
MediaWiki Grammar Recovery

Vadim Zaytsev, vadim@grammarware.net
SWAT, CWI, NL

July 23, 2011

1 Introduction

Wiki is the simplest online database that could possibly work [41]. It usually
takes a form of a website or a webpage where the presentation is predefined to
some extent, but the content can be edited by a subset of users. The editing
ideally does not require any additional software nor extra knowledge, takes place
in a browser and utilises a simple notation for markup. Currently there are more
than a hundred of such notations, varying slightly in concrete syntax but mostly
providing the same set of features for emphasizing fragments of text, making
tables, inserting images, etc [10]. The most popular notation of all is the one
of MediaWiki engine, it is used on Wikipedia, Wikia and numerous Wikimedia
Foundation projects.

In order to facilitate development of new wikiware and to simplify main-
tenance of existing wikiware, one can rely on methods and tools from soft-
ware language engineering. It is a field that emerged in recent years, gen-
eralising theoretical and practical aspects of programming languages, markup
languages, modelling languages, data definition languages, transformation lan-
guages, query languages, application programming interfaces, software libraries,
etc [15, 23, 25, 70] and believed to be the successor for the object-oriented
paradigm [14]. The main instrument of software language engineering is on dis-
ciplined creation of new domain specific languages with emphasis on extensive
automation. Practice shows that automated software maintenance, analysis,
migration and renovation deliver considerable benefits in terms of costs and
human effort compared to alternatives (manual changes, legacy rebuild, etc),
especially on large scale [11, 61, 65]. However, automated methods do require
special foundation for their successful usage.

Wikiware (wiki engines, parsers, bots, etc) is a specific case of grammar-
ware (parsers, compilers, browsers, pretty-printers, analysis and manipulation
tools, etc) [25, 75]. The most straightforward definition of grammarware can
be of software which input and/or output must belong to a certain language
(i.e., can be specified implicitly or explicitly by a formal grammar). An op-
erational grammar is needed to parse the code, to get it from a textual form
that the programmers created into a specialised generational and transforma-
tional infrastructure that usually utilises a tree-like internal format. In spite

1

vadim@grammarware.net
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/

of the fact that the formal grammar theory is quite an established area since
1956 [9], the grammars of mainstream programming languages are rarely freely
obtainable, they are complex artefacts that are seen as valuable IT assets, re-
quire considerable effort and expertise to compose and therefore are not always
readily disclosed to public by those who develop, maintain and reverse engineer
them. A syntactic grammar is basically a mere formal description of what can
and what cannot be considered valid in a language. The most obvious sources
for this kind of information are: language documentation, grammarware source
code, international standards, protocol definitions, etc.

However, documentation and specifications are neither ever complete nor
error-free [79]. To obtain correct grammars and ensure their quality level, special
techniques are needed: grammar adaptation [32], grammar recovery [36], gram-
mar engineering [25], grammar derivation [27], grammar reverse engineering,
grammar re-engineering, grammar archaeology [34], grammar extraction [75,
§5.4], grammar convergence [37], grammar relationship recovery [39], gram-
mar testing [33], grammar inference [64], grammar correction [75, §5.7], pro-
grammable grammar transformation [74], and so on. The current document
is mainly a demonstration of application of such techniques to the MediaWiki
BNF grammar that was published as [47, 46, 51, 52, 49, 50, 48, 44].

1.1 Objectives

The project reported in this document aims at extraction and initial recovery
of the MediaWiki grammar. However, the extracted grammar is not the final
goal, but rather a stepping stone to enable the following activities:

Parse wiki pages. The current state of Wikipedia is based on a PHP rewriting
system that transforms wiki layout directly into HTML [53]. However,
it can not always be utilised in other external wikiware: for example,
future plans of Wikimedia Foundation include having an in-browser editor
with a WYSIWYG front-end in JavaScript [69]. Having an operational
grammar means anyone can parse wiki pages more freely with their own
technology of choice, either directly or by deriving tolerant grammars from
the baseline grammar [27].

Aid wiki migration. The ability to easily parse and transform wiki pages
can deliver considerable benefits when migrating wiki content from one
platform to another [78].

Validate existing wiki pages. The current state of MediaWiki parser [53]
allows users to submit wiki pages that are essentially incorrect: they may
combine wiki notation with bare HTML, contain unbalanced markup, refer
to nonexistent templates. This positively affects the user-friendliness of
the wiki, but makes some wiki pages possibly problematic. Such pages
can be identified and repaired with static code analysis techniques [7].

Test existing wiki parsers. There is considerable prior research in the field
of grammar-based testing, both stochastic [43, 60] and combinatorial [19,

2

33, 42, 56, 72], with important recent advances in formulating coverage
criteria and achieving automation [16, 35]. These results can be easily
reproduced to provide an extensive test data suite containing different
wiki text fragments to explore every detail specified by the grammar in a
fully automated fashion. Such test data suites can be used to determine
existing parsers’ conformance, can help in developing new parsers, find
problematic combinations that are treated differently by different parsers,
etc.

Improve grammar readability. It is known that the grammar is meant to
both define the language for the computer to parse, and describe it for the
language engineers to understand. However, these two goals are usually
conflicting, and more often than not, one opts for an executable grammar
that is harder to read, than for a perfectly readable one that cannot be
used in constructing grammarware. Unfortunately, the effort and expertise
needed to fully achieve either of them, and most language documents
contain non-operational grammars [28, 72, 79]. The practice of using
two grammars: the “more readable” one and the “more implementable”,
adopted in the Java specification [18], has also proven to be very ineffective
and error-prone [38, 39].

Perform automated adaptation. Grammars commonly need to be adapted
in order to be useful and efficient in wide range of circumstances [32].
Grammar transformation frameworks such as GDK [30], GRK [34] or
XBGF [74] can be used to apply adapting transformations in a safe disci-
plined way with validation of applicability preconditions and full control
over the language delta. In fact, some of the transformations can even be
generated automatically and applied afterwards.

Establish inter-grammar relationships. As of today, several MediaWiki
notation grammars exist and are available in one form or another: in
EBNF [76], in ANTLR [5], etc (none of them are fully operational).
Furthermore, there exist various other wiki notations: Creole [22], Wiki-
dot [68], etc. Relationships among all these notations are unknown: they
are implicit even when formal grammars actually exist, and are totally
obscured when the notation is only documented in a manual. A spe-
cial technique called language convergence can help to reengineer such
relationships in order to make stronger claims about compatibility and
expressivity [37, 75, 77].

1.2 Related work: grammar recovery initiatives

Most of operational grammars for mainstream software languages are hand-
crafted, many are not publicly disclosed, few are documented. The first case
reported in detail in 1998 was PLEX (Programming Language for EXchanges),
a proprietary DSL for real time embedded software systems by Ericsson [59], a

3

successful application of the same technology to COBOL followed [62]. Gram-
mar recovery technique is not only needed for legacy languages, examples of
more modern and presumably more accurately engineered grammars being non-
trivially extracted include C# in [73] and [75, §3] and Java in [38] and [39]. The
whole process of MediaWiki grammar extraction is documented by this report,
all corrections and refactorings are available online, as is the end result (under
CC-BY-SA license).

1.3 Related work: Wiki Creole

Wiki Creole 1.01 is an attempt for engineering an ideal wiki syntax and a formal
grammar for it. While the goal of specifying the wiki syntax with a grammar is
not foreign to us, but the benefits listed in [22, p.3] are highly questionable:

1. Trivial parser construction. In the paper cited above it is claimed that
applying a parser generator is trivial. However, the main prerequisite for
it is successful grammar adaptation for the particular parsing technol-
ogy [32]. A Wiki Creole grammar was specifically geared toward ANTLR,
and it is a highly sophisticated task to migrate it anywhere if at some
point ANTLR use is deemed to be undesirable. Hence, the result is not
reproducible without considerable effort and expertise.

2. Foundation for subsequent semantics specification. The grammar
can certainly serve as a basis for specifying semantics. However, the
choice of a suitable calculus for such semantics specification is of even
more importance. Furthermore, syntax definition does not guarantee the
absence of ambiguities in semantics, or even changes of semantics as a
part of language evolution (cf., evolutionary changes of HTML elements).

3. Improved communication between wikiware developers. The paper
claimed that if wiki syntax is specified with a grammar, there can be no
different interpretations of it. However, it is quite common to have differ-
ent interpretations (dialects) of even mainstream programming languages,
plus wiki technology in its current state heavily relies on fault tolerance
(somewhat less so in the future when no bare text editing should be taking
place).

4. Same rendering behaviour that users rely on. Depending on the
browser or the particular gadget that the end user deploys to access the
wiki, rendering behaviour can be vastly different, and this has nothing to
do with the syntax specification.

5. Simplified syntax extension. It is a very known fact in formal grammar
theory [1] that grammar classes are not compositional: that is, the result
of combining two LL(*) grammars (which ANTLR uses) does not nec-
essarily belong to the LL(*) class; we can only prove that it will still be

1http://wikicreole.org

4

http://wikicreole.org

context-free [9]. In other words, it is indeed easy to specify a syntax exten-
sion, but such the extended grammar sometimes will not be operational.
Modular grammars can be deployed in frameworks which use different
parsing technologies, such as in Meta-Environment [24] or in Rascal [26]
or in MPS [66], but not in ANTLR.

6. Performance predictions. The paper claims that it is easier to predict
performance of a parser made with “well-understood language theory”
than with a parser based on regular expressions. However, there are im-
plementation algorithms of regular expressions that demonstrate quadratic
behaviour [12], and ANTLR uses the same technology for matching looka-
head anyway, which immediately means that their performance is the
same.

7. Discovering ambiguities. It is true that ambiguity analysis is easier on a
formal grammar than on the prose, but it is not achieved by “more rigorous
specification mechanism” and even the most advanced techniques of today
do not always succeed [4].

8. Well-defined interchange format. A well designed interchange format
between different types of wikiware is a separate effort that should be
based on appropriate generalisations of many previously existing wiki no-
tations, not on one artificially created one, even if that one is better de-
signed.

In general, Wiki Creole initiative is relevant for us because it can serve as a
common grammar denominator later to converge several wiki grammars [37, 77],
but is neither contributing nor conflicting directly with our grammar recovery
project.

2 Grammar notation

One of the first steps in grammar extraction is understanding the grammar
definition formalism (i.e., the notation) used in the original artefact to describe
the language. In the case of MediaWiki, Backus-Naur form is claimed to be
used [45]. Manual cursory examination of the grammar text [47, 46, 51, 52, 49,
50, 48, 44] allows us to identify the following metasymbols in the spirit of [20]
and [75]:

5

Name Value
Start grammar symbol <source lang=bnf>

End grammar symbol </source>

Start comment symbol /*

End comment symbol */

Defining symbol ::=

Definition separator symbol |

Start nonterminal symbol <

End nonterminal symbol >

Start terminal symbol "

End terminal symbol "

Start option symbol [

End option symbol]

Start group symbol (

End group symbol)

Start repetition star symbol {
End repetition star symbol }
Start repetition plus symbol {
End repetition plus symbol }+

As we know from [3] and its research in [75, §6.3], BNF was originally defined
as follows:

Name Value
Defining symbol :≡
Definition separator symbol or

Terminator symbol ←↩
Start nonterminal symbol <

End nonterminal symbol >

While the difference in the appearances of defining symbols is minor and
is commonly overlooked, there are several properties of the notation used for
MediaWiki grammar definition that place it well outside BNF, namely:

• Using delimiters to explicitly denote terminal symbols (instead of using
underlined decoration for keywords and relying on implicit assumptions
for non-alphanumeric characters).

• Presence of comments in the grammar (not in the text around it).

• Allowing inconsistent terminator symbol (i.e., a newline or a double new-
line, sometimes a semicolon).

• Having metalanguage symbols for marking optional parts of productions.

• Having metalanguage symbols for marking repeated parts of productions.

• Having metalanguage symbols for grouping parts of productions.

6

Hence, it is not BNF. For the sake of completeness, let us compare it to
the classic EBNF, originally proposed in [71] (sometimes that dialect is referred
to as Wirth Syntax Notation) and standardised much later by ISO as [20]:

Name Value in WSN Value in ISO EBNF
Concatenate symbol ,

Start comment symbol (*

End comment symbol *)

Defining symbol = =

Definition separator symbol | |

Terminator symbol . ;

Start terminal symbol " "

End terminal symbol " "

Start option symbol [[

End option symbol]]

Start group symbol ((

End group symbol))

Start repetition star symbol { {
End repetition star symbol } }
Exception symbol -

Postfix repetition symbol *

We notice again a list of differences of MediaWiki grammar notation versus
WSN and ISO EBNF:

• Allowing inconsistent terminator symbol (i.e., a newline or a double new-
line).

• Presence of comments (consistent only with ISO EBNF).

• Lack of concatenate metasymbol (consistent only with WSN).

• Having metalanguage symbol for exceptions (consistent only with WSN).

• Not having a specially designated postfix symbol for denoting repetition
(consistent only with WSN).

