and its schema is available as shared/xsd/bgf.xsd at SLPS. For
understanding this paper, it is enough to assume BGF as a term-like internal representation for context-free grammars.

3 / 16 Volume X (2012)

http://slps.svn.sourceforge.net/viewvc/slps/shared/xsd/edd.xsd?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/shared/edd/
http://slps.svn.sourceforge.net/viewvc/slps/shared/xsd/bgf.xsd?view=markup

Language Evolution, Metasyntactically

clearly impossible to automatically extract a notation information from any voluntarily written
parser, or rely on a lense-like [FGM+07] infrastructure.

With GBGF(N) being quite a precise definition of N for many purposes, it is not perfect for
including it in a documentation, since all nonterminal symbols used in it, would have names that
were automatically generated by the grammarware framework. A beautified notation gram-
mar G′BGF(N), is linked to GBGF(N) by a bidirectional grammar adaptation relation β , so that
β (GBGF(N)) = G′BGF(N) and β−1(G′BGF(N)) = GBGF(N). Such a readable grammar can then
be pretty-printed in the desired notation, to result in GN(N), a definition “in itself”. This way
to define a notation is the current practice in grammar engineering and language documentation.
We argue that it is suboptimal and unsuitable for automatic machine processing, because all the
notational details that make up the notation specification S(N), are present there only in an in-
direct way, and it takes effort even for a human reader to extract them on the fly in order to, for
example, compare two different notations. However, the reverse of formatting a grammar ac-
cording to a notation specification, is a technique known as grammar recovery, which is reliable
enough to deliver the grammar in precisely the same form that it was stored in, especially if a
notation-parametric grammar recovery approach is taken [Zay12b]. Thus, the presence of the
notation specification S(N) makes this last step bidirectional and bijective.

We assume a possible presence of other grammars {GN(L)} that are also written in the nota-
tion N. These grammars can be used for parsing [ASU85], analysis [PM00], convergence [LZ09],
computing differences based on models [Era11], schemata [RB01], graphs [SM96], trees [SZ97]
and views [AAN+06], in grammar-based black box testing [FLZ11], for documentation (re)ge-
neration [ZL11] and in many other activities. If such an activity expects another syntactic no-
tation or demands changes in it, it is useful to provide automated aid in migrating the existing
grammarbase.

3 Notation evolution

Suppose these chain frameworks are set up for two related notations. What exactly are the
relationships between their different stages, if we agree to approach this solution with maximal
automation as the main objective?

Proc. BX 2012 4 / 16

ECEASST

Here we see that a notation evolution step ∆ consists of the following coupled components:

• σ , a bidirectional notation transformation that changes the notation itself;
• δ , a convergence relationship that can transform the notation grammars;
• γ , a bidirectional grammar adaptation that prepares a beautified readable version of N′.
• µ , an unidirectional coupled grammar mutation that migrates the grammarbase accord-

ing to notation changes;
• possibly µ ′, an unidirectional coupled grammar mutation that migrates the grammarbase

according to the inverse of the intended notation changes;

Let us look into these components in more detail.

3.1 Notation transformation

Since we can specify a syntactic notation S(N) and store it as a standalone entity, we can also
define a language for transforming it. The bidirectional notation transformation σ describes a
relation between S(N1) and S(N2) if and only if all differences between N1 and N2 are intended
and σ(S(N1)) = S(N2) and σ−1(S(N2)) = S(N1). The corresponding transformation language
aptly called XEDD is meant to represent notation evolution (see shared/xsd/xedd.xsd for
the schema and topics/transformation/xedd/xedd.py for the XEDD processor).
The transformation suite consists of only three operators:

rename-metasymbol(s,v1,v2) where s is the metasymbol and values v1 and v2 are strings
For example, we can decide to update the notation specification from using “:” as a
defining metasymbol to using “::=”. This is the most trivial transformation, but also
bidirectional by nature.

introduce-metasymbol(s,v) where s is the metasymbol and v is its desired string value
For example, a syntactic notation can exist without terminator metasymbol, and we may
want to introduce one.

eliminate-metasymbol(s,v) where s is the metasymbol and v is its current string value
Naturally, eliminate and introduce together form a bidirectional pair. Specifying the cur-
rent value of a metasymbol is not necessary, but enables extra validation, as well as trivial
bidirectionalisation.

The behaviour of the XEDD processor, however, heavily depends on the particular metasym-
bol to be removed, introduced or changed, especially when taking all the coupled transforma-
tions, mutations and relationships, into consideration. It is also sensible for confix metasymbols
that always come in pairs, to have a double introduce and eliminate that deals with start and end
metasymbols in one step.