Hence, the notation adopted by MediaWiki grammar, is neither BNF nor
EBNF, but an extension of a subset of EBNF. Since we cannot reuse any previ-
ously existing automated grammar extractor, we define this particular notation
with EDD (EBNF Dialect Definition), a part of SLPS (Software Language Pro-
cessing Suite) [80] — and use Grammar Hunter, a universal configurable
grammar extraction tool, for extracting the first version. The definition itself is
a straightforward XML-ification of the first table of this section, so we leave it
out of this document. The only addition is switching on the options of disregard-
ing extra spaces and extra newlines that are left after tokenising the grammar.
The EDD is freely available for re-use in the subversion repository of SLPS2.

2Available as config.edd.

7

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/config.edd?view=markup

3 Guided grammar extraction

Since the grammar extraction process is performed for this particular notation
for the first time, we use guided extraction, when the results of the extraction
are visually compared to the original text by an expert in grammar engineering.
This document is a detailed explanation of observations collected in that process
and actions undertaken to resolve the spotted issues.

Given previous experience, it is safe to assume that once the grammar is
extracted, we would like to change some parts of it (for grammar adaptation [32],
deyaccification [58] and other activities common for grammar recovery [34]). In
order for those changes to stay fully traceable and transparent, we will take
the approach of programmable grammar transformation. In this methodology,
we take a baseline grammar and an operator suite and by choosing the right
operators and parametrising them, we program the desired changes in the same
way mainstream programmers use programming languages to create software.
These transformation scripts are executable with the grammar transformation
engine: any meta-programming facility would suffice, for this particular work
we use XBGF [74] which was shown in [39] to be the best and the most versatile
grammar transformation infrastructure at this moment. The tools of SLPS
that surround XBGF also allow for easy publishing by providing immediate
possibilities to transform XBGF scripts to LATEX or XHTML.

3.1 Source for extraction

The grammar of MediaWiki is available on subpages of [45]. Striving for more
automation, we can use the “raw” action to download the content from the same
makefile that performs the extraction3. For example, the wiki source of Article
Title [47] is http://www.mediawiki.org/w/index.php?title=Markup_spec/

BNF/Article_title&action=raw. In order to make our setup stable for the
future when the contents of the wiki page may change (in fact, changing them
is one of the main objectives of this work), we can add the revision number to
that command, making it http://www.mediawiki.org/w/index.php?title=

Markup_spec/BNF/Article_title&action=raw&oldid=295042.

3.2 Article title

Parsing Article Title [47] with Grammar Hunter is not hard and does not report
many problems. One particular peculiarity that we notice when comparing the
resulting grammar with the original, is the “...?” symbol:
<canonical-page-first-char> ::= <ucase-letter> | <digit> | <underscore> | ...?

<canonical-page-char> ::= <letter> | <digit> | <underscore> | ...?

The “...?” symbol is not explained anywhere, but the intuitive meaning is
that it is a metasymbol for a possible future extension point. For example, if in
the future one decides to allow a hash symbol (#) in an article title (currently
not allowed for technical reasons), it will be added as an alternative to the

3Available as Makefile.

8

http://www.mediawiki.org/w/index.php?title=Markup_spec/BNF/Article_title&action=raw
http://www.mediawiki.org/w/index.php?title=Markup_spec/BNF/Article_title&action=raw
http://www.mediawiki.org/w/index.php?title=Markup_spec/BNF/Article_title&action=raw&oldid=295042
http://www.mediawiki.org/w/index.php?title=Markup_spec/BNF/Article_title&action=raw&oldid=295042
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/Makefile?view=markup

production defining canonical-page-char. The very notion of such extension
points contradicts the contemporary view on language evolution. It is commonly
assumed that a grammar engineer cannot predict in advance all the places in the
grammar that will need change in the future: hence, it is better to not mark any
of such places explicitly and assume that any place can be extended, replaced,
adapted, transformed, etc. Modern grammar transformation engines such as
XBGF [74], Rascal [26] or TXL [13] all have means of extending a grammar in
almost any desired place. Since it seems reasonable to remove these extension
points at all, we can do it with XBGF after the extraction4:

vertical(in canonical-page-first-char);

removeV(

canonical-page-first-char:

"." "." "." "?"

);

horizontal(in canonical-page-first-char);

vertical(in canonical-page-char);

removeV(

canonical-page-char:

"." "." "." "?"

);

horizontal(in canonical-page-char);

vertical(in page-first-char);

removeV(

page-first-char:

"." "." "." "?"

);

horizontal(in page-first-char);

vertical(in page-char);

removeV(

page-char:

"." "." "." "?"

);

horizontal(in page-char);

By looking at the grammar where this transformation chain does not apply,
one can notice productions in this style:
<canonical-article-title> ::= <canonical-page> [<canonical-sub-pages>]

<canonical-sub-pages> ::= <canonical-sub-page> [<canonical-sub-pages>]

<canonical-sub-page> ::= <sub-page-separator> <canonical-page-chars>

In simple words, what we see here is an optional occurrence of a nonterminal
called canonical-sub-pages, which is defined as a list of one or more nontermi-
nals called canonical-sub-page. So, in fact, that optional occurrence consists
of zero or more canonical-sub-page nonterminals. However, these observa-
tions are not immediate when looking at the definition, because the production
is written with explicit right recursion. This style of writing productions be-
long to very early versions of compiler compilers like YACC [21], which required
manual optimisation of each grammar before parser generation was possible.
It has been reported later on multiple occasions [25, 58, etc] that it is highly
undesirable to perform premature optimisation of a general purpose grammar
for a specific parsing technology that may or may not be used with it at some

4Part of remove-extension-points.xbgf.

9

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-extension-points.xbgf?view=markup

point in the future. The classic construct of a list of zero or more nonterminal
occurrences is called a Kleene closure [1] or Kleene star (since it is commonly
denoted as a postfix star) and is omnipresent in modern grammarware practice.

Using the Kleene star makes the grammars much more concise and readable.
Most parser generators that require right-recursive (or left-recursive) expansions
of a Kleene star, can do them automatically on the fly. Another possible reason
for not using a star repetition could have been to stay within limits of pure BNF,
but since we have already noted earlier that this goal was not reached anyway,
we see no reason to pretend to seek it. A well-known grammar beautification
technique known as “deyaccification” [58] is performed by the following grammar
refactoring chain5:

massage(
canonical-sub-pages?,
(canonical-sub-pages | ε));

distribute(in canonical-sub-pages);

vertical(in canonical-sub-pages);

deyaccify(canonical-sub-pages);
inline(canonical-sub-pages);
massage(

(canonical-sub-page+ | ε),
canonical-sub-page?);

massage(
canonical-page-chars?,
(canonical-page-chars | ε));

distribute(in canonical-page-chars);

vertical(in canonical-page-chars);

deyaccify(canonical-page-chars);
inline(canonical-page-chars);
massage(

(canonical-page-char+ | ε),
canonical-page-char?);

massage(
sub-pages?,
(sub-pages | ε));

distribute(in sub-pages);

vertical(in sub-pages);

deyaccify(sub-pages);
inline(sub-pages);
massage(

(sub-page+ | ε),
sub-page?);

massage(
page-chars?,
(page-chars | ε));

distribute(in page-chars);

vertical(in page-chars);

deyaccify(page-chars);
inline(page-chars);
massage(

(page-char+ | ε),
page-char?);

5Part of deyaccify.xbgf.

10

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/deyaccify.xbgf?view=markup

Even the simplest metrics can show us that these refactorings have simpli-
fied the grammar, reducing it from 15 VAR and 25 PROD to 11 VAR and 17
PROD [55], without any fallback in functionality. They have also removed tech-
nological idiosyncrasies and improved properties that are somewhat harder to
measure, like readability and understandability.

3.3 Article

Article [46] contains seven grammar fragments, out of which only the first three
conform to the chosen grammar notation. The last four were copy-pasted from
elsewhere and use a different EBNF dialect, which we luckily can also analyse
and identify:

Name Value
Defining symbol =

Definition separator symbol |

Start special symbol ?

End special symbol ?

Start terminal symbol "

End terminal symbol "

Start option symbol [

End option symbol]

Start group symbol (

End group symbol)

Start repetition star symbol {
End repetition star symbol }
Exception symbol -

We will not lay out its step by step comparison with the notation used in
the rest of the MediaWiki grammar, but it suffices to say that the presence of
the exception symbol in the metalanguage is enough to make some grammars
inexpressible in a metalanguage without it. BGF does not have a metasymbol
for exception, but we still could express the dialect in EDD6 and extract these
parts of the grammar with it. Judging by the presence of the Kleene star in
the metalanguage, the grammar engineers who developed those parts did not
intend to stay within BNF limits. Thus, we can also advise to add the use of a
plus repetition for denoting a sequence of one or more nonterminal occurrences,
in order to improve readability of productions like these:
Line = PlainText { PlainText } { " " { " " } PlainText { PlainText } } ;

Text = Line { Line } { NewLine { NewLine } Line { Line } } ;

Or, in postfix-oriented BNF that we use within SLPS:

Line:

PlainText PlainText? (" " " "? PlainText PlainText?)?

Text:

Line Line? (NewLine NewLine? Line Line?)?

6Available at metawiki.edd.

11

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/metawiki.edd?view=markup

Compare with the version that we claim to be more readable:

Line:

PlainText+ (" "+ PlainText+)?

Text:

Line+ (NewLine+ Line+)?

In fact, many modern grammar definition formalisms have a metaconstruct
called “separator list”, because Text above is nothing more than a (multiple)
Newline-separated list of Lines. We do not enforce this kind of metaconstructs
here, but we do emphasize the fact that the very understanding of Text being a
separated list of Lines was not clear before our proposed refactoring. In the case
if MediaWiki still wants the grammar representation to have only one type of
repetition or even no repetition at all, such a view can be automatically derived
from the baseline grammar preserved in a more expressive metalanguage. The
refactorings that utilise the plus notation are rather straightforward7:

massage(
PlainText PlainText?,

PlainText+);

massage(
Line Line?,

Line+);

massage(
NewLine NewLine?,

NewLine+);

massage(
" " " "?,

" "+);

Further investigation draws our attention to these productions:
PageName = TitleCharacter , { [" "] TitleCharacter } ;

PageNameLink = TitleCharacter , { [" " | "_"] TitleCharacter } ;

The comma used in both productions is not a terminal symbol “,”: in fact,
it is a concatenate symbol from ISO EBNF [20]. Since ISO EBNF is not the
notation used, the commas must have been left out unintentionally—this is
what usually happens when grammars are transformed manually and not in a
disciplined way. Grammar Hunter assumed that the quotes were forgotten in
this place (since a comma is not a good name for a nonterminal), so we need
to project it away (the corresponding operator is called abstractize because
it shifts a grammar from concrete syntax to abstract syntax). These are the
transformations that we write down8:

abstractize(
PageName:

TitleCharacter 〈","〉 (" "? TitleCharacter)?

);

abstractize(
PageNameLink:

TitleCharacter 〈","〉 ((" " | "_")? TitleCharacter)?

7Part of utilise-repetition.xbgf.
8Complete listing of remove-concatenation.xbgf.

12

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/utilise-repetition.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-concatenation.xbgf?view=markup

);

The following fragment uses excessive bracketing: parenthesis are used to
group symbols together, which is usually necessary for inner choices and similar
cases when one needs to override natural priorities. However, in this case it is
unnecessary:
SectionTitle = (SectionLinkCharacter - "=")

{ [" "] (SectionLinkCharacter - "=") } ;

LinkTitle = { UnicodeCharacter { " " } } (UnicodeCharacter - "]") ;

Excessive bracketing is not a problem for SLPS toolset since all BGF gram-
mars are normalised before serialisation, and it includes a step of refactoring
trivial subsequences, but we still report it for the sake of reproducibility within
a different environment.

The following grammar production uses a strange-looking construction that
is explained in the text to be the “non-greedy” variant of the optional newline:
<special-block-and-more> ::=

<special-block> (EOF | [<newline>] <special-block-and-more>

| (<newline> | "") <paragraph-and-more>)

The purpose of a syntax definition such as a BNF is to define syntax of a
language. Thus, any references to the semantics of the parsing process should
be avoided. The definition of “greediness” as ordered alternatives, given at the
first page of [45], contradicts the classic definition based on token consumption,
and contradicts the basics of EBNF. Approaches alternative to context-free
grammars such as PEG [17] should be considered if ordered alternatives are
really required. For EBNF (or BGF), we refactor the singularity as follows9:

massage(
(newline | ε),
newline?);

Since at this point the subgrammar of this part must be rather consistent, we
can execute some simple grammar analyses to help assess the grammar quality.
One of them is based on a well-known notion of bottom and top nontermi-
nals [58, 59]: a top is one that is defined but never used; a bottom is one that
is used but never defined. We were surprised to see WhiteSpaces in the list of
top nonterminals, while Whitespaces was in the list of bottom nonterminals.
Apparently, a renaming is needed10:

unite(WhiteSpaces, Whitespaces);

The definition of nonterminal BlockHTML contains textual annotation claim-
ing that it is not yet referred to. We decided to parse it anyway and validate
that assertion afterwards. Indeed, it showed up as an unconnected grammar
fragment, which we can then safely remove11:

eliminate(BlockHTML);

9Part of utilise-question.xbgf.
10Part of unify-whitespace.xbgf.
11Part of connect-grammar.xbgf.

13

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/utilise-question.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/unify-whitespace.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup

3.4 Noparse block

Apart from quoting the language name in the source tags, which makes the start
grammar symbol change from <source lang=bnf> to <source lang="bnf">,
the Noparse Block [51] uses the same EBNF dialect that we derived as the
starting step of our extraction. However, there are two major exceptions:

• Round brackets and square brackets have swapped their meaning.

• A lookahead assertion metasymbol is used, borrowed from Perl Compatible
Regular Expressions library.

The first impression given by cursory examination of the extracted grammar
is that it uses excessive bracketing (mentioned in the previous section):
<pre-block> ::= <pre-opening-tag> (<whitespace>) <pre-body>

(<whitespace>) [<pre-closing-tag> | (?=EOF)]

<pre-opening-tag> ::= "<pre" (<whitespace> (<characters>)) ">"

<pre-closing-tag> ::= "</pre" (<whitespace>) ">"

<pre-body> ::= <characters>

However, if we assume this to be true, the meaning of the grammar
will become inadequate: for example, it will have mandatory whitespace in
many places. On the other hand, making the last part of the grammar
(<nowiki-closing-tag> | (?=EOF)) optional is also inadequate, because op-
tional assertion will never make sense. This particular lookahead assertion is
displayed as (?=EOF) and means basically an ε that must be followed by EOF
(even that definition is not that apparent from the low-level description saying
“It asserts that an EOF follows, but does not consume the EOF.”). The pres-
ence or absence of lookahead based facilities is heavily dependent on the parsing
technology, and therefore should be avoided as much as possible, as noted by
multiple sources [25, 36, 58]. More straightforward and high level assertions
like “should be followed by” and “should not be followed by” are available in
modern metaprogramming languages like Rascal [26] instead.

Since the general problem of leaving opened tags at the end of the article
text is much bigger than the tags described in this part of the grammar, we
opt for removing these assertions altogether and solving the problem later with
suitable technology. EBNF has never been intended for and has never been good
at defining tolerant parsers [27]. Since we have to construct another EBNF di-
alect in order to parse the Noparse Block fragment correctly anyway, we specify
“(?=EOF)” as a notation for ε (otherwise we would have to fix the problem later
with a horizontal remove operator from XBGF). Those explicit empty sequence
metasymbols need to be refactored into proper optional symbols12:

massage(
(nowiki-closing-tag | ε),
nowiki-closing-tag?);

massage(
(pre-closing-tag | ε),
pre-closing-tag?);

12Part of remove-lookahead.xbgf.

14

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-lookahead.xbgf?view=markup

massage(
(html-closing-tag | ε),
html-closing-tag?);

In every notation that comprises similar looking symbols and metasymbols
that can be encountered within the same context, there is need for escaping some
special characters. In this part of the MediaWiki grammar escaping is done
in HTML entities, which is not explainable with grammar-based arguments.
However, we recall that our extraction source is a handcrafted grammar that
was meant to reproduce the behaviour of the MediaWiki PHP parse—so, in a
sense, it was (manually) extracted, and what we have just encountered is in
fact a legacy artefact randomly inherited from its source. Such legacy should
be removed by following transformation steps13:

renameT("<nowiki", "<nowiki");

renameT("</nowiki", "</nowiki");

renameT("<pre", "<pre");

renameT("</pre", "</pre");

renameT("<html", "<html");

renameT("</html", "</html");

renameT("<!--", "<!--");

replace(">", ">");

There are two more problems in the Noparse Block part that concern the
nonterminal characters. First, it is undefined (bottom). As we will see in §3.8,
there is a nonterminal called character—issues like these with “forgetting” to
define some nonterminals with readable names are quite common in handcrafted
grammars, as noted by [28] and other sources. A trivially guessed definition for
characters is either “one-or-more” or “zero-or-more” repetition of character.
Since characters is mostly used as an optional nonterminal, we assume that it
is one or more14:

define(
characters:

character+

);

The second problem is its usage in html-comment (remember that round
brackets mean optionality here):
<html-comment> ::= "<!--" ({ characters }) "-->"

Since we do not need to make a Kleene repetition optional, we can refactor
it as follows15:

unfold(characters in html-comment);

massage(

character+?,

character?);

massage(
character??,
character?);

13Complete listing of dehtmlify.xbgf.
14Part of connect-grammar.xbgf.
15Part of refactor-repetition.xbgf.

15

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/dehtmlify.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/refactor-repetition.xbgf?view=markup

/* not properly fleshed out, haven not tried all the combinations */
<article-link> ::= [<interwiki-prefix> | ":"] [<namespace-prefix]
 | "/" <article-title>
 | { "../" } [<article-title>]

<article-title> ::= { [<title-legal-chars> | "%"] } +

/* Specified using regex format, obviously... */
<title-legal-chars> ::= " %!\"$&'()*,\\-.\\/0-9:;=?@A-Z\\\\^_`a-z~\\x80-\\xFF+"

<interwiki-prefix> ::= <interwiki> ":"
<interwiki> ::= STRING_FROM_DB

<namespace-prefix> ::= [<namespace>] ":"
<namespace> ::= STRING_FROM_CONFIG
/* is it? parser.php gives it as "[_0-9A-Za-z\x80-\xff]" */

<link-description> ::= LEGAL_ARTICLE_ENTITY
<extra-description> ::= <letter> [<extra-description>]

<internal-link-start> ::= "[["
<internal-link-end> ::= "]]"

<pipe> ::= "|"

/* Almost anything seems to be allowed, but it won't necessarily be treated as an actual s
<section-id> ::= { [<title-legal-chars> | "%" | "#"] } +

Remarks
Logically, internal-link should be matched in preference to external-link, as that's how the current parser
does it. However, the current parser also explicitly checks for an accidental match of an external link in an
inside link (that is, [[http://foo.com]]) and converts it back to an external link.
if (preg_match('/^\b(?:' . wfUrlProtocols() . ')/', $m[1])) { $s .= $prefix . '[[' .

$line ; continue; }

Categories

In the current parser, categories are just a mildly special case of an internal link. But to the user they seem quite
different, and the final behaviour is very different. So let's treat them specially.

/* section-ids are technically tolerated currently. but they do nothing and aren
/* similarly a pipe without a sort key is technically tolerated but isn't useful.
<category> ::= <internal-link-start> <category-namespace> ":"

<category-namespace> ::= NS_CATEGORY
/* set in languages/messages/MessagesXx.php. By default, "Category" */

/* <article-title> specified above. for a category, it's possibly more restrictive. */
/* other bits specified above. */

Remarks
A link *to* a category is handled by internal-link above.

Markup spec/BNF/Links - MediaWiki http://www.mediawiki.org/w/index.php?title=Markup_spec/BNF/Lin...

2 of 3 6/29/11 11:29 AM

Figure 1: A syntax that even MediaWiki cannot colour-code properly [52].

massage(
character?,

character+?);
fold(characters in html-comment);

More detailed information about leaving combinations of various kinds of
repetition and optionality in the deployed grammar will be given in the next
section.

3.5 Links

Links definitions [52] exhibit bits of yet another notation, namely the one where
a set of possible values is given, assuming that only one should be picked. In
the MediaWiki grammar it is erroneously called a “regex format”—regular ex-
pressions do use this notation in some places, but not everywhere and it is not
exclusive to them. This notation is very much akin to “one-of” metaconstructs
also encountered in definitions of other software languages such as C# [75,
§3.2.4]. In the MediaWiki grammar, it looks like this:
/* Specified using regex format, obviously... */

<title-legal-chars> ::= " %!\"$&’()*,\\-.\\/0-9:;=?@A-Z\\\\^_‘a-z~\\x80-\\xFF+"

The unobviousness of the notation is perfectly simplified by the fact that
even the MediaWiki engine itself fails to parse and colour-code it correctly, as
seen on Figure 1. In fact, when we look at the expression more closely, we can
notice that it is even incorrect in itself, since it uses double-escaping for most
backslashes (ruining them) and does not escape the dot (which denotes any
character when unescaped). Some other characters like * or + should arguably

16

also be escaped, but it is impossible to decide firmly on escaping rules when we
have no engine to process this string. However, the correct expression should
have looked similar to this:
<title-legal-chars> ::= " %!\"$&’()*,\-\.\/0-9:;=?@A-Z\\^_‘a-z~\x80-\xFF+"

Which we rewrite as (some invisible characters are omitted for readability):

<title-legal-chars> ::= " " | "%" | "!" | """ | "$" | "&" | "'" | "(" | ")"
 | "*" | "," | "-" | "." | "/"
 | "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
 | ":" | ";" | "=" | "?" | "@"
 | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"
 | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
 | "\" | "^" | "_" | "`"
 | "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"
 | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
 | "~" | "¡" | "¢" | "£" | "¤" | "¥" | "¦"
 | "§" | "¨" | "©" | "ª" | "«" | "¬" | "­" | "®" | "¯" | "°" | "±" | "2" | "3"
 | "´" | "µ" | "¶" | "·" | "¸" | "1" | "º" | "»" | "¼" | "½" | "¾" | "¿" | "À"
 | "Á" | "Â" | "Ã" | "Ä" | "Å" | "Æ" | "Ç" | "È" | "É" | "Ê" | "Ë" | "Ì" | "Í"
 | "Î" | "Ï" | "Ð" | "Ñ" | "Ò" | "Ó" | "Ô" | "Õ" | "Ö" | "×" | "Ø" | "Ù" | "Ú"
 | "Û" | "Ü" | "Ý" | "Þ" | "ß" | "à" | "á" | "â" | "ã" | "ä" | "å" | "æ" | "ç"
 | "è" | "é" | "ê" | "ë" | "ì" | "í" | "î" | "ï" | "ð" | "ñ" | "ò" | "ó" | "ô"
 | "õ" | "ö" | "÷" | "ø" | "ù" | "ú" | "û" | "ü" | "ý" | "þ" | "ÿ" | “+”

This refactored version with all alternatives given explicitly was created au-
tomatically by a trivial Python one-liner and can be parsed without any trouble
by Grammar Hunter. We should also note that the name for this nonterminal
is misleading, since it represents only one character. This is not a technical
mistake, but we can improve learnability of the grammar by fixing it16:

renameN(title-legal-chars, title-legal-char);

Grammar Hunter displays an error message but is capable of dealing with
this fragment:
<article-link> ::=

[<interwiki-prefix> | ":"] [<namespace-prefix] <article-title>

The problem in this grammar production is in “[<namespace-prefix]”
(note the unbalanced angle brackets). The start nonterminal symbol here is
followed by the name of the nonterminal and then by the end option symbol
without the end nonterminal symbol. This kind of problems are rather com-
mon in grammars that have been created manually and have never been tested
in any environment that would make them executable or validate consistency
otherwise. Grammar Hunter can resolve this problem by using the heuristic
of next best guess, which is to assume that the nonterminal name ended at
the first alphanumeric/non-alphanumeric border that happened after the un-
balanced start nonterminal symbol.

Next, consider the following two grammar productions that lead to several
problems simultaneously:

16Part of fix-names.xbgf.

17

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup

<article-title> ::= { [<title-legal-chars> | "%"] } +

<section-id> ::= { [<title-legal-chars> | "%" | "#"] } +

As we have explained above, the grammar notation used for the MediaWiki
grammar was never defined explicitly in any formal or informal way, so we had to
infer it in §2. When inferring its semantics, we had two options: to treat the plus
as a postfix metasymbol or to treat “{” and “}+” as bracket metasymbols. Both
variants are possible and feasible, since Grammar Hunter is capable of dealing
with ambiguous starting metasymbols (i.e., “{” as both a start repetition star
symbol and a start repetition plus symbol). We obviously opt for the latter
variant because from the formal language theory we all know that for any x it is
always true that (x∗)+ ≡ x∗, so a postfix plus operation on a star repetition is
useless and we tend to assume good faith of grammar engineers who made use of
it. But even if we assume it to be a transitive closure (a plus repetition), which is
a common notation for a sequence of one or more occurrences of a subexpression,
the productions become parseable, but they are bound to deliver problems with
ambiguities [4] on later stages of grammar deployment, since in these particular
grammar fragments optional symbols are iterated.

To give a simple example, suppose we have a nonterminal x defined as a+,
and a itself is defined as “a”? (either “a” or ε). Then the following are two
distinct possibilities to parse “aa” with such a grammar:

a+ a+

1 0 ↗ ↑ ↖
a a a a a
↑ ↑ ↑ ↑ ↑

“a” “a” “a” ε “a”

The number of such ways to parse even the simplest of expressions is infinite,
and special algorithms need to be utilised to detect such problems at the parser
generator level. Thus, to prevent this trouble from happening, we massage the
productions above to use a simple star repetition instead, which is an equivalent
unambiguous construct17:

massage(

(title-legal-chars | "%")?+,

(title-legal-chars | "%")?);

massage(

(title-legal-chars | "%" | "#")?+,

(title-legal-chars | "%" | "#")?);

Reading further, we notice one of the nonterminals being defined with ex-
plicit right recursion:
<extra-description> ::= <letter> [<extra-description>]

The problem is known and has been discussed above, all we need here is
proper deyaccification18:

massage(

17Part of utilise-repetition.xbgf.
18Part of deyaccify.xbgf.