3.2 Convergence relationship

A relationship between two grammars can be expressed within the grammar convergence ap-
proach [LZ09] as a sequence of grammar transformation steps. XBGF, an operator suite for

5 / 16 Volume X (2012)

http://slps.svn.sourceforge.net/viewvc/slps/shared/xsd/xedd.xsd?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/xedd.py?view=markup

Language Evolution, Metasyntactically

programming such grammar transformation steps, was proposed earlier [ZLS+12, Zay10]. Its
superiority both in expressiveness and attention to details with respect to alternative operator
sets, has been demonstrated [LZ11]. However, XBGF is not completely bidirectional by design,
so we defined a language for bidirectional grammar transformation on top of it, and called it
ΞBGF2. A subset of ΞBGF, sufficient for understanding this paper, is presented below:

• add-removeH(pm)
→ addH(pm)
← removeH(pm)

• add-removeV(p)
→ addV(p)
← removeV(p)

• designate-unlabel(p)
→ designate(p)
← unlabel(p.l)

• downgrade-upgrade(p1, p2)
→ downgrade(p1, p2)
← upgrade(p1, p2)

• extract-inline(p)
→ extract(p)
← inline(p.n)

• factor-factor(e1,e2)
→ factor(e1,e2)
← factor(e2,e1)

• fold-unfold(n)
→ fold(n)
← unfold(n)

• horizontal-vertical(n)
→ horizontal(n)
← vertical(n)

• inline-extract(p)
→ inline(p.n)
← extract(p)

• massage-massage(e1,e2)
→ massage(e1,e2)
← massage(e2,e1)

• narrow-widen(e1,e2)
→ narrow(e1,e2)
← widen(e2,e1)

• remove-addH(pm)
→ removeH(pm)
← addH(pm)

• remove-addV(p)
→ removeV(p)
← addV(p)

• rename-renameN(n1,n2)
→ renameN(n1,n2)
← renameN(n2,n1)

• rename-renameT(t1, t2)
→ renameT(t1, t2)
← renameT(t2, t1)

• replace-replace(e1,e2)
→ replace(e1,e2)
← replace(e2,e1)

• reroot-reroot(n∗1,n
∗
2)

→ reroot(n∗2)
← reroot(n∗1)

• unlabel-designate(p)
→ unlabel(p.l)
← designate(p)

• upgrade-downgrade(p1, p2)
→ upgrade(p1, p2)
← downgrade(p1, p2)

• unfold-fold(n)
→ unfold(n)
← fold(n)

• vertical-horizontal(n)
→ vertical(n)
← horizontal(n)

• widen-narrow(e1,e2)
→ widen(e1,e2)
← narrow(e2,e1)

Most of the operator names should be self-explanatory: add-removeH adds an alternative
to any symbol or removes an alternative from an existing choice; designate-unlabel assigns a
unique label to any production rule or strips an existing production from it; downgrade-upgrade
replaces a nonterminal with one of its definitions or replaces an expression by a nonterminal that
can be evaluated to it; etc. For more information on the original XBGF commands, an interested
reader is redirected to the XBGF manual [ZLS+12].

2 ΞBGF is read as “ksee bee gee eff”, to emphasize its relation to XBGF, “iks bee gee eff”.

Proc. BX 2012 6 / 16

ECEASST

Most of the operators of XBGF are naturally bidirectional — such are, for example, renameN
or factor: their arguments need only to be swapped in order to form an inverted transformation.
Some others form pairs, such as addV and removeV, or narrow and widen: if the arguments are
identical, one operator is always an inverted form of the other. For defining a purely bidirectional
language based on XBGF, we had to address the remaining issues: for example, the XBGF opera-
tor extract (introduction of a new nonterminal with its subsequent folding) requires a production,
but its counterpart inline expects just the name of the nonterminal, because its definition (which
is about to be unfolded and removed from the grammar) can be observed from the grammar. In
general, bidirectionalisation required us to disregard some of XBGF’s operators that involved
more automation, such as distribute (aggressive factoring), since results of distribute applica-
tion can be achieved by using factor explicitly and without any loss of generality. We also had to
assume non-triviality of operators’ parameters and their uniqueness within the given scope, oth-
erwise rename-renameN(a,b) would work incorrectly on ab because its reverse application will
not be able to distinguish between b that needs to be replaced and b that needs to stay. In order
to simplify this paper somewhat, we reserve a comprehensive investigation into bidirectionalis-
ing grammar transformation scripts for future work. ΞBGF is available through SLPS both as a
schema definition shared/xsd/ξbgf.xsd and as a processor shared/tools/ξbgf.