18

http://en.wikipedia.org/wiki/Wikipedia:Assume_good_faith
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/utilise-repetition.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/deyaccify.xbgf?view=markup

extra-description?,
(extra-description | ε)
in extra-description);

distribute(in extra-description);

vertical(in extra-description);

deyaccify(extra-description);

The last problem with the Links part of the grammar is the use of natural
language inside a BNF production:
<protocol> ::= ALLOWED_PROTOCOL_FROM_CONFIG (e.g. "http://", "mailto:")

Examples are never a part of a syntax definition: the alternatives are either
listed exhaustively (like we will do later when we make the grammar complete)
or belong in the comments (like it was undoubtedly intended here). A projection
is needed to remove them from the raw extracted grammar19:

project(
protocol:

ALLOWED_PROTOCOL_FROM_CONFIG 〈(e "." g "." "http://" "," "mailto:")〉
);

3.6 Magic links

Just like Noparse Block discussed above in §3.4, Magic Links [49] also uses
<source lang="bnf"> as the start grammar symbol, but this is the least prob-
lem encountered in this fragment. Consider the following productions:
<isbn> ::= "ISBN" (" "+) <isbn-number> ?(non-word-character /\b/)

<isbn-number> ::= ("97" ("8" | "9") (" " | "-")?) (DIGIT (" " | "-")?)

{9} (DIGIT | "X" | "x")

We see a notation where:

• A postfix plus repetition metasymbol is used, which is not encountered
anywhere else in the MediaWiki.

• The character used as the postfix repetition metasymbol clashes with end
repetition plus metasymbol from Inline Text [48] and Links [52]20.

• A postfix optionality metasymbol is used, which is not encountered any-
where else in the MediaWiki.

• The character used as the postfix optionality metasymbol clashes with
start special metasymbol and end special metasymbol from Article [46],
Inline Text [48] and Special Block [50].

• The same character used as the postfix optionality metasymbol is used as
in a prefix notation that relies on lookahead.

• A regular expression is used inside the lookahead assertion.

19Complete listing of remove-comments.xbgf.
20Indirect clash of “}+” being an end repetition plus symbol as well as a sequence of an end

repetition star symbol and a postfix repetition metasymbol.

19

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-comments.xbgf?view=markup

• A terminal symbol (“9”) is not explicitly marked as such.

• A nonterminal symbol (“DIGIT”) is not explicitly marked as such.

Along with the discussion from §3.4, we first remove the lookahead assertions.
They (arguably) do not belong in EBNF at all, and definitely do not belong in
such a form21:

project(
isbn:

"ISBN" " " "+" isbn-number 〈("?" non-word-character "/" "\" b "/")〉
);

We do not even try to add the postfix plus repetition metasymbol to the
notation definition, since it is used only once, since it clashes with something
else, and since there is a special nonterminal spaces that should be used instead
anyway22:

replace(

" " "+",

spaces);

Then we adjust the grammar for the untreated postfix question metasym-
bol23:

abstractize(
isbn-number:

"97" ("8" | "9") (" " | "-") 〈"?"〉 DIGIT (" " | "-") 〈"?"〉 "9"?

(DIGIT | "X" | "x")

);

widen(
(" " | "-"),

(" " | "-")?
in isbn-number);

3.7 Special block

Just as in [47], the Special Block uses a special metasymbol for omitted grammar
fragments [50]. This case is subtly different from the one discussed in §3.2 in a
sense that it explicitly says in the accompanying text that “The dots need to be
filled in”. This information is undoubtedly useful, but considering the fact that
its very presence renders the grammar non-executable, we decide to remove it
from the grammar and let the documentation tell the story about how much of
the intended language does the grammar cover24:

vertical(in special-block);

removeV(

special-block:

"." "." "."

);

horizontal(in special-block);

21Part of remove-lookahead.xbgf.
22Part of unify-whitespace.xbgf.
23Part of utilise-question.xbgf.
24Part of remove-extension-points.xbgf.

20

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-lookahead.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/unify-whitespace.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/utilise-question.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-extension-points.xbgf?view=markup

In the same first production there is an alternative that reads
<nowiki><table></nowiki>, which seems like either a leftover after manually
cleaning up the markup, or a legacy escaping trick. Either way, nowiki wrap-
ping is not necessary for displaying this fragment and is generally misleading:
the chevrons around “table” mean to denote it explicitly as a nonterminal, not
as an HTML tag. We project away the unnecessary parts25:

vertical(in special-block);

project(
special-block:

〈nowiki〉 table 〈/ nowiki〉
);

horizontal(in special-block);

There are also more cases of excessive bracketing which are fixed automati-
cally by Grammar Hunter:
<defined-term> ::= ";" <text> [(<definition>)]

A nonterminal symbol called dashes is arguably superfluous and can be
replaced by a Kleene star of a dash terminal:
<horizontal-rule> ::= "----" [<dashes>] [<inline-text>] <newline>

<dashes> ::= "-" [<dashes>]

Still, we can keep it in the grammar for the sake of possible future BNF-
ification, but refactor the idiosyncrasy (the right recursion)26:

massage(
dashes?,
(dashes | ε)
in dashes);

distribute(in dashes);

vertical(in dashes);

deyaccify(dashes);

The worst part of the Special Block part is the section titled “Tables”:
it contains eight productions in a different notation, with a comment “From
meta...minor reformatting”. This reformatting has obviously been performed
manually, since it does not utilise the standard notation of the rest of the gram-
mar, nor is it compatible with the MetaWiki notation that we have encountered
in §3.3: the defining symbol is from the MediaWiki notation, the terminator
symbol is from the MetaWiki notation, etc:

25Part of fix-markup.xbgf.
26Part of deyaccify.xbgf.

21

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-markup.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/deyaccify.xbgf?view=markup

Name Value
Defining symbol ::=

Terminator symbol ;

Definition separator symbol |

Start special symbol ?

End special symbol ?

Start terminal symbol "

End terminal symbol "

Start nonterminal symbol <

End nonterminal symbol >

Start option symbol [

End option symbol]

To save the trouble of post-extraction fixing, we used this configuration as
a yet another EDD file to extract this grammar fragment and merge it with
the rest of the grammar. The naming convention of the fragment is still not
synchronised with the rest (i.e., camel case vs. dash-separated lowercase), but
we will deal with it later in §5.

We also see a problem similar to the one discussed above in §3.4, namely an
optional zero-or-more repetition:
<space-block> ::= " " <inline-text> <newline> [{<space-block-2}]

The solution is also already known to us27:

massage(
space-block-2??,
space-block-2?);

When comparing the list of top nonterminals with the list of bottom ones,
we notice TableCellParameters being used while TableCellParameter being
defined. Judging by its clone named TableParameters, the intention was to
name it plural, so we perform unification28:

unite(TableCellParameter, TableCellParameters);

3.8 Inline text

Suddenly, [48] uses bulleted-list notation for listing alternatives in a grammar:
<text-with-formatting> ::=

| <formatting>

| <inline-html>

| <noparseblock>

| <behaviour-switch>

| <open-guillemet> | <close-guillemet>

| <html-entity>

| <html-unsafe-symbol>

| <text>

| <random-character>

| (more missing?)...

27Part of refactor-repetition.xbgf.
28Part of fix-names.xbgf.

22

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/refactor-repetition.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup

This is almost never encountered in grammar engineering, but not completely
unknown to computer science—for example, TLA+ uses this notation [40]. In
our case it is confusing for Grammar Hunter since newlines are also used in
the notation to separate production rules, and since it only happens in two
productions, we decide to manually remove the first bar there. The last line
of the sample above also shows an extension point discussed earlier in §3.2 and
§3.7, which we remove29:

vertical(in text-with-formatting);

removeV(

text-with-formatting:

(more missing "?") "." "." "."

);

horizontal(in text-with-formatting);

Nonterminal noparseblock is referenced in the same grammar fragment,
but never encountered elsewhere in the grammar, later we will unite it with
noparse-block when specifically considering enforcing consistent naming con-
vention in §5.5.

The next problematic fragment is the following:
<html-entity-name> ::= Sanitizer::$wgHtmlEntities (case sensitive)

(* "Aacute" | "aacute" | ... *)

It has three problems:

• Referencing PHP variables from the grammar is unheard of.

• Static semantics within postfix parenthesis in plain English is not helpful.

• A comment that uses “(*” and “*)” as delimiters instead of “/*” and
“*/” used in the rest of the grammar.

These identified problems can be solved with projecting excessive symbols,
leaving only one nonterminal reference, which will remain undefined for now30:

project(
html-entity-name:

〈(Sanitizer ":" ":" "$")〉 wgHtmlEntities 〈(case sensitive (("?" "Aacute")

| "aacute" | ("." "." "." "?")))〉
);

Later in §5.6 we will reuse the source code of Sanitizer class to formally
complete the grammar by defining wgHtmlEntities nonterminal.

The following fragment combines two double problems that have already
been encountered before. The first problem is akin to the one we have noticed
in §3.5, namely having a nonterminal with “-characters” in its name, which is
supposed to denote only one character taken from a character class; the second
part of that problem is the usage of the regular expression notation. The second
problem is an omission/extension point (cf. §3.2 and §3.7), which is expressed
in Latin:

29Part of remove-extension-points.xbgf.
30Complete listing of remove-php-legacy.xbgf.

23

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-extension-points.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-php-legacy.xbgf?view=markup

<harmless-characters> ::= /[A-Za-z0-9] etc

We rewrite it as follows:
<harmless-characters> ::=

"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"

| "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

| "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"

| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

| "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The name of the nonterminal symbol harmless-characters is misleading,
since it represents only one character. In fact, simple investigation into top
and bottom nonterminals [36] shows that it is not referenced anywhere in the
grammar, but a nonterminal harmless-character is used in the definition of
text. Hence, we want to unite those two nonterminals31:

unite(harmless-characters, harmless-character);

The immediately following production contains a special symbol written in
the style of ISO EBNF and MetaWiki:
<random-character> ::= ? any character ... ?

Instead of adjusting the assumed notation definition, we choose to let Gram-
mar Hunter parse it as it is, and to subsequently transform the result to a special
BGF metasymbol with the same semantics (i.e., “any character”)32:

redefine(
random-character:

ANY

);

The next problematic fragment once again contains omission/extension
points:
<ucase-letter> ::= "A" | "B" | ... | "Y" | "Z"

<lcase-letter> ::= "a" | "b" | ... | "y" | "z"

<decimal-digit> ::= "0" | "1" | ... | "8" | "9"

Since in fact they represent all possible alternatives from the given range,
we rewrite them as follows:
<ucase-letter> ::=

"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"

| "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

<lcase-letter> ::=

"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"

| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

<decimal-digit> ::=

"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The same looking metasymbol is used later as a pure extension point:
<symbol> ::= <html-unsafe-symbol> | <underscore> | "." | "," | ...

The crucial difference in the semantics of these two metasymbols both de-
noted as “...” lies in the fact that in the former one (i.e., "A" | ... | "Z")
it is basically a macro definition that can be expanded by any human reader,
but in the latter one (i.e., "." | ...) the only thing the reader learns from

31Part of fix-names.xbgf.
32Part of define-lexicals.xbgf.

24

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/define-lexicals.xbgf?view=markup

looking at it is that something can or should be added. Hence, following the
conclusions we drew above, we expand the former omission metasymbol right
in the grammar source, but we remove the latter omission metasymbol with
grammar transformation33:

vertical(in symbol);

removeV(

symbol:

"." "." "."

);

horizontal(in symbol);

Finally, we notice some of the productions using explicit right recursion:
<newlines> ::= <newline> [<newlines>]

<space-tabs> ::= <space-tab> [<space-tabs>]

<spaces> ::= <space> [<spaces>]

<decimal-number> ::= <decimal-digit> [<decimal-number>]

<hex-number> ::= <hex-digit> [<hex-number>]

The deyaccifying transformation steps are straightforward34:

massage(
newlines?,
(newlines | ε)
in newlines);

distribute(in newlines);

vertical(in newlines);

deyaccify(newlines);
massage(
space-tabs?,
(space-tabs | ε)
in space-tabs);

distribute(in space-tabs);

vertical(in space-tabs);

deyaccify(space-tabs);
massage(
spaces?,
(spaces | ε)
in spaces);

distribute(in spaces);

vertical(in spaces);

deyaccify(spaces);
massage(
decimal-number?,
(decimal-number | ε)
in decimal-number);

distribute(in decimal-number);

vertical(in decimal-number);

deyaccify(decimal-number);
massage(
hex-number?,
(hex-number | ε)
in hex-number);

distribute(in hex-number);

vertical(in hex-number);

33Part of remove-extension-points.xbgf.
34Part of deyaccify.xbgf.

25

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-extension-points.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/deyaccify.xbgf?view=markup

deyaccify(hex-number);

We should specially note here that the form used to define spaces prevented
us earlier in §3.6 from using less invasive grammar transformation operators.
What we ideally want is a transformation that is as semantics preserving as
possible35:

fold(space);
fold(spaces);

It is intentional that these two steps affect the whole grammar. We will
return to this issue later in §5.2.

There are two views given on formatting: an optimistic one and a realistic
one. Since the grammar needs to define the allowed syntax in a structured way,
we scrap the the latter36:

removeV(

formatting:

apostrophe-jungle

);

eliminate(apostrophe-jungle);

The whole section describing Inline HTML was removed from [48] prior to
extraction because it combines two aspects that are not intended to be defined
with (E)BNF: it defines a different language embedded inside the current one
(this can be done in a clean way by using modules in advanced practical frame-
works like Rascal [26]) and it tries to define rules for automated error fixing (cf.
fault-tolerant parsing, tolerant parsing, etc). It suffices to note here that the
metalanguage used in the parts of that section that were formulated not in plain
English, is fascinatingly different from the parts of the MediaWiki grammar that
we have already processed: it uses attributed (parametrised) nonterminals and
postfix modifiers for case (in)sensitivity. The same metasyntax is used in the
next section about images, so we do need to find a way to process chunks like
this:

35Part of unify-whitespace.xbgf.
36Complete listing of remove-duplicates.xbgf.

26

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/unify-whitespace.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-duplicates.xbgf?view=markup

ImageModeManualThumb ::= mw("img_manualthumb");

ImageModeAutoThumb ::= mw("img_thumbnail");

ImageModeFrame ::= mw("img_frame");

ImageModeFrameless ::= mw("img_frameless");

/* Default settings: */

mw("img_manualthumb") ::= "thumbnail=", ImageName | "thumb=", ImageName

mw("img_thumbnail") ::= "thumbnail" | "thumb";

mw("img_frame") ::= "framed" | "enframed" | "frame";

mw("img_frameless") ::= "frameless";

ImageOtherParameter ::= ImageParamPage | ImageParamUpright | ImageParamBorder

ImageParamPage ::= mw("img_page")

ImageParamUpgright ::= mw("img_upright")

ImageParamBorder ::= mw("img_border")

/* Default settings: */

mw("img_page") ::= "page=$1" | "page $1" ??? (where is this used?)

mw("img_upright") ::= "upright" [, ["=",] PositiveInteger]

mw("img_border") ::= "border"

We try to list the problems within that grammar fragment:

• Parametrised nonterminals are used in a style of function calls. This
is not completely uncommon to grammarware since the invention of van
Wijngaarden grammars [63] and attribute grammars [29], but unnecessary
here.

• Some productions end with a terminator symbol “;”, others don’t.

• Concatenate metasymbol “,” is used rather inconsistently (occurs between
some metasymbols, doesn’t occur between some nonterminal symbols).

• Inline comments are given in English without consistent explicit separation
from the BNF formulae.

The shortest way to overcome these difficulties is to reformat them lexically,
unchaining parametrised nonterminals and appending terminator symbols to
productions that did not have them. The result looks like this:
ImageModeManualThumb ::= "thumbnail=", ImageName | "thumb=", ImageName ;

ImageModeAutoThumb ::= "thumbnail" | "thumb";

ImageModeFrame ::= "framed" | "enframed" | "frame";

ImageModeFrameless ::= "frameless";

ImageOtherParameter ::= ImageParamPage | ImageParamUpright | ImageParamBorder

ImageParamPage ::= "page=$1" | "page $1"; /* ??? (where is this used?) */

ImageParamUpgright ::= "upright" [, ["=",] PositiveInteger]

ImageParamBorder ::= "border"

One of the fragments fixed in this way contains postfix metasymbols for case
insensitivity:
<behaviourswitch-toc> ::= "__TOC__"i

<behaviourswitch-forcetoc> ::= "__FORCETOC__"i

<behaviourswitch-notoc> ::= "__NOTOC__"i

<behaviourswitch-noeditsection> ::= "__NOEDITSECTION__"i

<behaviourswitch-nogallery> ::= "__NOGALLERY__"i

27

These untypical metasymbols are parsed by Grammar Hunter as separate
nonterminals, which we remove by projection37:

project(
behaviourswitch-toc:

"__TOC__" 〈i〉
);

project(
behaviourswitch-forcetoc:

"__FORCETOC__" 〈i〉
);

project(
behaviourswitch-notoc:

"__NOTOC__" 〈i〉
);

project(
behaviourswitch-noeditsection:

"__NOEDITSECTION__" 〈i〉
);

project(
behaviourswitch-nogallery:

"__NOGALLERY__" 〈i〉
);

There is also a mistake that is easily overlooked unless you analyse top and
bottom nonterminals (look at the second option):
ImageAlignParameter ::= ImageAlignLeft | ImageAlign|Center |

ImageAlignRight | ImageAlignNone

This extra unnecessary bar is parsed as a regular choice separator, so we
need to fix it this way38:

replace(
(ImageAlign | Center),

(ImageAlignCenter));

The same analysis shows us a fragment in the resulting grammar, which is
unconnected because ImageOption does not list it with the others39:

vertical(in image-option);

addV(

image-option:

image-other-parameter

);

horizontal(in image-option);

The first and the last productions of the Images subsection contain an ex-
plicitly marked nonterminal symbol:
ImageInline ::= "[[" , "Image:" , PageName, ".",

ImageExtension, ({ <Pipe>, ImageOption, }) "]]" ;

Caption ::= <inline-text>

A production in the middle of the Images subsection and the first production
of the Media subsection make inconsistent use of a concatenate symbol:

37Complete listing of remove-postfix-case.xbgf.
38Part of fix-names.xbgf.
39Part of connect-grammar.xbgf.

28

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-postfix-case.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup

ImageSizeParameter ::= PositiveNumber "px" ;

MediaInline ::= "[[" , "Media:" , PageName "." MediaExtension "]]" ;

And, finally, the last production of the Media subsection contains a wrong
defining symbol:
MediaExtension = "ogg" | "wav" ;

These three problems were reported and overcome by Grammar Hunter but
not solved automatically, because usually there is more that one way to resolve
such issues, and a human intervention is needed to make a choice. After the
unified notation is enforced everywhere, we can extract the grammar and con-
tinue recovering it with grammar transformation steps. It should be noted that
Grammar Hunter could not resolve the lack of concatenate symbols, since it
starts assuming that the following symbol is a part of the current one (origi-
nally the concatenate symbol was proposed in [20] in order to allow nonterminal
names contain spaces), but it easily dealt with excessive concatenate symbols
because they just virtually insert ε here and there, which gets easily normalised.

Back to the rest of the section, we have a fragment with essentially an
extension point specified in plain English as the right hand side of a production:
GalleryImage ::= (to be defined: essentially foo.jpg[|caption])

We can easily decide to disregard this definition in favour of a really working
one40:

redefine(
GalleryImage:

ImageName ("|" Caption)?
);

After analysing top and bottom nonterminals, we easily spot
unespaced-less-than being bottom and unescaped-less-than being
top—apparently, they were meant to be one, and the other one is a misspelled
variation typically found in big handcrafted grammars. The same issue arises
with some other nonterminals, apparently this grammar fragment was typed
by someone rather careless at spelling41:

unite(unespaced-less-than, unescaped-less-than);

unite(ImageParamUpgright, ImageParamUpright);

unite(ImageValignParameter, ImageVAlignParameter);

3.9 Fundamental elements

Surprisingly for those who did not look at the text of the Inline Text part,
the Fundamental Elements [44] does not contain any new grammar productions
for us, because all of them were encountered within the Inline Text, slightly
reordered.

40Part of remove-extension-points.xbgf.
41Part of fix-names.xbgf.

29

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-extension-points.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup

4 Conclusion

This section contains the list of imperfections found in the MediaWiki grammar
definition. In the parenthesis we refer to the section in the text that unveils the
problem or explains it.

• Non-extended Backus-Naur form was claimed to be used (§2)

• Three different metalanguages used for parts of the grammar (§3.3, §3.4,
§3.7)

• Bulleted-list notation for alternatives is used, both untraditional and in-
consistent with other grammar fragments (§3.8)

• Atypical metasymbols used:

• “...?” (§3.2) — not defined, assumed to be an extension point

• “(?=EOF)” (§3.4) — defined in terms of lookahead symbols

• “(” and “)” (§3.4) — unexpectedly used to denote optionality

• “[” and “]” (§3.4) — unexpectedly used for grouping

• “+” (§3.6) — not defined, assumed to be a plus repetition

• “?” (§3.6) — not defined, assumed to be a postfix optionality

• “?()” (§3.6) — not defined, assumed to be a lookahead assertion

• “...” (§3.7, §3.8) — omissions due to the lack of knowledge

• “...” (§3.8) — omissions to denote values from the range of alter-
natives

• “(*” and “*)” (§3.8) — start and end comment symbols

• An undesirable omission/extension point metasymbol was used (§3.2, §3.7,
§3.8)

• An undesirable exception metasymbol was used (§3.3)

• An attempt to use metasyntax to distinguish between two choice semantics
(§3.3)

• “Yaccified” productions with explicit right recursion (§3.2, §3.8)

• Underused metalanguage functionality: obfuscated “plus” repetitions and
separator lists (§3.3)

• Misspelled nonterminal names w.r.t. case: WhiteSpaces vs. Whitespaces
(§3.3), InlineText vs. inline-text (§3.7, §3.8), etc

• Mistyped nonterminal names: unespaced-less-than

vs. unescaped-less-than and ImageParamUpgright vs.
ImageParamUpright (§3.8)

30

• Varying grammar fragment delimiters (§3.4, §3.6)

• Not marking terminals explicitly with the chosen notation (§3.6)

• Not marking nonterminals explicitly with the chosen notation (§3.6)

• Escaping special characters with HTML entities (§3.4)

• Usage of “regexp format” to specify title legal characters (§3.5)

• Insufficient and excessive escaping within “regexp format” (§3.5)

• Misleading nonterminal symbol name: plural name for a single character
(§3.5, §3.8)

• Improper omission of the end nonterminal metasymbol (§3.5)

• Natural language (examples given in parenthesis) as a part of a BNF
production (§3.5)

• Inherently ambiguous constructs like a?+ and a∗? (§3.4, §3.5, §3.7)

• Excessive bracketing (§3.3, §3.7)

• Unintentionally undefined nonterminals (§3.4)

• Referencing PHP variables like Sanitizer::$wgHtmlEntities and con-
figuration functions like mw("img_thumbnail") (§3.8, §5.6)

5 Finishing touches

Table 1 shows the progress of several grammar metrics during recovery: TERM
is the number of unique terminal symbols used in the grammar, VAR is the
number of nonterminals defined or referenced there, PROD is the number of
grammar production rules (counting each top alternative in them) [31]. We
have already discussed bottom and top nonterminals from [36, 58, 59] earlier in
§3.3. It is known and intuitively understood that high numbers of top and bot-
tom nonterminals indicate unconnected grammar. In the ideal grammar, only
few top nonterminals exist (preferably just one, which is the start symbol) and
only few bottoms (only those that need to be defined elsewhere—lexically or in
another language) [36]. Thus, our finishing touches mostly involved inspection
of the tops and bottoms and their elimination. The very last step called “sub-
grammar” in Table 1 extracted only the desired start symbol (wiki-page) and
all nonterminals reachable from its definition.

Using the terminology of [36], in this section we move from a level 1 grammar
(i.e., raw extracted one) to a level 2 grammar (i.e., maximally connected one).

31

TERM VAR PROD Bottom Top
After extraction 304 188 691 78 29
After utilise-repetition.xbgf 304 188 691 78 29
After remove-concatenation.xbgf 304 188 691 78 29
After remove-extension-points.xbgf 304 188 684 73 29
After remove-php-legacy.xbgf 302 188 684 70 29
After deyaccify.xbgf 302 187 680 70 29
After remove-comments.xbgf 300 187 680 68 29
After remove-lookahead.xbgf 300 184 680 66 29
After remove-duplicates.xbgf 300 183 678 66 29
After dehtmlify.xbgf 299 183 678 66 29
After utilise-question.xbgf 299 183 678 66 29
After fix-markup.xbgf 299 183 678 64 29
After define-special-symbols.xbgf 299 183 678 62 29
After fake-exclusion.xbgf 299 183 678 58 26
After remove-postfix-case.xbgf 299 183 678 57 26
After fix-names.xbgf 307 182 681 37 14
After unify-whitespace.xbgf 307 181 681 31 13
After connect-grammar.xbgf 307 181 671 16 7
After refactor-repetition.xbgf 307 181 671 16 7
After define-lexicals.xbgf 310 187 671 9 7
After subgrammar 310 177 664 8 1

Table 1: Simple metrics computed on grammars during transformation.

5.1 Defining special nonterminals

There is a range of nonterminals used in the MediaWiki grammar that have
noticeably specific names (starting and ending with a question sign or being
uppercased): they are not defined by the grammar, but usually the text around
their definition is enough for a human reader to derive the intended semantics
and then to specify lacking grammar productions. We also unify the naming
convention while doing so (the final steps of that unification will be present
in §5.5) and leave some nonterminals undefined (bottom) to serve connection
points to other languages (more of that in §5.6)42:

vertical(in TableCellParameter);

removeV(

TableCellParameter:

?HTML cell attributes ?