Classic grammar transformation is used to represent language evolution, correction, adapta-
tion, etc. Bidirectional grammar transformation is a slightly more stable way to represent a
relationship between two languages (or variants of the same language). Imagine for instance a
relationship between an abstract syntax and a concrete syntax of the same language: they are
structurally similar, but even in the simplest case the former lacks all the terminals found in the
latter and may have different order of arguments for some constructs. Another example that we
will see later is a relationship between an automatically derived grammar and the one prepared
for publication (such preparation may entail renaming, refactoring for improved readability and
hiding uninteresting implementation details). It is fairly straightforward to extend the relation-
ship if one of the involved entities is transformed, which means that we can have the grammar
relationship coevolve when the grammars evolve.

3.3 Notation grammar adaptation

The bidirectional grammar adaptation chain β usually consists of two parts: renaming βn and
restructuring βr. We have emphasized the difference between nominal and structural changes
before [LZ11], and in this setup it is even more apparent. Nominal adaptations βn can always be
propagated through the grammar evolution coupled to notation evolution. Structural adaptations
are considerably harder to propagate, but they are not that crucial, if we limit the form of the
adaptation chain to prevent the use of patterns that rely on the a priori unknown parts of the
structure. Thus, if δ = δn ◦δr, β = βn ◦βr, γ = γn ◦ γr, then γn = δ−1

n ◦βn and γr = βr.
By pushing the nominal adjustments of δ directly to β , we can increase automation by yet

another degree and avoid having γ as a manually programmed part of notation transformation
framework. In general, γ can always be completely inferred if σ does not introduce any new
metaconstructs, and can still be partially inferred otherwise.

7 / 16 Volume X (2012)

http://slps.svn.sourceforge.net/viewvc/slps/shared/xsd/cbgf.xsd?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/shared/tools/cbgf?view=markup

Language Evolution, Metasyntactically

3.4 Grammar mutations

In order to fully comprehend coupled grammar mutations and limits on their bidirectionalisation,
let us first formally introduce what we mean by them.

We inherit the term “grammar transformation” from existing scientific literature [Pep99,
Läm04, LW01]. Usually a transformation operator is not completely context independent and
can be instantiated with one of more parameters: for example, a renameN operator from [LZ11,
ZLS+12] needs a source nonterminal name and a target name; only then it can check if the
source name is taken and the target one free, and finally perform substitution of all occurrences
of one with the other. However, there is a very specific kind of transformations that virtually
take the whole source grammar as a parameter: examples from [Zay10] include commands like
“strip the grammar of all terminals” (impossible to know all terminals that need to be projected
before looking at the grammar) or “reroot to top” (in order to turn all top nonterminals into
starting symbols, one needs to calculate the set of top nonterminals). We will call such trans-
formations “grammar mutations” to avoid confusion and reach clarity. Mutations were called
“automated actions” in the language convergence infrastructure [Zay11] and “transformation
generators” elsewhere [Zay10], because they worked by analysing a grammar, generating needed
transformations and applying them to the source grammar. However, this is not the only way of
implementing grammar mutations, and we abstract from those implementation details here. Mu-
tations are almost unavoidable in practical grammar convergence endeavours with grammars of
industrial size, since they save a lot of effort and are easily reusable.

A grammar transformation operator τ can be formalised as a triplet τ = 〈cpre, t,cpost〉, where
cpre is a precondition, cpost is a postcondition, and t is a transformation operator name. A gram-
mar transformation then is τai(G), where ai are its parameters of use (of different types and
quantity for each operator) and G is the input grammar. When applying a transformation, we can
reach different outcomes:

• if ai are of incorrect types and quantity than expected by t, then τ is incorrectly called;
• if the constraint cpre does not hold on G, then τai is inapplicable to G;
• if the constraint cpost holds on G, then τai is vacuous on G;
• if the constraint cpre holds on G, G′ = τai(G) is the transformed grammar, and cpost does

not hold on G′, then t is incorrectly implemented;
• if cpre holds on G, G′ = τai(G) is the transformed grammar, and cpost holds on G′, then τ

has been applied correctly with arguments ai to grammar G resulting in grammar G′.

In the scope of XBGF [LZ11, ZLS+12] and grammar convergence [LZ09, Zay10], we were
considering all incorrect, inapplicable and vacuous transformations as unsuccessful.

As an running example, consider a nonterminal renaming transformation (t = renameN). It
is incorrectly called unless it is given two nonterminal names as arguments: a1,a2 ∈ N. It is
inapplicable to G if a1 is not defined and not referenced in G. It is also inapplicable to G if a2
is already defined or referenced in G. It is vacuous if a1 = a2. Let G′ = τa1,a2(G). If a1 is still
present in G′, then t is incorrectly implemented. Otherwise G′ is the result of correct application
of τ to G with arguments a1 and a2.

Unlike a grammar transformation, a grammar mutation does not have a single precondition:
instead, it has a set of preconditions that serve as triggers for transformations, which we denote

Proc. BX 2012 8 / 16

ECEASST

as µ = 〈{ci},{ti},cpost〉. For example, consider a mutation that makes all nonterminal names
uppercase. It has a precondition that holds if a nonterminal name is not uppercase, and triggers
a renaming. The mutation terminates once no trigger ci holds and the postcondition cpost is met.
Even if no transformations are triggered (i.e., cpost holds for G), the application of µ can be
considered successful since the goal of enforcing the cpost constraint is reached (all nonterminal
names are uppercase). Again, if we follow [Zay10] and implement mutations as transformation
generators, we can define mutation failure differently based on applicability and vacuousness of
the transformations they generate. In this paper we intentionally disregard such knowledge about
implementation details.

Due to this asymmetry in our definition of a grammar mutation, it is purely unidirectional
by nature, since it takes a grammar in an unknown state and transforms it into a grammar in
a known state. The only way to make it bidirectional is then to only allow mutations between
consistent states. Such a bidirectional grammar mutation µbx = 〈cpre,{ci},{ti},cpost〉 will be an
instantiation of a grammar mutation, i.e., one grammar mutation spawns forth a whole family of
bidirectional grammar mutations. For example, consider the abovementioned example of a mu-
tation that enforces uppercase naming convention for nonterminals. It spawns forth bidirectional
mutations that turn lowercase into uppercase, camelcase into uppercase, etc. With this example
it also becomes easy to see that the family of spawned bidirectional mutations does not define
the original mutation: i.e., ∀µ ∃G∃G′ 6 ∃µbx, G′ = µ(G)∧G′ = µbx(G)∧G = µ

−1
bx (G′).

This again calls for a lens-like [FGM+07] setup which we try to avoid in this paper. We reserve
detailed research of bidirectionalising grammar mutation for future work and focus on more
generally applicable unidirectional grammar mutation in this paper instead. The last thing that
we want to emphasize is that although the grammar mutation µ is neither naturally bidirectional,
nor easily bidirectionalised, the notation specification transformation σ is bidirectional, hence,
one can infer the coupled µ ′ from σ−1 — this µ ′ will not necessarily be equivalent to µ−1, if no
assumptions are made about the grammars in the grammarbase.

4 Evaluation

LLL is an EBNF-like grammar notation used inside Grammar Deployment Kit. There exist at
least two variants of it: with a syntax for separator lists and without. They are published in the
form of grammars of notations defined “in themselves” in [KLV02] and [Kor03, p.3]. Let us
recall the megamodel from §3 and see if the proposed solution indeed makes a difference:

9 / 16 Volume X (2012)

Language Evolution, Metasyntactically

Previously existing entities are presented in dark boxes. Let us look at them closer here. The
LLL1 syntactic notation presented “in itself” looks like this [KLV02, p.2]:

grammar : rule+;
rule : sort ":" alts ";";
alts : alt alts-tail*;
alts-tail : "|" alt;
alt : term*;
term : basis repetition?;
basis : literal | sort;
repetition : "*" | "+" | "?";

We also take the definition of LLL2 from the GDK reference manual [Kor03, p.3]3:

specification : rule+;
rule : ident ":" disjunction ";";
disjunction : {conjunction "|"}+;
conjunction : term*;
term : basis repetition?;
basis : ident

| literal
| alternation
| group
;

repetition : "+" | "*" | "?";
alternation : "{" basis basis "}" repetition;
group : "(" disjunction ")" ;

Since both grammars are extremely small, a human reader can easily spot differences, but
most of them are not related to language evolution as such: it is purely coincidental whether to
call the starting nonterminal symbol “grammar” or “specification” and whether to call
nonterminal symbols themselves “sort”s or “ident”(ifier)s. By analysing these grammars,
we can manually construct the notation specification of LLL1 in terms of EDD [Zay12a]:

defining metasymbol : definition separator metasymbol |
terminator metasymbol ; postfix optional metasymbol ?
postfix star metasymbol * postfix plus metasymbol +
start terminal metasymbol " end terminal metasymbol "

Features new to LLL2 with respect to LLL1 are grouping of symbols and separator lists:

start group metasymbol (end group metasymbol)
start separator list star metasymbol { end separator list star metasymbol }*
start separator list plus metasymbol { end separator list plus metasymbol }+

3 The original LLL2 grammar contains an error that was noted and fixed in Grammar Tank [ZLS+12]. Here we
consider the corrected version. We also remove the special rule for ε for the sake of simplicity of this paper.