);

addV(

TableCellParameter:

html-cell-attributes

);

horizontal(in TableCellParameter);

vertical(in TableParameters);

removeV(

TableParameters:

?HTML table attributes ?

);

addV(

42Complete listing of define-special-symbols.xbgf.

32

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/utilise-repetition.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-concatenation.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-extension-points.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-php-legacy.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/deyaccify.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-comments.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-lookahead.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-duplicates.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/dehtmlify.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/utilise-question.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-markup.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/define-special-symbols.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fake-exclusion.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/remove-postfix-case.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/unify-whitespace.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/refactor-repetition.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/define-lexicals.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/define-special-symbols.xbgf?view=markup

TableParameters:

html-table-attributes

);

horizontal(in TableParameters);

define(
FROM_LANGUAGE_FILE:

"#redirect"

);

inline(FROM_LANGUAGE_FILE);
define(
STRING_FROM_DB:

"Wikipedia"

);

inline(STRING_FROM_DB);
define(
STRING_FROM_CONFIG:

STR

);

inline(STRING_FROM_CONFIG);
define(
NS_CATEGORY:

"Category"

);

inline(NS_CATEGORY);
define(
ALLOWED_PROTOCOL_FROM_CONFIG:

"http://"

"https://"

"ftp://"

"ftps://"

"mailto:"

);

inline(ALLOWED_PROTOCOL_FROM_CONFIG);
unite(LEGAL_ARTICLE_ENTITY, article-title);

5.2 Unification of whitespace and lexicals

Another big metacategory of nonterminal symbols represent the lexical part,
which is not always properly specified by a syntactic grammar. In the Medi-
aWiki grammar case, there were several attempts to cover all lexical peculiarities
including problems arising from using Unicode (i.e., different types of spaces and
newlines), so the least we can do is to unify those attempts. Future work on
deriving a level 3 grammar from the result of this project, will use test-driven
correction to complete the lexical part correctly [36]. Our current goal is to pro-
vide a high quality level 2 grammar without destroying too much information
that can be reused later43:

unite(?_variants_of_spaces_?, space);

unite(?_carriage_return_and_line_feed_?, newline);

unite(?_carriage_return_?, CR);

unite(?_line_feed_?, LF);

inline(NewLine);

43Part of unify-whitespace.xbgf.

33

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/unify-whitespace.xbgf?view=markup

unfold(newline in Whitespaces);

fold(newline in Whitespaces);

unite(?_tab_?, TAB);

Another specificity is only referenced but not defined directly by the gram-
mar. According to the text of Inline Text section [48], this is a patch for dealing
with French punctuation. It is highly debatable whether such specificity should
be found in the baseline grammar, but since it is not defined properly anyway,
we decide to root it out44:

vertical(in text-with-formatting);

removeV(

text-with-formatting:

open-guillemet

);

removeV(

text-with-formatting:

close-guillemet

);

horizontal(in text-with-formatting);

Some bottom lexical nonterminals are trivially defined in BGF45:

define(
TAB:

"\t"

);

define(
CR:

"\r"

);

define(
LF:

"\n"

);

define(
any-text:

unicode-character?

);

define(
sort-key:

any-text

);

define(
any-supported-unicode-character:

ANY

);

5.3 Connecting the grammar

The Magic Links part (see 3.6) apparently referenced some nonterminals that
were never used. We can easily pinpoint them with a simple grammar analysis

44Part of unify-whitespace.xbgf.
45Part of define-lexicals.xbgf.

34

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/unify-whitespace.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/define-lexicals.xbgf?view=markup

showing bottom nonterminals, and after that program the appropriate transfor-
mations46:

define(
digits:

digit+

);

unite(digit, decimal-digit);

unite(DIGIT, decimal-digit);

Undefined nonterminals PositiveInteger and PositiveNumber both can
be merged with this new nonterminal47:

unite(PositiveInteger, digits);

unite(PositiveNumber, digits);

Nonterminal newlines defined at [48] and [44], is also never used and can
be eliminated48:

eliminate(newlines);

Last connecting steps are easy since there are not that many top and bottom
nonterminals left, and a simple human inspection can show that some of them
are actually misspelled pairs like this one49:

unite(ImageModeThumb, image-mode-auto-thumb);

unite(category, category-link);

In Links section [52] there is a discussion on whether there should be a
syntactic category for all links (i.e., internal and external). The discussion
seems to be unfinished, with the nonterminal link specified, but unused (i.e.,
top). Since the definition is already available, we decided to use it by folding
wherever possible50:

fold(link);

5.4 Mark exclusion

BGF does not have a metaconstruct for exclusion (“a should be parseable as b

but not as c”, mostly specified as “<a> ::= - <c>” within the MediaWiki
grammar), but we still want to preserve the information for further refactor-
ing. One of the ways to do so is to used a marking construct usually found in
parameters to transformation operators such as project or addH51:

replace(
?_all_supported_Unicode_characters_?_-_Whitespaces,

〈(any-supported-unicode-character Whitespaces)〉);
replace(

46Part of connect-grammar.xbgf.
47Part of connect-grammar.xbgf.
48Part of connect-grammar.xbgf.
49Part of connect-grammar.xbgf.
50Part of connect-grammar.xbgf.
51Part of fake-exclusion.xbgf.

35

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/connect-grammar.xbgf?view=markup
http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fake-exclusion.xbgf?view=markup

UnicodeCharacter_-_WikiMarkupCharacters,

〈(UnicodeCharacter WikiMarkupCharacters)〉);
replace(
SectionLinkCharacter_- "=",

〈(SectionLinkCharacter "=")〉);
replace(
UnicodeCharacter_- "]",

〈(UnicodeCharacter "]")〉);
replace(
UnicodeCharacter_-_BadTitleCharacters,

〈(UnicodeCharacter BadTitleCharacters)〉);
replace(
UnicodeCharacter_-_BadSectionLinkCharacters,

〈(UnicodeCharacter BadSectionLinkCharacters)〉);

5.5 Naming convention

There are three basic problems with the naming convention if we look at the
whole extracted grammar, namely:

Unintelligible nonterminal names. When looking at a particular grammar
production rule situated close to a piece of text explaining all kinds
of details that did not fit in the BNF, it is easy to overlook non-
informative names. In the case of MediaWiki, in the final grammar
we have bottom nonterminals with the names like FROM_LANGUAGE_FILE,
STRING_FROM_CONFIG, STRING_FROM_DB. Such names do not belong in the
grammar, because they obfuscate it, and the main reason for having a
grammar printed out in an EBNF-like form in the first place is to make it
readable for a human.

Letters capitalisation. Nonterminal names can be always written in lower-
case, or in uppercase, or in any mixture of them. The choice of parsing
technology can influence that choice: for instance, Rascal [26] can only
process capitalised nonterminal names and ANTLR [54] treats uppercase
nonterminals and non-uppercase ones differently. These implicit seman-
tic details need to be acknowledged and accounted for, in a consistent
manner, which was not the case in the MediaWiki grammar.

Word separation. Most of the nonterminals have names that consist of sev-
eral natural words (e.g., “wiki” and “page”). There are several ways to
separate them: by straightforward concatenating (“wikipage”), by camel-
casing (“WikiPage” or “wikiPage”), by hyphenating (“wiki-page”), by al-
lowing spaces in nonterminal names (“wiki page”), etc. It does not matter
too much which convention is used, as long as it is the same throughout
the whole grammar. In the case of MediaWiki there is no consistency,
which leads to not only decreased readability, but also to problems like
noparse-block being defined in [51] and noparseblock being used in [48]
(they were obviously meant to be one nonterminal).

36

The complete transformation script enforcing a consistent naming conven-
tion and fixing related problems on the way, looks like this52:

unite(noparseblock, noparse-block);

unite(GalleryBlock, gallery-block);

unite(ImageInline, image-inline);

unite(MediaInline, media-inline);

unite(Table, table);

unite(Text, text);

unite(InlineText, inline-text);

unite(Pipe, pipe);

renameN(AnyText, any-text);

renameN(BadSectionLinkCharacters, bad-section-link-characters);

renameN(BadTitleCharacters, bad-title-characters);

renameN(Caption, caption);

renameN(GalleryImage, gallery-image);

renameN(ImageAlignCenter, image-align-center);

renameN(ImageAlignLeft, image-align-left);

renameN(ImageAlignNone, image-align-none);

renameN(ImageAlignParameter, image-align-parameter);

renameN(ImageAlignRight, image-align-right);

renameN(ImageExtension, image-extension);

renameN(ImageModeAutoThumb, image-mode-auto-thumb);

renameN(ImageModeFrame, image-mode-frame);

renameN(ImageModeFrameless, image-mode-frameless);

renameN(ImageModeManualThumb, image-mode-manual-thumb);

renameN(ImageModeParameter, image-mode-parameter);

renameN(ImageName, image-name);

renameN(ImageOption, image-option);

renameN(ImageOtherParameter, image-other-parameter);

renameN(ImageParamBorder, image-param-border);

renameN(ImageParamPage, image-param-page);

renameN(ImageParamUpright, image-param-upright);

renameN(ImageSizeParameter, image-size-parameter);

renameN(ImageValignBaseline, image-valign-baseline);

renameN(ImageValignBottom, image-valign-bottom);

renameN(ImageValignMiddle, image-valign-middle);

renameN(ImageVAlignParameter, image-valign-parameter);

renameN(ImageValignSub, image-valign-sub);

renameN(ImageValignSuper, image-valign-super);

renameN(ImageValignTextBottom, image-valign-text-bottom);

renameN(ImageValignTextTop, image-valign-text-top);

renameN(ImageValignTop, image-valign-top);

renameN(Line, line);

renameN(LinkTitle, link-title);

renameN(MediaExtension, media-extension);

renameN(PageName, page-name);

renameN(PageNameLink, page-name-link);

renameN(PlainText, plain-text);

renameN(SectionLink, section-link);

renameN(SectionLinkCharacter, section-link-character);

renameN(SectionTitle, section-title);

renameN(TableCellParameters, table-cell-parameters);

renameN(TableColumn, table-column);

renameN(TableColumnLine, table-column-line);

renameN(TableColumnMultiLine, table-column-multiline);

52Part of fix-names.xbgf.

37

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/fix-names.xbgf?view=markup

renameN(TableFirstRow, table-first-row);

renameN(TableParameters, table-parameters);

renameN(TableRow, table-row);

renameN(TitleCharacter, title-character);

renameN(UnicodeCharacter, unicode-character);

renameN(UnicodeWiki, unicode-wiki);

renameN(WikiMarkupCharacters, wiki-markup-characters);

As one can see, we reinforce hyphenation in almost all places, except for
nonterminals inherited from other languages (e.g., blockquote from HTML).
The list of plain renamings was derived automatically by a Python one-liner that
transformed CamelCase to dash-separated names. The XBGF engine always
checks preconditions for renaming a nonterminal (i.e., the target name must be
fresh), so then it was trivial to turn the non-working renameN calls into unite
calls.

5.6 Embedded languages

We may recall seeing wgHtmlEntities undefined nonterminal being referenced
in §3.8. There are more like it—in fact, at the end of our recovery project there
are 8 bottom nonterminals in the grammar:

• LEGAL_URL_ENTITY: designates a character that is allowed in a URL; de-
fined by the corresponding RFC [6].

• inline-html: was removed deliberately due to incompleteness and ques-
tionable representation; defined partially by the accompanying English
text, partially by the HTML standard [57].

• math-block: the syntax used by the math extension to MediaWiki [67].

• CSS: cascading style sheets used to specify layout of tables and table
cells [8].

• html-table-attributes and html-cell-attributes: also layout of ta-
bles and table cells, but in pure HTML.

• wgHtmlEntities: one of the HTML entities (“quot”, “dagger”, “auml”,
etc).

They are all essentially different languages that are reused here, but are not
exactly a part of wiki syntax. Some wiki engines may allow for different subsets
of HTML and CSS features to be used within their pages, but conceptually
these limitations are import parameters, not complete definitions. For instance,
we could derive a lacking grammar fragment for wgHtmlEntities by looking at
the file mw_sanitizer.inc from MediaWiki distribution53:

53Available as mediawiki.config.wiki.