Proc. BX 2012 10 / 16

ECEASST

From these tables, we compose and store two notation specifications (the leftmost boxes):
LLL1.edd and LLL2.edd. Since both of them are known to us, the bidirectional evolution σ

which is stored as an XEDD sequence, will be used for validating their convergence, not for prop-
agating the changes. In this case, σ , expressed in XEDD, looks like this (see lll1to2.xedd):

introduce-metasymbol(group, ’(’, ’)’);
introduce-metasymbol(seplist-star, ’{’, ’}*’);

introduce-metasymbol(seplist-plus, ’{’, ’}+’);

Now let us try to move to the right in the megamodel. To process notation specifications, we
use a Rascal tool called topics/recovery/edd2rsc that automatically produces corre-
sponding parser specifications in Rascal. These can be used for IDE support of both notations,
but here we view them just as sources for grammar extraction. The extractor, written in Python,
shared/tools/rsc2bgf, automatically produces BGF grammars for both LLL1 and LLL2.
To validate correctness of our actions so far, these grammars need to converge. The coupled δ

generated by the topics/transformation/xedd processor produces the following ΞBGF
(see lll1to2.coupled.ξbgf):

rename-rename(LLL1Grammar, LLL2genGrammar);
rename-rename(LLL1Production, LLL2genProduction);
rename-rename(LLL1Definition, LLL2genDefinition);
rename-rename(LLL1Symbol, LLL2genSymbol);
rename-rename(LLL1Nonterminal, LLL2genNonterminal);
rename-rename(LLL1Terminal, LLL2genTerminal);
add-remove(p(l(group), LLL2genSymbol, ’,’(t(’(’),slp(LLL2genDefinition,’|’),t(’)’))));
add-remove(p(l(sepliststar), LLL2genSymbol, ’,’(t(’{’),n(LLL2genSymbol),n(LLL2genSymbol),t(’}∗’))));
add-remove(p(l(seplistplus), LLL2genSymbol, ’,’(t(’{’),n(LLL2genSymbol),n(LLL2genSymbol),t(’}+’))));

Thus, both notation grammars on this layer, as well as the convergence relationship between
them, is derived automatically (presented in bold on the megamodel) from the existing enti-
ties. If we make another step to the right, both beautified notation grammars, LLL1.doc.bgf
and LLL2.doc.bgf, can be derived from the notations defined “in themselves” (listings we
have shown earlier). Since currently we have no instrument to approach fully automated con-
vergence, both the notation grammar LLL1.spec.bgf and the beautified notation grammar
LLL1.doc.bgf, should be used by a grammar engineer as guidance for convergence, result-
ing in the bidirectional grammar adaptation β , LLL1.spec2docξbgf.

Propagation of nominal refactorings from δ (lll1to2.coupled.ξbgf) to β in order to
form γ (LLL2.spec2docξbgf) is performed by an XSLT script ξbgf2. In general, propagat-
ing structural changes is hard and sometimes impossible (for some transformations, there is no
easy way to express their permutation in XBGF), and in this particular scenario is even unde-
sirable. We save space in the paper by reserving detailed investigation for future work. What is
important here, is that the beautifying grammar adaptation of the generated LLL2 grammar to its
desired form, is performed automatically. However, as discussed earlier, the part that beautifies
the newly introduced metaconstructs, need to be prepared manually and provided as a part of
notation evolution step. Beautified grammars do not need to be converged separately, because
they are already converged by the composition of three bidirectional grammar transformation
sequences β−1 ◦δ ◦ γ .

Since all transformations only add new notational features, minimal unidirectional grammar
mutations µ that correspond to them, do not change the grammars at all: the postcondition of be-

11 / 16 Volume X (2012)

http://slps.svn.sourceforge.net/viewvc/slps/shared/edd/LLL1.edd?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/shared/edd/LLL2.edd?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll1to2.xedd?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/recovery/edd2rsc/Transformer.rsc?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/extraction/rascal/extract.py?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/xedd.py?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll1to2.coupled.cbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll1.doc.bgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll2.doc.bgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll1.spec2doc.cbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll1to2.coupled.cbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/transformation/xedd/lll2.spec2doc.cbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/shared/xsl/cbgf2cbgf2cbgf.xslt?view=markup

Language Evolution, Metasyntactically

ada-kellogg 108 csharp-iso-23270-2003 0 java-1-jls-read 0
ada-kempe 89 csharp-iso-23270-2006 0 java-2-jls-impl 36
ada-laemmel-verhoef 79 csharp-msft-ls-1.0 0 java-2-jls-read 0
ada-lncs-2219 89 csharp-msft-ls-1.2 0 java-5-habelitz 65
ada-lncs-4348 109 csharp-msft-ls-3.0 0 java-5-jls-impl 60
c-iso-9899-1999 0 csharp-msft-ls-4.0 0 java-5-jls-read 1
c-iso-9899-tc2 0 csharp-zaytsev 23 java-5-parr 95
c-iso-9899-tc3 0 dart-google 58 java-5-stahl 92
cpp-iso-14882-1998 0 dart-spec-0.01 56 java-5-studman 91
cpp-iso-n2723 0 dart-spec-0.05 62 mediawiki-bnf 32
csharp-ecma-334-1 0 eiffel-bezault 45 mediawiki-ebnf 30
csharp-ecma-334-2 0 eiffel-iso-25436-2006 345 modula-sdf 50
csharp-ecma-334-3 0 fortran-derricks 101 modula-src-052 65
csharp-ecma-334-4 0 java-1-jls-impl 0 w3c-xpath1 3

Table 1: Applying coupled mutation to eliminate-metasymbol(group) to Grammar Zoo. Values
mean the number of times the triggers of the grammar mutation fired.

ing able to express the grammar in the given notation holds immediately. On Table 1 we present
results of applying an inverted coupled mutation µ ′, EliminateGroup.rsc, that corresponds
to removing start and end group metasymbols from the notation specification (σ−1), to Grammar
Zoo [ZLS+12]. Zeros mean the absence of group metasymbols in the original notation that was
used as an extraction source — since no groups were found there, there are also no groups in the
extracted grammar. Low numbers (like 1 for java-5-jls-read) are observed when the language en-
gineers were planned to go without group metasymbols, but “forgot” about it. High numbers (up
to 345 for eiffel-iso-25436-2006) indicate that the functionality we are retiring with this mutation
was heavily and intentionally used. The mutations corresponding to the other steps produce sim-
ilar results, and can be found implemented in Rascal as EliminateSLS.rsc for eliminating
the star-kind of separator lists and EliminateSLP.rsc for eliminating the plus-kind.

This evaluation has shown us that once the notation specifications are constructed and the
changes between them are represented as notation specification transformation steps, the appli-
cation of grammar recovery tools and bidirectional grammar transformations, either provides
significant help (in the case of constructing grammar adaptation β) or completely automates
change propagation and verification (all other cases presented in bold on the megamodel).

5 Related and future work

Cicchetti et al [CCLP11] have illustrated that many difficulties arise when two levels of models
(models and metamodels in UML/OOP technical space for them; grammars and metasyntax
for us) evolve at the same time, and evolution steps not only need to be propagated from one
level to the other, but also be combined with transformations already happening there. Since we
practically transform the grammars in their internal representation, such conflicts will never arise,

Proc. BX 2012 12 / 16

http://slps.svn.sourceforge.net/viewvc/slps/topics/mutation/xedd-coupled/EliminateGroup.rsc?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/mutation/xedd-coupled/EliminateSLS.rsc?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/mutation/xedd-coupled/EliminateSLP.rsc?view=markup

ECEASST

because the extraction and exporting steps will naturally take care of any pending metasyntactic
evolution. In that respect our approach is closer to the one taken by Wachsmuth in [Wac07],
which is only to be expected since he borrows heavily from grammarware engineering.

Formal properties of bidirectional grammar transformations, such as correctness and hippo-
craticness [Ste07], need further investigation. There are a lot of open questions in bidirection-
alising existing grammar transformation, which we mostly solved but need considerably more
space for related explanations. Thus, the results of this investigation will be published separately.

Given two parsers of presumably different versions of the same language, one can hardly
tell the linguistic difference just from analysing them. In §3, we have stated that the only way
to compare parsers directly and automatically was grammar-based differential testing, which
is not completely true. In a very lucky yet not impossible scenario, metasyntactic formulae are
spotted directly in the source code [LV01]. This enables very reliable grammar extraction, which
produces GBGF(N) in a form very close to GRascal(N) (or any other Gparser(N)). Such extracted
grammars can be used for direct comparison or for making testing results more reliable.

In §4, we have seen two completely differently looking grammars of LLL1 and LLL2, taken
from their respective documentation. In the approach we propose to use in this paper, in order
to change the definition of a notation “in itself”, we would need to change (or develop, if it does
not exist yet) a grammar adaptation chain β . However, GN(N) can be edited inline, with the
readable notation grammar G′BGF(N) extracted from it automatically: since the edits are purely
decorational, the notation itself will stay the same, hence enabling automated reliable recovery.
The only problem that stays in the way of implementing this evolution scenario is the (current)
inability of inferring bidirectional grammar transformation by looking at two supposedly related
grammars. Since this issue is definitely to be addressed in future grammar-related research, this
room for improvement can eventually be filled.

6 Conclusion

We have extended XBGF, the grammar transformation operator suite, to bidirectionality. This re-
sulted in ΞBGF, which can be used to formulate grammar convergence, evolution and adaptation
scenarios in a more robust and flexible way.