38

http://slps.svn.sourceforge.net/viewvc/slps/topics/grammars/wiki/mediawiki-bnf/mediawiki.config.wiki?view=markup

<wgHtmlEntities> ::= "Aacute" | "aacute" | "Acirc" | "acirc" | "acute" | "AElig"

| "aelig" | "Agrave" | "agrave" | "alefsym" | "Alpha" | "alpha" | "amp" | "and"

| "ang" | "Aring" | "aring" | "asymp" | "Atilde" | "atilde" | "Auml" | "auml"

| "bdquo" | "Beta" | "beta" | "brvbar" | "bull" | "cap" | "Ccedil" | "ccedil"

| "cedil" | "cent" | "Chi" | "chi" | "circ" | "clubs" | "cong" | "copy"

| "crarr" | "cup" | "curren" | "dagger" | "Dagger" | "darr" | "dArr" | "deg"

| "Delta" | "delta" | "diams" | "divide" | "Eacute" | "eacute" | "Ecirc"

| "ecirc" | "Egrave" | "egrave" | "empty" | "emsp" | "ensp" | "Epsilon"

| "epsilon" | "equiv" | "Eta" | "eta" | "ETH" | "eth" | "Euml" | "euml" | "euro"

| "exist" | "fnof" | "forall" | "frac12" | "frac14" | "frac34" | "frasl"

| "Gamma" | "gamma" | "ge" | "gt" | "harr" | "hArr" | "hearts" | "hellip"

| "Iacute" | "iacute" | "Icirc" | "icirc" | "iexcl" | "Igrave" | "igrave"

| "image" | "infin" | "int" | "Iota" | "iota" | "iquest" | "isin" | "Iuml"

| "iuml" | "Kappa" | "kappa" | "Lambda" | "lambda" | "lang" | "laquo" | "larr"

| "lArr" | "lceil" | "ldquo" | "le" | "lfloor" | "lowast" | "loz" | "lrm"

| "lsaquo" | "lsquo" | "lt" | "macr" | "mdash" | "micro" | "middot" | "minus"

| "Mu" | "mu" | "nabla" | "nbsp" | "ndash" | "ne" | "ni" | "not" | "notin"

| "nsub" | "Ntilde" | "ntilde" | "Nu" | "nu" | "Oacute" | "oacute" | "Ocirc"

| "ocirc" | "OElig" | "oelig" | "Ograve" | "ograve" | "oline" | "Omega"

| "omega" | "Omicron" | "omicron" | "oplus" | "or" | "ordf" | "ordm" | "Oslash"

| "oslash" | "Otilde" | "otilde" | "otimes" | "Ouml" | "ouml" | "para" | "part"

| "permil" | "perp" | "Phi" | "phi" | "Pi" | "pi" | "piv" | "plusmn" | "pound"

| "prime" | "Prime" | "prod" | "prop" | "Psi" | "psi" | "quot" | "radic"

| "rang" | "raquo" | "rarr" | "rArr" | "rceil" | "rdquo" | "real" | "reg"

| "rfloor" | "Rho" | "rho" | "rlm" | "rsaquo" | "rsquo" | "sbquo" | "Scaron"

| "scaron" | "sdot" | "sect" | "shy" | "Sigma" | "sigma" | "sigmaf" | "sim"

| "spades" | "sub" | "sube" | "sum" | "sup" | "sup1" | "sup2" | "sup3" | "supe"

| "szlig" | "Tau" | "tau" | "there4" | "Theta" | "theta" | "thetasym" | "thinsp"

| "THORN" | "thorn" | "tilde" | "times" | "trade" | "Uacute" | "uacute" | "uarr"

| "uArr" | "Ucirc" | "ucirc" | "Ugrave" | "ugrave" | "uml" | "upsih" | "Upsilon"

| "upsilon" | "Uuml" | "uuml" | "weierp" | "Xi" | "xi" | "Yacute" | "yacute"

| "yen" | "Yuml" | "yuml" | "Zeta" | "zeta" | "zwj" | "zwnj"

These are 252 entities taken from the DTD of HTML 4.0 [57]. XHTML
1.0 defines an additional entity called “apos” [2], which, technically speaking,
can be handled by MediaWiki since in its current state it rewrites wikitext
to XHTML 1.0 Transitional. Whether it is the grammar’s role to report an
error when it is used, remains an open question. Furthermore, suppose we are
developing wikiware which is not a WYSIWYG editor, but a migration tool or
an analysis tool: this would mean that the details about all particular entities
are of little importance, and one could define an entity name to be just any
alphanumeric word. Questions like these arise when languages are combined,
and for this particular project we leave the bottom nonterminals that represent
import points, undefined.

39

6 Results and future work

This document has reported on a successful grammar recovery effort. The in-
put for this project was a community-created MediaWiki grammar manually
extracted from the PHP tool that is used to transform wiki text to HTML. This
grammar contained unconnected fragments in at least five different notations,
bearing various kinds of errors from conceptual underuse of base notation to
simple misspellings, rendering the grammar fairly useless. As an output we pro-
vide a level 2 grammar, ready to be connected to adjacent modules (grammars
of HTML, CSS, etc) and made into a higher level grammar (e.g., test it on a
real wiki code). Naturally, this effort is one step in a long way, and we take the
rest of the report to sketch the next milestones and planned deliverables:

Fix grammar fragments. The first thing we can do is regenerate the original
grammar fragments in the same notation. One one hand, this would help
to not alienate the grammar from its creators; on the other hand, the
fragments will use a consistent notation throughout the grammar and be
validated as not having any misspellings, metasymbol omissions, etc.

Derive several versions. Just in case the same MediaWiki grammar is
needed in several different notations (e.g., BNF and EBNF), we can de-
rive them from the baseline grammar with either inferred or programmable
grammar transformation.

Propose a better notation. Whether or not the pure BNF grammar is de-
livered to Wikimedia Foundation, it will be of limited use to most people.
ANTLR notation that Wiki Creole used, is more useful, but even less
easy to comprehend. Both more readable and more expressive variants of
grammar definition formalisms exist and can be advised for use based on
the required functionality.

Find ambiguities and other problems. Various grammar analysis tech-
niques referenced in the text above can be used to perform deeper analyses
on the grammar in order to make it fully operational in Rascal, resolve ex-
isting ambiguities, and perhaps even spot problems that are unavoidable
with the current notation.

Complete the lexical part. Some lexical definitions were already found in
the source grammar, and were mostly preserved through the recovery
process. A level 3 grammar can be derived from our current result by
reinspecting these definitions together with textual annotations found on
MediaWiki.org.

40

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1985.

[2] J. Axelsson, M. Birbeck, M. Dubinko, B. Epperson, M. Ishikawa, S. Mc-
Carron, A. Navarro, and S. Pemberton. XHTMLTM2.0. W3C Working
Draft, 26 July 2006. www.w3.org/TR/2006/WD-xhtml2-20060726.

[3] J. W. Backus. The Syntax and Semantics of the Proposed International
Algebraic Language of the Zurich ACM-GAMM Conference. In S. de Pic-
ciotto, editor, Proceedings of the International Conference on Information
Processing, pages 125–131, Unesco, Paris, 1960.

[4] H. J. S. Basten. Tracking Down the Origins of Ambiguity in Context-free
Grammars. In Proceedings of the 7th International colloquium conference
on Theoretical Aspects of Computing, ICTAC’10, pages 76–90, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[5] S. Bennett. Markup spec: ANTLR, draft. http://www.mediawiki.org/

wiki/Markup_spec/ANTLR/draft, 2008.

[6] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986. Uniform Resource
Identifier (URI): Generic Syntax, January 2005. Available at http://

tools.ietf.org/html/rfc3986. Accessed in July 2011.

[7] D. Binkley. Source Code Analysis: A Road Map. In International Confer-
ence on Software Engineering, pages 104–119, 2007.

[8] B. Bos, T. Çelik, I. Hickson, and H. W. Lie. Cascading Style Sheets, Level 2
Revision 1. CSS 2.1 Specification. W3C Working Draft, 6 November 2006.
www.w3.org/TR/2006/WD-CSS21-20061106.

[9] N. Chomsky. Three Models for the Description of Language. IRE Trans-
actions on Information Theory, 2(2):113–123, 1956.

[10] Content Creation Wiki. Wiki Engines, Accessed in July 2011. http://c2.
com/cgi/wiki?WikiEngines.

[11] J. R. Cordy. Comprehending Reality — Practical Barriers to Industrial
Adoption of Software Maintenance Automation. In Proceedings of the
11th IEEE International Workshop on Program Comprehension, IWPC’03,
pages 196–205, Washington, DC, USA, 2003. IEEE Computer Society.

[12] R. Cox. Regular Expression Matching Can Be Simple And Fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...). Technical report, swtch, Jan.
2007.

[13] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider. Grammar Pro-
gramming in TXL. In Proceedings of the 2nd IEEE International Workshop
on Source Code Analysis and Manipulation, SCAM’02. IEEE, 2002.

41

www.w3.org/TR/2006/WD-xhtml2-20060726
http://www.mediawiki.org/wiki/Markup_spec/ANTLR/draft
http://www.mediawiki.org/wiki/Markup_spec/ANTLR/draft
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
www.w3.org/TR/2006/WD-CSS21-20061106
http://c2.com/cgi/wiki?WikiEngines
http://c2.com/cgi/wiki?WikiEngines

[14] J.-M. Favre. Software Language Engineering, Software Linguistics, 22
February 2006. http://megaplanet.org/jean-marie-favre.

[15] J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evo-
lution through Transformations. Electronic Notes in Theoretical Computer
Science, Proceedings of the SETra Workshop, 127(3), 2004.

[16] B. Fischer, R. Lämmel, and V. Zaytsev. Comparison of Context-free Gram-
mars Based on Parsing Generated Test Data. In U. Assmann, J. Saraiva,
and A. Sloane, editors, Pre-proceedings of the Fourth International Con-
ference on Software Language Engineering, SLE’11, pages 323–342. Cen-
tro de Ciências e Tecnologias de Computação, July 2011. Available via
http://slps.sf.net/testmatch.

[17] B. Ford. Parsing Expression Grammars: a Recognition-Based Syntactic
Foundation. In Proceedings of the Symposium on Principles of Program-
ming Languages, POPL’04, January 2004.

[18] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Speci-
fication. Addison-Wesley, third edition, 2005. Available at java.sun.com/
docs/books/jls.

[19] M. Hennessy and J. F. Power. Analysing the Effectiveness of Rule-coverage
as a Reduction Criterion for Test Suites of Grammar-based Software. Em-
pirical Software Engineering, 13:343–368, August 2008.

[20] ISO/IEC 14977:1996(E). Information Technology—Syntactic
Metalanguage—Extended BNF. Available at http://www.cl.cam.

ac.uk/~mgk25/iso-14977.pdf.

[21] S. C. Johnson. YACC—Yet Another Compiler Compiler. Computer Science
Technical Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey,
1975.

[22] M. Junghans, D. Riehle, R. Gurram, M. Kaiser, M. Lopes, and U. Yalci-
nalp. An EBNF grammar for Wiki Creole 1.0. SIGWEB Newsletter, 2007,
December 2007.

[23] A. Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

[24] P. Klint. A Meta-Environment for Generating Programming Environments.
ACM Transactions on Software Engineering and Methodology (TOSEM),
2(2):176–201, 1993.

[25] P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering Discipline for
Grammarware. ACM Transactions on Software Engineering Methodology
(TOSEM), 14(3):331–380, 2005.

42

http://megaplanet.org/jean-marie-favre
http://slps.sf.net/testmatch
java.sun.com/docs/books/jls
java.sun.com/docs/books/jls
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

[26] P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with
Rascal. In J. M. Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors,
Post-proceedings of the 3rd International Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE’09), vol-
ume 6491 of Lecture Notes in Computer Science, pages 222–289. Springer-
Verlag, January 2011.

[27] S. Klusener and R. Lämmel. Deriving Tolerant Grammars from a Base-
line Grammar. In Proceedings of the International Conference on Soft-
ware Maintenance, ICSM’03, pages 179–188, Los Alamitos, CA, USA, Sept.
2003. IEEE Computer Society.

[28] S. Klusener and V. Zaytsev. Language Standardization Needs Gram-
marware. JTC1/SC22 Document N3977, ISO/IEC, 2005. Available via
http://www.open-std.org/jtc1/sc22/open/n3977.pdf.

[29] D. E. Knuth. The Genesis of Attribute Grammars. In P. Deransart and
M. Jourdan, editors, WAGA, volume 461 of Lecture Notes in Computer
Science, pages 1–12. Springer, 1990.

[30] J. Kort, R. Lämmel, and C. Verhoef. The Grammar Deployment Kit. In
M. G. J. van den Brand and R. Lämmel, editors, Electronic Notes in The-
oretical Computer Science, volume 65. Elsevier Science Publishers, 2002.

[31] N. A. Kraft, E. B. Duffy, and B. A. Malloy. Grammar Recovery from Parse
Trees and Metrics-Guided Grammar Refactoring. IEEE Transactions on
Software Engineering, 99(RapidPosts):780–794, 2009.

[32] R. Lämmel. Grammar Adaptation. In Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for Increasing
Software Productivity, volume 2021 of Lecture Notes in Computer Science,
pages 550–570. Springer-Verlag, 2001. Available at http://homepages.

cwi.nl/~ralf/fme01.

[33] R. Lämmel. Grammar Testing. In H. Hussmann, editor, Proceedings, Fun-
damental Approaches to Software Engineering (FASE’01), volume 2029 of
Lecture Notes in Computer Science, pages 201–216. Springer, 2001.

[34] R. Lämmel. The Amsterdam Toolkit for Language Archaeology. Electronic
Notes in Theoretical Computer Science, 137(3):43–55, 2005. Proceedings of
the Second International Workshop on Metamodels, Schemas and Gram-
mars for Reverse Engineering (ATEM’04).

[35] R. Lämmel and W. Schulte. Controllable Combinatorial Coverage in
Grammar-Based Testing. In U. Uyar, M. Fecko, and A. Duale, editors, Pro-
ceedings of the 18th IFIP TC6/WG6.1 International Conference on Testing
of Communicating Systems (TestCom’06), volume 3964 of Lecture Notes in
Computer Science, pages 19–38. Springer Verlag, 2006.

43

http://www.open-std.org/jtc1/sc22/open/n3977.pdf
http://homepages.cwi.nl/~ralf/fme01
http://homepages.cwi.nl/~ralf/fme01

[36] R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery.
Software—Practice & Experience, 31(15):1395–1438, Dec. 2001. Available
via http://www.cs.vu.nl/grammarware/ge/.

[37] R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence.
In Proceedings of the 7th International Conference on Integrated Formal
Methods (iFM 2009), volume 5423 of Lecture Notes in Computer Science,
pages 246–260. Springer, February 2009.

[38] R. Lämmel and V. Zaytsev. Recovering Grammar Relationships for the
Java Language Specification. In Proceedings of the 9th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation,
SCAM’09, pages 178–186, Edmonton, Canada, September 2009. IEEE.

[39] R. Lämmel and V. Zaytsev. Recovering Grammar Relationships for the
Java Language Specification. Software Quality Journal, 19(2):333–378,
March 2011. Also available at http://arxiv.org/abs/1008.4188.

[40] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2002.

[41] B. Leuf and W. Cunningham. The Wiki Way. Quick Collaboration on the
Web. Addison-Wesley Longman, Amsterdam, pap/cdr edition, 2001.

[42] B. A. Malloy and J. F. Power. An Interpretation of Purdom’s Algorithm
for Automatic Generation of Test Cases. In In 1st Annual International
Conference on Computer and Information Science, pages 3–5, 2001.

[43] P. Maurer. Generating Test Data with Enhanced Context-free Grammars.
IEEE Software, 7(4):50–56, 1990.

[44] MediaWiki. Markup spec: BNF: Fundamental elements. http://www.

mediawiki.org/wiki/Markup_spec/BNF/Fundamental_elements, 2008.
Revision 212918 of 17 September 2008 was used for extraction.

[45] MediaWiki. Markup spec: BNF. http://www.mediawiki.org/wiki/

Markup_spec/BNF, 2009.

[46] MediaWiki. Markup spec: BNF: Article. http://www.mediawiki.org/

wiki/Markup_spec/BNF/Article, 2009. Revision 281674 of 17 October
2009 was used for extraction.

[47] MediaWiki. Markup spec: BNF: Article title. http://www.mediawiki.

org/wiki/Markup_spec/BNF/Article_title, 2009. Revision 295042 of
28 December 2009 was used for extraction.

[48] MediaWiki. Markup spec: BNF: Inline text. http://www.mediawiki.

org/wiki/Markup_spec/BNF/Inline_text, 2009. Revision 295055 of 29
December 2009 was used for extraction.

44

http://www.cs.vu.nl/grammarware/ge/
http://arxiv.org/abs/1008.4188
http://www.mediawiki.org/wiki/Markup_spec/BNF/Fundamental_elements
http://www.mediawiki.org/wiki/Markup_spec/BNF/Fundamental_elements
http://www.mediawiki.org/wiki/Markup_spec/BNF
http://www.mediawiki.org/wiki/Markup_spec/BNF
http://www.mediawiki.org/wiki/Markup_spec/BNF/Article
http://www.mediawiki.org/wiki/Markup_spec/BNF/Article
http://www.mediawiki.org/wiki/Markup_spec/BNF/Article_title
http://www.mediawiki.org/wiki/Markup_spec/BNF/Article_title
http://www.mediawiki.org/wiki/Markup_spec/BNF/Inline_text
http://www.mediawiki.org/wiki/Markup_spec/BNF/Inline_text

[49] MediaWiki. Markup spec: BNF: Magic links. http://www.mediawiki.

org/wiki/Markup_spec/BNF/Magic_links, 2009. Revision 269783 of 8
August 2009 was used for extraction.

[50] MediaWiki. Markup spec: BNF: Special block. http://www.mediawiki.

org/wiki/Markup_spec/BNF/Special_block, 2009. Revision 281676 of 17
October 2009 was used for extraction.

[51] MediaWiki. Markup spec: BNF: Noparse block. http://www.mediawiki.
org/wiki/Markup_spec/BNF/Noparse-block, 2010. Revision 372814 of 30
December 2010 was used for extraction.

[52] MediaWiki. Markup spec: BNF: Links. http://www.mediawiki.org/

wiki/Markup_spec/BNF/Links, 2011. Revision 376721 of 18 January 2011
was used for extraction.

[53] MediaWiki. Parser.php, Accessed in July 2011. http://svn.mediawiki.

org/viewvc/mediawiki/trunk/phase3/includes/parser/Parser.php?

view=markup.

[54] T. Parr. ANTLR—ANother Tool for Language Recognition. http:

//antlr.org, 2008.

[55] J. F. Power and B. A. Malloy. A metrics suite for grammar-based software.
Journal of Software Maintenance and Evolution: Research and Practice,
16:405–426, November 2004.

[56] P. Purdom. A Sentence Generator for Testing Parsers. BIT, 12(3):366–375,
1972.

[57] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specification. W3C
Recommendation, 24 December 1999. http://www.w3.org/TR/html401/.

[58] M. P. A. Sellink and C. Verhoef. Generation of Software Renovation Fac-
tories from Compilers. In Proceedings of 15th International Conference
on Software Maintenance, ICSM’99, pages 245–255, 1999. Available at
http://www.cs.vu.nl/~x/com.

[59] M. P. A. Sellink and C. Verhoef. Development, Assessment, and Reengi-
neering of Language Descriptions. In J. Ebert and C. Verhoef, editors, Pro-
ceedings of the Fourth European Conference on Software Maintenance and
Reengineering, CSMR’00, pages 151–160. IEEE Computer Society Press,
March 2000. Available at http://www.cs.vu.nl/~x/cale.

[60] E. G. Sirer and B. N. Bershad. Using Production Grammars in Software
Testing. SIGPLAN Notices, 35:1–13, December 1999.

[61] M. van den Brand, A. Sellink, and C. Verhoef. Generation of Components
for Software Renovation Factories from Context-free Grammars. Science
of Computer Programming, 36(2–3):209–266, Mar. 2000.

45

http://www.mediawiki.org/wiki/Markup_spec/BNF/Magic_links
http://www.mediawiki.org/wiki/Markup_spec/BNF/Magic_links
http://www.mediawiki.org/wiki/Markup_spec/BNF/Special_block
http://www.mediawiki.org/wiki/Markup_spec/BNF/Special_block
http://www.mediawiki.org/wiki/Markup_spec/BNF/Noparse-block
http://www.mediawiki.org/wiki/Markup_spec/BNF/Noparse-block
http://www.mediawiki.org/wiki/Markup_spec/BNF/Links
http://www.mediawiki.org/wiki/Markup_spec/BNF/Links
http://svn.mediawiki.org/viewvc/mediawiki/trunk/phase3/includes/parser/Parser.php?view=markup
http://svn.mediawiki.org/viewvc/mediawiki/trunk/phase3/includes/parser/Parser.php?view=markup
http://svn.mediawiki.org/viewvc/mediawiki/trunk/phase3/includes/parser/Parser.php?view=markup
http://antlr.org
http://antlr.org
http://www.w3.org/TR/html401/
http://www.cs.vu.nl/~x/com
http://www.cs.vu.nl/~x/cale

[62] M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Obtaining
a COBOL Grammar from Legacy Code for Reengineering Purposes. In
M. P. A. Sellink, editor, Proceedings of the 2nd International Workshop on
the Theory and Practice of Algebraic Specifications, Berlin, 1997. Springer-
Verlag.

[63] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sint-
zoff, C. Lindsey, L. G. L. T. Meertens, and R. G. Fisker. Final Report on
the Algorithmic Language Algol 68. Technical report, IFIP Working Group
2.1, Dec. 1968.

[64] M. Črepinšek, M. Mernik, and V. Žumer. Extracting Grammar from Pro-
grams: Brute Force Approach. SIGPLAN Notices, 40:29–38, Apr. 2005.

[65] N. Veerman. Automated Mass Maintenance of Software Assets. PhD the-
sis, Vrije Universiteit, Jan. 2007. Available at www.cs.vu.nl/~nveerman/

research/thesis/thesis.pdf.

[66] M. Völter. Embedded software development with projectional language
workbenches. In D. C. Petriu, N. Rouquette, and Ø. Haugen, editors,
MoDELS (2), volume 6395 of Lecture Notes in Computer Science, pages
32–46. Springer, 2010.

[67] T. Wegrzanowski and B. Vibber. Math, Last version in April 2011. http:
//www.mediawiki.org/wiki/Extension:Math.

[68] Wikidot. Free and Pro Wiki Hosting, 2007–2011. http://www.wikidot.

com.

[69] Wikimedia Foundation Project. Parser plan, 2011. http://www.

mediawiki.org/wiki/Future/Parser_plan.

[70] M. Wimmer and G. Kramler. Bridging Grammarware and Model-
ware. In Proceedings of the 4th Workshop in Software Model Engineering,
WiSME’05, Oct. 2005. Available at www.big.tuwien.ac.at/research/

publications/2005/1105.pdf.

[71] N. Wirth. What Can We Do about the Unnecessary Diversity of Notation
for Syntactic Definitions? Communications of the ACM, 20(11):822–823,
1977.

[72] V. Zaytsev. Combinatorial Test Set Generation: Concepts, Implementa-
tion, Case Study. Master’s thesis, Universiteit Twente, Enschede, The
Netherlands, June 2004.

[73] V. Zaytsev. Correct C# Grammar too Sharp for ISO. In Pre-proceedings
of the International Summer School on Generative and Transformational
Techniques in Software Engineering, Part II, Participants Workshop,
GTTSE’05, pages 154–155, Braga, Portugal, July 2005. Technical Report,
TR-CCTC/DI-36, Universidade do Minho. Extended abstract.

46

www.cs.vu.nl/~nveerman/research/thesis/thesis.pdf
www.cs.vu.nl/~nveerman/research/thesis/thesis.pdf
http://www.mediawiki.org/wiki/Extension:Math
http://www.mediawiki.org/wiki/Extension:Math
http://www.wikidot.com
http://www.wikidot.com
http://www.mediawiki.org/wiki/Future/Parser_plan
http://www.mediawiki.org/wiki/Future/Parser_plan
www.big.tuwien.ac.at/research/publications/2005/1105.pdf
www.big.tuwien.ac.at/research/publications/2005/1105.pdf

[74] V. Zaytsev. XBGF Reference Manual: BGF Transformation Operator
Suite, 1.0 edition, August 2009. Available via http://slps.sf.net/xbgf.

[75] V. Zaytsev. Recovery, Convergence and Documentation of Lan-
guages. PhD thesis, Vrije Universiteit, Amsterdam, The Nether-
lands, October 2010. Available at http://grammarware.net/text/2010/

zaytsev-thesis.pdf.

[76] V. Zaytsev. Browsable MediaWiki in EBNF Grammar. http://slps.sf.
net/zoo/wiki/mediawiki-ebnf.html, 2011.

[77] V. Zaytsev. Language Convergence Infrastructure. In J. M. Fernandes,
R. Lämmel, J. Visser, and J. Saraiva, editors, Post-proceedings of the 3rd
International Summer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE’09), volume 6491 of Lecture Notes
in Computer Science, pages 481–497. Springer-Verlag Berlin Heidelberg,
January 2011.

[78] V. Zaytsev. Wiki Migration. http://wikimania2011.wikimedia.org/

wiki/Submissions/Wiki_Migration, 2011. Presentation accepted at
Wikimania 2011.

[79] V. Zaytsev and R. Lämmel. A Unified Format for Language Documents. In
B. Malloy, S. Staab, and M. G. J. van den Brand, editors, Post-proceedings
of the Third International Conference on Software Language Engineering
(SLE’10), volume 6563 of Lecture Notes in Computer Science, pages 206–
225. Springer, Heidelberg, January 2011.

[80] V. Zaytsev, R. Lämmel, and T. van der Storm. Software Language Process-
ing Suite, 2008–2011. http://slps.sf.net, repository statistics on July
2011: 727 commits by Zaytsev, 304 commits by Lämmel, 44 commits by
van der Storm.

47

http://slps.sf.net/xbgf
http://grammarware.net/text/2010/zaytsev-thesis.pdf
http://grammarware.net/text/2010/zaytsev-thesis.pdf
http://slps.sf.net/zoo/wiki/mediawiki-ebnf.html
http://slps.sf.net/zoo/wiki/mediawiki-ebnf.html
http://wikimania2011.wikimedia.org/wiki/Submissions/Wiki_Migration
http://wikimania2011.wikimedia.org/wiki/Submissions/Wiki_Migration
http://slps.sf.net