We have also formulated a way to specify a syntactic notation in EDD and a notation trans-
formation in XEDD. The notation specification was designed after extensive analysis of dozens
syntactic notations from currently existing language manuals, specifications and standards. In
this paper, we have presented a case study taken from real life, when a notation LLL was changed
during development of Grammar Deployment Kit. We have represented both the source and the
target notation in EDD, and formulated the evolution as XEDD steps.

We have generalised the transformers and generators from prior work to mutation of gram-
mars, which are conceptually deeply different from grammar transformation. A grammar trans-
formation becomes executable when provided with arguments, and can turn out to be inapplica-
ble of vacuous depending on the input grammar. A grammar mutation is always applicable, but
not easily bidirectionalisable. We avoid the issue of bidirectionalisation of grammar mutation in
this paper by providing automated coupling of grammar mutation to notation evolution.

We have implemented an XEDD processor that evolves the notation specification, automati-

13 / 16 Volume X (2012)

Language Evolution, Metasyntactically

cally infers and delivers a coupled convergence relationship between the source grammar and the
target one, propagates the naming changes to the bidirectional adaptation chain, and also deliv-
ers a mutation that can migrate the existing grammarbase from the old notation to the new one.
All actions performed by the XEDD processor need to be properly parametrised by the notation
specification and its transformation steps, but after that are fully automatic.

Bibliography

[AAN+06] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, D. Garlan. Differencing and
Merging of Architectural Views. In In 21st International Conference on Automated
Software Engineering (ASE’06). Pp. 47–58. IEEE Computer Society, 2006.

[ASU85] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985.

[BJV04] J. Bézivin, F. Jouault, P. Valduriez. On the Need for Megamodels. OOPSLA &
GPCE, Workshop on best MDSD practices, 2004.

[CCLP11] A. Cicchetti, F. Ciccozzi, T. Leveque, A. Pierantonio. On the Concurrent Versioning
of Metamodels and Models: Challenges and Possible Solutions. In Di Ruscio and
Kolovos (eds.), Proceedings of the 2nd International Workshop on Model Compari-
son in Practice. ACM SIGSOFT, June 2011.

[CFH+09] K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, J. Terwilliger. Bidirectional
Transformations: A Cross-Discipline Perspective. In Paige (ed.), Theory and Prac-
tice of Model Transformations. Lecture Notes in Computer Science 5563, pp. 260–
283. Springer Berlin / Heidelberg, 2009.

[Era11] R. Eramo. Bidirectional and Change Propagating Model Transformations in MDE.
Lambert Academic Publishing, 2011.

[FGM+07] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt. Combina-
tors for Bidirectional Tree Transformations: A Linguistic Approach to the View-
Update Problem. ACM Transactions on Programming Languages and Systems 29,
May 2007.

[FLZ11] B. Fischer, R. Lämmel, V. Zaytsev. Comparison of Context-free Grammars Based on
Parsing Generated Test Data. In Aßmann and Sloane (eds.), Post-proceedings of the
Fourth International Conference on Software Language Engineering (SLE’11). Lec-
ture Notes in Computer Science 6940. Springer, Heidelberg, August 2011. Available
via http://slps.sf.net/testmatch.

[GJSB05] J. Gosling, B. Joy, G. L. Steele, G. Bracha. The Java Language Specification.
Addison-Wesley, third edition, 2005. Available at java.sun.com/docs/books/jls.

Proc. BX 2012 14 / 16

http://slps.sf.net/testmatch
java.sun.com/docs/books/jls

ECEASST

[KLV02] J. Kort, R. Lämmel, C. Verhoef. The Grammar Deployment Kit: System Demonstra-
tion. In van den Brand and Lämmel (eds.), Electronic Notes in Theoretical Computer
Science. Volume 65. Elsevier Science Publishers, 2002.

[Kor03] J. Kort. Grammar Deployment Kit Reference Manual. Universiteit Amsterdam, May
2003. http://gdk.sourceforge.net/gdkref.pdf.

[Läm04] R. Lämmel. Transformations Everywhere. Science of Computer Programming. Spe-
cial Issue on Program Transformation 52(1–3):1–8, August 2004. Editorial.

[LV01] R. Lämmel, C. Verhoef. Cracking the 500-Language Problem. IEEE Software,
pp. 78–88, Nov./Dec. 2001.

[LW01] R. Lämmel, G. Wachsmuth. Transformation of SDF Syntax Definitions in the
ASF+SDF Meta-Environment. In Proceedings of the Workshop on Language De-
scriptions, Tools and Applications (LDTA’01). ENTCS 44. Elsevier Science, 2001.

[LZ09] R. Lämmel, V. Zaytsev. An Introduction to Grammar Convergence. In Proceedings
of 7th International Conference on Integrated Formal Methods (iFM’09). Lecture
Notes in Computer Science 5423, pp. 246–260. Springer, 2009.

[LZ11] R. Lämmel, V. Zaytsev. Recovering Grammar Relationships for the Java Language
Specification. Software Quality Journal 19(2):333–378, June 2011.

[Pep99] P. Pepper. LR Parsing = Grammar Transformation + LL Parsing. Technical re-
port CS-99-05, TU Berlin, 1999.

[PM00] J. F. Power, B. A. Malloy. Metric-Based Analysis of Context-Free Grammars. In
Proceedings of the 8th International Workshop on Program Comprehension. IWPC
’00, pp. 171–. IEEE Computer Society, Washington, DC, USA, 2000.

[RB01] E. Rahm, P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching.
The VLDB Journal 10:334–350, December 2001.

[SM96] E. Salvat, M.-L. Mugnier. Sound and Complete Forward and Backward Chainings
of Graph Rules. In Eklund et al. (eds.), Conceptual Structures: Knowledge Repre-
sentation as Interlingua. Lecture Notes in Computer Science 1115, pp. 248–262.
Springer, 1996.

[Ste07] P. Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and Open
Questions. In Proceedings of the 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’07). Lecture Notes in Computer
Science 4735, pp. 1–15. Springer, 2007.

[SZ97] D. Shasha, K. Zhang. Approximate Tree Pattern Matching. In Apostolico and Galil
(eds.), Pattern Matching Algorithms. Pp. 341–369. Oxford University Press, 1997.

15 / 16 Volume X (2012)

http://gdk.sourceforge.net/gdkref.pdf

Language Evolution, Metasyntactically

[Wac07] G. Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In Ernst (ed.),
ECOOP’07. Lecture Notes in Computer Science 4609, pp. 600–624. Springer, July
2007.

[Wir77] N. Wirth. What Can We Do about the Unnecessary Diversity of Notation for Syn-
tactic Definitions? Communications of the ACM 20(11):822–823, 1977.

[Zay10] V. Zaytsev. Recovery, Convergence and Documentation of Languages. PhD thesis,
Vrije Universiteit, Amsterdam, The Netherlands, October 2010. Available at http:
//grammarware.net/text/2010/zaytsev-thesis.pdf.

[Zay11] V. Zaytsev. Language Convergence Infrastructure. In Fernandes et al. (eds.), Post-
proceedings of the Third International Summer School on Generative and Trans-
formational Techniques in Software Engineering (GTTSE 2009). Lecture Notes in
Computer Science 6491, pp. 481–497. Springer-Verlag, Berlin, Heidelberg, January
2011.

[Zay12a] V. Zaytsev. BNF WAS HERE: What Have We Done About the Unnecessary Diver-
sity of Notation for Syntactic Definitions. In Proceedings of the 27th ACM Sym-
posium on Applied Computing (SAC’2012), Technical Track on Programming Lan-
guages. 2012. To appear.

[Zay12b] V. Zaytsev. Notation-Parametric Grammar Recovery. March 2012. Proceedings of
the 12th International Workshop on Language Descriptions, Tools and Applications
(LDTA 2012). To appear.

[ZL11] V. Zaytsev, R. Lämmel. A Unified Format for Language Documents. In Malloy et al.
(eds.), Post-proceedings of the Third International Conference on Software Lan-
guage Engineering (SLE 2010). Lecture Notes in Computer Science 6563, pp. 206–
225. Springer-Verlag, Berlin, Heidelberg, January 2011.

[ZLS+12] V. Zaytsev, R. Lämmel, T. van der Storm4 et al. Software Language Processing
Suite. 2008–2012. http://slps.sf.net. Contains, among other works: XBGF Manual:
BGF Transformation Operator Suite v.1.0 (V. Zaytsev, August 2010), http://slps.sf.
net/xbgf; Grammar Zoo (V. Zaytsev, 2009–2011), http://slps.sf.net/zoo; Grammar
Tank (V. Zaytsev, 2011), http://slps.sf.net/tank.

4 SVN statistics by February 2012: 778 commits by Zaytsev, 313 commits by Lämmel, 44 commits by van der Storm.

Proc. BX 2012 16 / 16

http://grammarware.net/text/2010/zaytsev-thesis.pdf
http://grammarware.net/text/2010/zaytsev-thesis.pdf
http://slps.sf.net
http://slps.sf.net/xbgf
http://slps.sf.net/xbgf
http://slps.sf.net/zoo
http://slps.sf.net/tank

	Introduction
	Notation life cycle megamodel
	Notation evolution
	Notation transformation
	Convergence relationship
	Notation grammar adaptation
	Grammar mutations

	Evaluation
	Related and future work
	Conclusion

